Indoor Air Pollution Exposure of Women in Adama, Ethiopia, and Assessment of Disease Burden Attributable to Risk Factor
Abstract
:1. Introduction
2. Methods
2.1. Study Setting and Population
2.2. Exposure Assessment
2.3. Burden of Disease from Household Air Pollution
2.4. Statistical Analysis
2.5. Research Objectives
- Calculating the mortality number of attributable cases using age-standardized versus crude mortality rates per 100,000 women in Ethiopia, for ALRI, COPD, IHD, stroke, and lung cancer;
- Calculating the mortality number of attributable cases per 100,000 population at risk using age-standardized versus crude mortality rates per 100,000 women in Ethiopia, for ALRI, COPH, IHD, stroke, and lung cancer;
- Calculating the number of DALYs of attributable cases using all-ages versus ages 15–49 rates per 100,000 women in Ethiopia, for ALRI, COPH, IHD, stroke, and lung cancer;
- Calculating the number of DALYs of attributable cases per 100,000 women using all-ages versus ages 15–49 rates per 100,000 women in Ethiopia, for ALRI, COPH, IHD, stroke, and lung cancer.
2.6. Ethical Considerations
3. Results
3.1. Characteristics of the Population Sample
3.2. Burden of Disease (BoD) Assessments Attributable to Risk Factor, AirQ+
4. Discussion
4.1. Implications of the Study
4.2. Policy Implications
4.3. Merits and Limitations of the Study
4.4. Recommendations for Future Research
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AFp | Attributable Fraction of the Population |
ANC | Antenatal Care |
ALRI | Acute Lower Respiratory Infection |
ASDR | Age Standardized Death Rate |
BoD | Burden of Disease |
CDC | Center for Disease Control |
CFCs | Chlorofluorocarbons |
CI | Confidence Interval |
COPD | Chronic Obstructive Pulmonary Disease |
DALYs | Disease-Adjusted Life Years |
DDT | Dichlorodiphenyltrichloroethane |
GBD | Global Burden of Disease |
IER | Integrated Exposure Response Function |
IHD | Ischemic Heart Disease |
LMIC | Low-Income and Middle-Income Countries |
MCMC | Markov chain Monte Carlo |
PM2.5 & PM10 | Particulate Matter 2.5 μm and Particulate Matter 10 μm |
PAF | Population Attributable Fraction |
PAHs | Polycyclic Aromatic Hydrocarbons |
Pe | Percentage of Population Exposed to Household Air Pollution |
PCBs | Polychlorinated Biphenyls |
RR | Relative Risk |
SPSS | Statistical Package for Social Sciences |
USEPA | United States Environmental Protection Agency |
WHO | World Health Organization |
PPP | Project, Policy, Program |
References
- Landrigan, P.J.; Fuller, R.; Acosta, N.J.R. The Lancet Commission on pollution and health. Lancet 2018, 391, 463. [Google Scholar] [CrossRef] [Green Version]
- West, J.J.; Cohen, A.; Dentener, F.; Brunekreef, B.; Zhu, T.; Armstrong, B.; Bell, M.; Brauer, M.; Carmichael, G.; Costa, D.L.; et al. What We Breathe Impacts Our Health: Improving Understanding of the Link between Air Pollution and Health. Environ. Sci. Technol. 2016, 50, 4895–4904. [Google Scholar] [CrossRef]
- WHO. Ambient air pollution: A global assessment of exposure and burden of disease. Clean Air J. 2016, 26. [Google Scholar]
- Ramanathan, V.; Carmichael, G. Global and regional climate changes due to black carbon. Nat. Geosci. 2008, 1, 221–227. [Google Scholar] [CrossRef]
- Bonjour, S.; Adair-Rohani, H.; Wolf, J.; Bruce, N.G.; Mehta, S.; Prüss-Ustün, A.; Lahiff, M.; Rehfuess, E.A.; Mishra, V.; Smith, K.R. Solid Fuel Use for Household Cooking: Country and Regional Estimates for 1980–2010. Environ. Health Perspect. 2013, 121, 784–790. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Collaborator GBDRF. GBD 2016 Risk Factors Collaborators. Global, regional, and national comparative risk assessment of 84 behavioural, environmental and occupational, and metabolic risks or clusters of risks, 1990–2016: A systematic analysis for the Global Burden of Disease Study 2016. Lancet 2017, 390, 1736. [Google Scholar]
- Abbasi-Kangevari, M.; Abd-Allah, F.; Adekanmbi, V.; Adetokunboh, O.O.; Al-Mekhlafi, H.M.; Ancuceanu, R.; Abrigo, M.R.M.; Moshood, A.; Advani, S.M.; Adham, D.; et al. Global burden of 87 risk factors in 204 countries and territories, 1990–2019: A systematic analysis for the Global Burden of Disease Study 2019. Lancet 2020, 396, 1223–1249. [Google Scholar]
- Naidja, L.; Ali-Khodja, H.; Khardi, S. Sources and levels of particulate matter in North African and Sub-Saharan cities: A literature review. Environ. Sci. Pollut. Res. 2018, 25, 12303–12328. [Google Scholar] [CrossRef]
- Mead, M.; Khan, M.; White, I.; Nickless, G.; Shallcross, D. Methyl halide emission estimates from domestic biomass burning in Africa. Atmos. Environ. 2008, 42, 5241–5250. [Google Scholar] [CrossRef]
- WHO. Burning Opportunity: Clean Household Energy for Health, Sustainable Development, and Wellbeing of Women and Children; World Health Organization: Geneva, Switzerland, 2016. [Google Scholar]
- Nunes, E.D.; Greenhalgh, T. Cultural Contexts of Health: The Use of Narrative Research in the Health Sector. Copenhagen: WHO Regional Office for Europe. (Health Evidence Network Synthesis Report 49). Interface 2016, 22, 307. [Google Scholar] [CrossRef] [Green Version]
- Keil, C.; Kassa, H.; Brown, A.; Kumie, A.; Tefera, W. Inhalation Exposures to Particulate Matter and Carbon Monoxide during Ethiopian Coffee Ceremonies in Addis Ababa: A Pilot Study. J. Environ. Public Health 2010, 2010, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Sanbata, H.; Asfaw, A.; Kumie, A. Indoor air pollution in slum neighbourhoods of Addis Ababa, Ethiopia. Atmos. Environ. 2014, 89, 230–234. [Google Scholar] [CrossRef]
- Morawska, L.; Afshari, A.; Bae, G.N.; Buonanno, G.; Chao, Y.H.C.; Hänninen, O.; Hofmann, W.; Isaxon, C.; Jayaratne, E.R.; Pasanen, P.; et al. Indoor aerosols: From personal exposure to risk assessment. Indoor Air 2013, 23, 462–487. [Google Scholar] [CrossRef] [Green Version]
- Okello, G.; Devereux, G.; Semple, S. Women and girls in resource poor countries experience much greater exposure to household air pollutants than men: Results from Uganda and Ethiopia. Environ. Int. 2018, 119, 429–437. [Google Scholar] [CrossRef]
- Mocumbi, A.O.; Stewart, S.; Patel, S.; Al-Delaimy, W.K. Cardiovascular Effects of Indoor Air Pollution from Solid Fuel: Relevance to Sub-Saharan Africa. Curr. Environ. Health Rep. 2019, 6, 116–126. [Google Scholar] [CrossRef] [PubMed]
- Gebreab, S.Z.; Vienneau, D.; Feigenwinter, C.; Bâ, H.; Cissé, G.; Tsai, M.-Y. Spatial air pollution modelling for a West-African town. Geospat. Health 2015, 10. [Google Scholar] [CrossRef] [Green Version]
- WHO. Health Impact Assessment: Main Concepts and Suggested Approach; European Centre for Health Policy, World Health Organization Regional Office for Europe: Geneva, Switzerland, 1999. [Google Scholar]
- Huang, C.; Wang, Q.; Wang, S.; Ren, M.; Ma, R.; He, Y. Air Pollution Prevention and Control Policy in China. In Advances in Experimental Medicine and Biology; Springer: Singapore, 2017; Volume 1017, pp. 243–261. [Google Scholar] [CrossRef]
- Abera, A.; Friberg, J.; Isaxon, C.; Jerrett, M.; Malmqvist, E.; Sjöström, C.; Taj, T.; Vargas, A.M. Air Quality in Africa: Public Health Implications. Annu. Rev. Public Health 2021, 42, 193–210. [Google Scholar] [CrossRef] [PubMed]
- WHO. Air Quality Guidelines; WHO: Geneva, Switzerland, 2005. [Google Scholar]
- World Health Assembly. Health and the Environment: Addressing the Health Impact of Air Pollution: Draft Resolution Proposed by the Delegations of Albania, Chile, Colombia, France, Germany, Monaco, Norway, Panama, Sweden, Switzerland, Ukraine, United States of America, Uruguay and Zambia; World Health Organization: Geneva, Switzerland, 2015. [Google Scholar]
- Lock, K. Health impact assessment. BMJ 2000, 320, 1395–1398. [Google Scholar] [CrossRef]
- Kemm, J. Perspectives on health impact assessment. Bull. World Health Organ. 2003, 81, 387. [Google Scholar] [PubMed]
- Parry, J.; Stevens, A. Prospective health impact assessment: Pitfalls, problems, and possible ways forward. BMJ 2001, 323, 1177–1182. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Davenport, C.; Mathers, J.; Parry, J. Use of health impact assessment in incorporating health considerations in decision making. J. Epidemiol. Community Health 2006, 60, 196–201. [Google Scholar] [CrossRef] [Green Version]
- WHO. WHO Regional Office for Europe, AirQ+ Key Features; WHO: Geneva, Switzerland, 2021. [Google Scholar]
- Tesfaye, F.; Sturegård, E.; Walles, J.; Winqvist, N.; Balcha, T.T.; Karlson, S.; Mulleta, D.; Isberg, P.-E.; Jansson, M.; Björkman, P. Alternative biomarkers for classification of latent tuberculosis infection status in pregnant women with borderline Quantiferon plus results. Tuberculosis 2020, 124, 101984. [Google Scholar] [CrossRef]
- Walles, J.; Tesfaye, F.; Jansson, M.; Balcha, T.T.; Sturegård, E.; Kefeni, M.; Merga, G.; Hansson, S.R.; Winqvist, N.; Björkman, P. Tuberculosis infection in women of reproductive age—A cross-sectional study at antenatal care clinics in an Ethiopian city. Clin. Infect. Dis. 2020, 73, 203–210. [Google Scholar] [CrossRef]
- Walles, J.K.; Tesfaye, F.; Jansson, M.; Balcha, T.T.; Winqvist, N.; Kefeni, M.; Abeya, S.G.; Belachew, F.; Sturegard, E.; Bjorkman, P. Performance of QuantiFERON-TB Gold Plus for detection of latent tuberculosis infection in pregnant women living in a tuberculosis- and HIV-endemic setting. PLoS ONE 2018, 13, e0193589. [Google Scholar]
- Lim, S.S.; Vos, T.; Flaxman, A.D.; Danaei, G.; Shibuya, K.; Adair-Rohani, H.; AlMazroa, M.A.; Amann, M.; Anderson, H.R.; Andrews, K.G.; et al. A comparative risk assessment of burden of disease and injury attributable to 67 risk factors and risk factor clusters in 21 regions, 1990–2010: A systematic analysis for the Global Burden of Disease Study 2010. Lancet 2012, 380, 2224–2260. [Google Scholar] [CrossRef] [Green Version]
- Balakrishnan, K.; Ghosh, S.; Ganguli, B.; Sambandam, S.; Bruce, N.; Barnes, D.F.; Smith, K.R. State and national household concentrations of PM2.5 from solid cookfuel use: Results from measurements and modeling in India for estimation of the global burden of disease. Environ. Health 2013, 12, 77. [Google Scholar] [CrossRef] [Green Version]
- Smith, K.R.; Bruce, N.; Balakrishnan, K.; Adair-Rohani, H.; Balmes, J.; Chafe, Z.; Dherani, M.; Hosgood, H.D.; Mehta, S.; Pope, D.; et al. Millions Dead: How Do We Know and What Does It Mean? Methods Used in the Comparative Risk Assessment of Household Air Pollution. Annu. Rev. Public Health 2014, 35, 185–206. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Admasie, A.; Kumie, A.; Worku, A.; Tsehayu, W. Household fine particulate matter (PM2.5) concentrations from cooking fuels: The case in an urban setting, Wolaita Sodo, Ethiopia. Air Qual. Atmos. Health 2019, 12, 755–763. [Google Scholar] [CrossRef]
- Tefera, W.; Asfaw, A.; Gilliland, F.; Worku, A.; Wondimagegn, M.; Kumie, A.; Samet, J.; Berhane, K. Indoor and Outdoor Air Pollution- related Health Problem in Ethiopia: Review of Related Literature. Ethiop. J. Health Dev. 2016, 30, 5–16. [Google Scholar]
- WHO. Preventing Disease through Healthy Environments: A Global Assessment of the Burden of Disease from Environmental Risks; WHO: Geneva, Switzerland, 2018. [Google Scholar]
- Alem, Y.; Beyene, A.D.; Köhlin, G.; Mekonnen, A. Modeling household cooking fuel choice: A panel multinomial logit approach. Energy Econ. 2016, 59, 129–137. [Google Scholar] [CrossRef]
- Brooks, N.; Bhojvaid, V.; Jeuland, M.; Lewis, J.; Patange, O.; Pattanayak, S. How much do alternative cookstoves reduce biomass fuel use? Evidence from North India. Resour. Energy Econ. 2016, 43, 153–171. [Google Scholar] [CrossRef]
- Gebreegziabher, Z.; Beyene, A.D.; Bluffstone, R.; Martinsson, P.; Mekonnen, A.; Toman, M.A. Fuel savings, cooking time and user satisfaction with improved biomass cookstoves: Evidence from controlled cooking tests in Ethiopia. Resour. Energy Econ. 2018, 52, 173–185. [Google Scholar] [CrossRef]
- Malakar, Y.; Greig, C.; van de Fliert, E. Structure, agency and capabilities: Conceptualising inertia in solid fuel-based cooking practices. Energy Res. Soc. Sci. 2018, 40, 45–53. [Google Scholar] [CrossRef]
- Ray, I.; Smith, K.R. Towards safe drinking water and clean cooking for all. Lancet Glob. Health 2021, 9, e361–e365. [Google Scholar] [CrossRef]
- Chillrud, S.N.; Ae-Ngibise, K.A.; Gould, C.F.; Owusu-Agyei, S.; Mujtaba, M.; Manu, G.; Burkart, K.; Kinney, P.L.; Quinn, A.; Jack, D.W.; et al. The effect of clean cooking interventions on mother and child personal exposure to air pollution: Results from the Ghana Randomized Air Pollution and Health Study (GRAPHS). J. Expo. Sci. Environ. Epidemiol. 2021, 31, 683–698. [Google Scholar] [CrossRef] [PubMed]
- Ambade, B.; Sankar, T.K.; Panicker, A.; Gautam, A.S.; Gautam, S. Characterization, seasonal variation, source apportionment and health risk assessment of black carbon over an urban region of East India. Urban Clim. 2021, 38, 100896. [Google Scholar] [CrossRef]
- Amegah, A.K.; Agyei-Mensah, S. Urban air pollution in Sub-Saharan Africa: Time for action. Environ. Pollut. 2017, 220, 738–743. [Google Scholar] [CrossRef]
- Joss, M.K.; Eeftens, M.; Gintowt, E.; Kappeler, R.; Künzli, N. Time to harmonize national ambient air quality standards. Int. J. Public Health 2017, 62, 453–462. [Google Scholar] [CrossRef] [Green Version]
- Bahino, J.; Yoboue, V.; Galy-Lacaux, C.; Adon, M.; Akpo, A.; Keita, S.; Liousse, K.; Gardrat, E.; Chiron, C.; Ossohou, M.; et al. A pilot study of gaseous pollutants’ measurement (NO2, SO2, NH3, HNO3 and O3) in Abidjan, Cote d’Ivoire: Contribution to an overview of gaseous pollution in African cities. Atmos. Chem. Phys. 2018, 18, 5173–5198. [Google Scholar] [CrossRef] [Green Version]
- Ngo, N.S.; Gatari, M.; Yan, B.; Chillrud, S.N.; Bouhamam, K.; Kinney, P.L. Occupational exposure to roadway emissions and inside informal settlements in sub-Saharan Africa: A pilot study in Nairobi, Kenya. Atmos. Environ. 2015, 111, 179–184. [Google Scholar] [CrossRef] [Green Version]
- Mondal, A.H.; Bryan, E.; Ringler, C.; Rosegrant, M. Ethiopian power sector development: Renewable based universal electricity access and export strategies. Renew. Sustain. Energy Rev. 2017, 75, 11–20. [Google Scholar] [CrossRef]
- Sacks, J.D.; Fann, N.; Gumy, S.; Kim, I.; Ruggeri, G.; Mudu, P. Quantifying the Public Health Benefits of Reducing Air Pollution: Critically Assessing the Features and Capabilities of WHO’s AirQ plus and US EPA’s Environmental Benefits Mapping and Analysis Program-Community Edition (BenMAP-CE). Atmosphere 2020, 11, 516. [Google Scholar] [CrossRef] [PubMed]
- Abera, A.; Malmqvist, E.; Mandakh, Y.; Flanagan, E.; Jerrett, M.; Gebrie, G.; Bayih, A.; Aseffa, A.; Isaxon, C.; Mattisson, K. Measurements of NOx and Development of Land Use Regression Models in an East-African City. Atmosphere 2021, 12, 519. [Google Scholar] [CrossRef]
Disease | RR (95% CI) | Reference |
---|---|---|
Acute lower respiratory infection | 2.3 (1.8–2.8) | [6,7,27] |
Chronic obstructive pulmonary disease | 2.3 (1.7–3.1) | [6,7,27] |
Ischemic heart disease | (1.4–2.2) | [6,7,27] |
Lung cancer | 2.3 (1.5–2.8) | [6,7,27] |
Stroke | (1.4–2.4) | [6,7,27] |
Disease | Age-Standardized Mortality Rates | Crude Mortality Rates |
---|---|---|
Acute lower respiratory infection | 75.4 | 57.8 |
Chronic obstructive pulmonary disease | 19.7 | 8.7 |
Ischemic heart disease | 98.9 | 42.2 |
Lung cancer | 33.6 | 31.9 |
Stroke | 75.6 | 33.9 |
Disease | Disease-Adjusted Life Years: All Ages | Disease-Adjusted Life Years: Ages 15–49 |
---|---|---|
Acute lower respiratory infection | 18,368 | 9825 |
Chronic obstructive pulmonary disease | 13,880 | 1450 |
Ischemic heart disease | 48,300 | 4930 |
Lung cancer | 12,435 | 141 |
Stroke | 44,470 | 5010 |
Mortality Rate Type | Burden of Disease | ALRI | COPD | IHD | Lung Cancer | Stroke |
---|---|---|---|---|---|---|
Utilizing age-standardized mortality rates per 100,000 women in Ethiopia | Estimated Attributable Proportion (%) | 49.5 (37.6–57.6) | 49.5 (34.5–61.3) | (23.2–47.5) | 49.5 (27.4–57.6) | (23.2–51.4) |
Number of Attributable Cases | 84 (64–98) | 22 (15–27) | (52–106) | 38 (21–44) | (40–88) | |
Number of Attributable Cases per 100,000 Population at Risk | 37.3 (28.4–43.4) | 9.8 (6.8–12.1) | (22.9–47.0) | 16.6 (9.2–19.4) | (17.5–38.8) | |
Utilizing crude mortality rates per 100,000 women in Ethiopia | Number of Attributable Cases | 65 (49–75) | 10 (7–12) | (22–45) | 36 (20–42) | (18–39) |
Number of Attributable Cases per 100,000 Population at Risk | 28.6 (21.8–33.3) | 4.3 (3.0–5.3) | (9.8–20.1) | 15.8 (8.7–18.4) | (7.9–17.4) |
Mortality Rate Type | Burden of Disease | ALRI | COPD | IHD | Lung Cancer | Stroke |
---|---|---|---|---|---|---|
Utilizing disease-adjusted life years for all ages of women in Ethiopia | Estimated Attributable Proportion (%) | 49.5 (37.6–57.6) | 49.5 (34.5–61.3) | (23.2–47.5) | 49.5 (27.4–57.6) | (23.2–51.4) |
Number of Attributable DALYs | 20,566 (15,632–23,922) | 15,541 (10,846– 19,243) | (25,316–51,897) | 13,923 (7701–16,195) | (23,308–51,656) | |
Number of Attributable DALYs per 100,000 Population at Risk | 9092.2 (6910.9–10,575.7) | 6870.6 (4795.0–8507.2) | (11,191.8–22,943.0) | 6155.3 (3404.5–7159.7) | (10,304.4–22,836.4) | |
Utilizing disease-adjusted life years for ages 15–49 for women in Ethiopia | Number of Attributable DALYs | 11,001 (8362–12,796) | 1624 (1133–2010) | (2584–5297) | 158 (87–184) | (2626–5820) |
Number of Attributable DALYs per 100,000 Population at Risk | 4863.4 (3696.6–5656.9) | 717.8 (500.9–888.7) | (1142.4–2341.8) | 69.8 (38.6–81.2) | (1160.9–2572.8) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Balidemaj, F.; Isaxon, C.; Abera, A.; Malmqvist, E. Indoor Air Pollution Exposure of Women in Adama, Ethiopia, and Assessment of Disease Burden Attributable to Risk Factor. Int. J. Environ. Res. Public Health 2021, 18, 9859. https://doi.org/10.3390/ijerph18189859
Balidemaj F, Isaxon C, Abera A, Malmqvist E. Indoor Air Pollution Exposure of Women in Adama, Ethiopia, and Assessment of Disease Burden Attributable to Risk Factor. International Journal of Environmental Research and Public Health. 2021; 18(18):9859. https://doi.org/10.3390/ijerph18189859
Chicago/Turabian StyleBalidemaj, Festina, Christina Isaxon, Asmamaw Abera, and Ebba Malmqvist. 2021. "Indoor Air Pollution Exposure of Women in Adama, Ethiopia, and Assessment of Disease Burden Attributable to Risk Factor" International Journal of Environmental Research and Public Health 18, no. 18: 9859. https://doi.org/10.3390/ijerph18189859
APA StyleBalidemaj, F., Isaxon, C., Abera, A., & Malmqvist, E. (2021). Indoor Air Pollution Exposure of Women in Adama, Ethiopia, and Assessment of Disease Burden Attributable to Risk Factor. International Journal of Environmental Research and Public Health, 18(18), 9859. https://doi.org/10.3390/ijerph18189859