Characterisation of Bacterial Isolates from Infected Post-Operative Patients in a Malaysian Tertiary Heart Care Centre
Abstract
:1. Introduction
2. Materials and Methods
2.1. Bacterial Strains
2.2. Ethics
2.3. DNA Extraction
2.4. Polymerase Chain Reaction Amplification (PCR) of Resistance Genes
2.5. Biofilm Formation Assay
3. Results
3.1. Clinical Samples Detail
3.2. Antibiotic Resistance Characteristics of Clinical Isolates
3.3. Ability of Biofilm Formation
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- WHO. Global Guidelines on the Prevention of Surgical Site Infection; WHO: Geneva, Switzerland, 2017. [Google Scholar]
- Haque, M.; Sartelli, M.; McKimm, J.; Bakar, M.A. Health care-associated infections—An overview. Infect. Drug Resist. 2018, 11, 2321–2333. [Google Scholar] [CrossRef] [Green Version]
- Torpy, J.M.; Burke, A.E.; Glass, R.M. Postoperative infections. JAMA—J. Am. Med. Assoc. 2010, 303, 2544. [Google Scholar] [CrossRef] [Green Version]
- Byrd, A.L.; Belkaid, Y.; Segre, J.A. The human skin microbiome. Nat. Rev. Microbiol. 2018, 16, 143–155. [Google Scholar] [CrossRef]
- Shibagaki, N.; Suda, W.; Clavaud, C.; Bastien, P.; Takayasu, L.; Iioka, E.; Kurokawa, R.; Yamashita, N.; Hattori, Y.; Shindo, C.; et al. Aging-related changes in the diversity of women’s skin microbiomes associated with oral bacteria. Sci. Rep. 2017, 7, 10567. [Google Scholar] [CrossRef] [PubMed]
- Mundhada, A.; Tenpe, S. A study of organisms causing surgical site infections and their antimicrobial susceptibility in a tertiary care Government Hospital. Indian J. Pathol. Microbiol. 2015, 58, 195–200. [Google Scholar] [CrossRef] [PubMed]
- Lin, Y.T.; Hsieh, K.S.; Chen, Y.S.; Huang, I.F.; Cheng, M.F. Infective endocarditis in children without underlying heart disease. J. Microbiol. Immunol. Infect. 2013, 46, 121–128. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- NNIS System. National Nosocomial Infections Surveillance (NNIS) System Report, data summary from January 1992 through June 2003, issued August 2003. Am. J. Infect. Control 2003, 31, 481–498. [Google Scholar] [CrossRef] [PubMed]
- Hollenbeak, C.S.; Murphy, D.M.; Koenig, S.; Woodward, R.S.; Dunagan, W.C.; Fraser, V.J. The clinical and economic impact of deep chest surgical site infections following coronary artery bypass graft surgery. Chest 2000, 118, 397–402. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Michalopoulos, A.; Geroulanos, S.; Rosmarakis, E.S.; Falagas, M.E. Frequency, characteristics, and predictors of microbiologically documented nosocomial infections after cardiac surgery. Eur. J. Cardio-Thorac. Surg. 2006, 29, 456–460. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Markogiannakis, H.; Pachylaki, N.; Samara, E.; Kalderi, M.; Minettou, M.; Toutouza, M.; Toutouzas, K.G.; Theodorou, D.; Katsaragakis, S. Infections in a surgical intensive care unit of a university hospital in Greece. Int. J. Infect. Dis. 2009, 13, 145–153. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alavi, S.M.; Roozbeh, F.; Behmanesh, F.; Alavi, L. Antibiotics use patterns for surgical prophylaxis site infection in different surgical wards of a teaching hospital in Ahvaz, Iran. Jundishapur J. Microbiol. 2014, 7, e12251. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Enzler, M.J.; Berbari, E.; Osmon, D.R. Antimicrobial prophylaxis in adults. Mayo Clin. Proc. 2011, 86, 686–701. [Google Scholar] [CrossRef] [Green Version]
- Talbot, T.R. Surgical site infections and antimicrobial prophylaxis. In Principle and Practice of Infectious Diseases, 7th ed.; Mandell, G.L., Bennett, J.E., Dolin, R., Eds.; Churchill Livingstone: Philadelphia, PA, USA, 2010. [Google Scholar]
- Yadesa, T.M.; Gudina, E.K.; Angamo, M.T. Antimicrobial use-related problems and predictors among hospitalized medical in-patients in Southwest Ethiopia: Prospective observational study. PLoS ONE 2015, 10, e0138385. [Google Scholar] [CrossRef] [PubMed]
- Lim, M.K.; Lai, P.S.M.; Ponnampalavanar, S.S.L.S.; Omar, S.F.S.; Taib, N.A.; Yusof, M.Y.; Italiano, C.M.; Kong, D.C.M.; Kamarulzaman, A. Antibiotics in surgical wards: Use or misuse? A newly industrialized country’s perspective. J. Infect. Dev. Ctries. 2015, 9, 1264–1271. [Google Scholar] [CrossRef] [Green Version]
- Abrha, S.; Assefa, R.; Molla, F.; Melkam, W.; Assen, A.; Mulugeta, A.; Wondimu, A.; Mohammed, J.; Birhanetensae, M.; Masresha, B. Antibiotics Utilization and their Cost in Ayder Referral Hospital, Mekelle, Ethiopia. Glob. J. Med. Res. 2015, 15, 1–9. [Google Scholar]
- Background|MDRO Management|Guidelines Library|Infection Control|CDC. Available online: https://www.cdc.gov/infectioncontrol/guidelines/mdro/background.html (accessed on 31 January 2021).
- Noordin, A.; Sapri, H.F.; Sani, N.A.M.; Leong, S.K.; Tan, X.E.; Tan, T.L.; Zin, N.M.; Neoh, H.M.; Hussin, S. Antimicrobial resistance profiling and molecular typing of methicillin-resistant Staphylococcus aureus isolated from a Malaysian teaching hospital. J. Med. Microbiol. 2016, 65, 1476–1481. [Google Scholar] [CrossRef]
- Lean, S.S.; Suhaili, Z.; Ismail, S.; Rahman, N.I.A.; Othman, N.; Abdullah, F.H.; Jusoh, Z.; Yeo, C.C.; Thong, K.L. Prevalence and genetic characterization of carbapenem- and polymyxin-resistant Acinetobacter baumannii isolated from a tertiary hospital in Terengganu, Malaysia. ISRN Microbiol. 2014, 2014, 953417. [Google Scholar] [CrossRef] [Green Version]
- Low, Y.M.; Yap, P.S.X.; Abdul Jabar, K.; Ponnampalavanar, S.; Karunakaran, R.; Velayuthan, R.; Chong, C.W.; Abu Bakar, S.; Md Yusof, M.Y.; Teh, C.S.J. The emergence of carbapenem resistant Klebsiella pneumoniae in Malaysia: Correlation between microbiological trends with host characteristics and clinical factors. Antimicrob. Resist. Infect. Control 2017, 6, 5. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liew, S.M.; Rajasekaram, G.; Puthucheary, S.D.; Chua, K.H. Detection of VIM-2-, IMP-1- and NDM-1-producing multidrug-resistant Pseudomonas aeruginosa in Malaysia. J. Glob. Antimicrob. Resist. 2018, 13, 271–273. [Google Scholar] [CrossRef]
- Nirwati, H.; Sinanjung, K.; Fahrunissa, F.; Wijaya, F.; Napitupulu, S.; Hati, V.P.; Hakim, M.S.; Meliala, A.; Aman, A.T.; Nuryastuti, T. Biofilm formation and antibiotic resistance of Klebsiella pneumoniae isolated from clinical samples in a tertiary care hospital, Klaten, Indonesia. BMC Proc. 2019, 13, 20. [Google Scholar] [CrossRef] [PubMed]
- Chung, P.Y. The emerging problems of Klebsiella pneumoniae infections: Carbapenem resistance and biofilm formation. FEMS Microbiol. Lett. 2016, 363, fnw219. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bonez, P.C.; Dos Santos Alves, C.F.; Dalmolin, T.V.; Agertt, V.A.; Mizdal, C.R.; Flores, V.D.C.; Marques, J.B.; Santos, R.C.V.; Anraku De Campos, M.M. Chlorhexidine activity against bacterial biofilms. Am. J. Infect. Control 2013, 41, e119–e122. [Google Scholar] [CrossRef] [PubMed]
- Knobloch, J.K.M.; Horstkotte, M.A.; Rohde, H.; Kaulfers, P.M.; Mack, D. Alcoholic ingredients in skin disinfectants increase biofilm expression of Staphylococcus epidermidis. J. Antimicrob. Chemother. 2002, 49, 683–687. [Google Scholar] [CrossRef] [PubMed]
- Rood, K.M.; Buhimschi, I.A.; Jurcisek, J.A.; Summerfield, T.L.; Zhao, G.; Ackerman, W.E.; Wang, W.; Rumpf, R.W.; Thung, S.F.; Bakaletz, L.O.; et al. Skin microbiota in obese women at risk for surgical site infection after cesarean delivery. Sci. Rep. 2018, 8, 8756. [Google Scholar] [CrossRef]
- Howard, A.; O’Donoghue, M.; Feeney, A.; Sleator, R.D. Acinetobacter baumannii: An emerging opportunistic pathogen. Virulence 2012, 3, 243–250. [Google Scholar] [CrossRef]
- Choong, P.F.M.; Dowsey, M.M.; Carr, D.; Daffy, J.; Stanley, P. Risk factors associated with acute hip prosthetic joint infections and outcome of treatment with a rifampinbased regimen. Acta Orthop. 2007, 78, 755–765. [Google Scholar] [CrossRef]
- Jämsen, E.; Huhtala, H.; Puolakka, T.; Moilanen, T. Risk factors for infection after knee arthroplasty. A register-based analysis of 43,149 cases. J. Bone Joint Surg. Am. 2009, 91, 38–47. [Google Scholar] [CrossRef]
- Revdiwala, S.; Rajdev, B.M.; Mulla, S. Characterization of bacterial etiologic agents of biofilm formation in medical devices in critical care setup. Crit. Care Res. Pract. 2012, 2012, 945805. [Google Scholar] [CrossRef]
- Mulcahy, L.R.; Isabella, V.M.; Lewis, K. Pseudomonas aeruginosa biofilms in disease. Microb. Ecol. 2014, 68, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Moradali, M.F.; Ghods, S.; Rehm, B.H.A. Pseudomonas aeruginosa lifestyle: A paradigm for adaptation, survival, and persistence. Front. Cell. Infect. Microbiol. 2017, 7, 39. [Google Scholar] [CrossRef] [Green Version]
- Solomkin, J.S.; Mazuski, J.E.; Bradley, J.S.; Rodvold, K.A.; Goldstein, E.J.C.; Baron, E.J.; O’Neill, P.J.; Chow, A.W.; Patchen Dellinger, E.; Eachempati, S.R.; et al. Diagnosis and management of complicated intra-abdominal infection in adults and children: Guidelines by the surgical infection society and the infectious diseases society of america. Clin. Infect. Dis. 2010, 50, 133–164. [Google Scholar] [CrossRef] [Green Version]
- Johansen, H.K.; Moskowitz, S.M.; Ciofu, O.; Pressler, T.; Høiby, N. Spread of colistin resistant non-mucoid Pseudomonas aerginosa among chronically infected Danish cystic fibrosis patients. J. Cyst. Fibros. 2008, 7, 391–397. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nation, R.L.; Li, J. Colistin in the 21st century. Curr. Opin. Infect. Dis. 2009, 22, 535–543. [Google Scholar] [CrossRef]
- Vuotto, C.; Longo, F.; Balice, M.P.; Donelli, G.; Varaldo, P.E. Antibiotic resistance related to biofilm formation in Klebsiella pneumoniae. Pathogens 2014, 3, 743–758. [Google Scholar] [CrossRef] [Green Version]
- Strommenger, B.; Kettlitz, C.; Werner, G.; Witte, W. Multiplex PCR assay for simultaneous detection of nine clinically relevant antibiotic resistance genes in Staphylococcus aureus. J. Clin. Microbiol. 2003, 41, 4089–4094. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, Y.Y.; Wang, Y.; Walsh, T.R.; Yi, L.X.; Zhang, R.; Spencer, J.; Doi, Y.; Tian, G.; Dong, B.; Huang, X.; et al. Emergence of plasmid-mediated colistin resistance mechanism MCR-1 in animals and human beings in China: A microbiological and molecular biological study. Lancet Infect. Dis. 2016, 16, 161–168. [Google Scholar] [CrossRef]
- Hujier, N.S.A. Detection of Methicillin-Resistant Staphylococcus aureus in Nosocomial Infections in Gaza Strip. Master’s Thesis, The Islamic University—Gaza, Gaza, Palestine, 2006. Available online: https://library.iugaza.edu.ps/thesis/71122.pdf (accessed on 3 February 2021).
- Dutka-Malen, S.; Evers, S.; Courvalin, P. Detection of glycopeptide resistance genotypes and identification to the species level of clinically relevant enterococci by PCR. J. Clin. Microbiol. 1995, 33, 24–27. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- El Ashkar, S.; Osman, M.; Rafei, R.; Mallat, H.; Achkar, M.; Dabboussi, F.; Hamze, M. Molecular detection of genes responsible for macrolide resistance among Streptococcus pneumoniae isolated in North Lebanon. J. Infect. Public Health 2017, 10, 745–748. [Google Scholar] [CrossRef]
- Avrain, L.; Garvey, M.; Mesaros, N.; Glupczynski, Y.; Mingeot-Leclercq, M.-P.; Piddock, L.J.V.; Tulkens, P.M.; Vanhoof, R.; Van Bambeke, F. Selection of quinolone resistance in Streptococcus pneumoniae exposed in vitro to subinhibitory drug concentrations. J. Antimicrob. Chemother. 2007, 60, 965–972. [Google Scholar] [CrossRef] [Green Version]
- Del Grosso, M.; Camilli, R.; Barbabella, G.; Northwood, J.B.; Farrell, D.J.; Pantosti, A. Genetic resistance elements carrying mef subclasses other than mef(A) in Streptococcus pyogenes. Antimicrob. Agents Chemother. 2011, 55, 3226–3230. [Google Scholar] [CrossRef] [Green Version]
- Chaffanel, F.; Charron-Bourgoin, F.; Libante, V.; Leblond-Bourget, N.; Payot, S.; Schaffner, D.W. Resistance genes and genetic elements associated with antibiotic resistance in clinical and commensal isolates of Streptococcus salivarius. Appl. Environ. Microbiol. 2015, 81, 4155–4163. [Google Scholar] [CrossRef] [Green Version]
- Guo, Y.; Deng, X.; Liang, Y.; Zhang, L.; Zhao, G.P.; Zhou, Y. The draft genomes and investigation of serotype distribution, antimicrobial resistance of group B Streptococcus strains isolated from urine in Suzhou, China. Ann. Clin. Microbiol. Antimicrob. 2018, 17, 28. [Google Scholar] [CrossRef]
- Moghadampour, M.; Rezaei, A.; Faghri, J. The emergence of blaOXA-48 and blaNDM among ESBL-producing Klebsiella pneumoniae in clinical isolates of a tertiary hospital in Iran. Acta Microbiol. Immunol. Hung. 2018, 65, 335–344. [Google Scholar] [CrossRef] [Green Version]
- Geyer, C.N.; Hanson, N.D. Rapid PCR amplification protocols decrease the turn-around time for detection of antibiotic resistance genes in Gram-negative pathogens. Diagn. Microbiol. Infect. Dis. 2013, 77, 113–117. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gales, A.C.; Menezes, L.C.; Silbert, S.; Sader, H.S. Dissemination in distinct Brazilian regions of an epidemic carbapenem-resistant Pseudomonas aeruginosa producing SPM metallo-β-lactamase. J. Antimicrob. Chemother. 2003, 52, 699–702. [Google Scholar] [CrossRef] [PubMed]
- Moosavian, M.; Rahimzadeh, M. Molecular detection of metallo-β-lactamase genes, blaIMP-1, blaVIM-2 and blaSPM-1 in imipenem resistant Pseudomonas aeruginosa isolated from clinical specimens in teaching hospitals of Ahvaz, Iran. Iran. J. Microbiol. 2015, 7, 2–6. [Google Scholar]
- Manchanda, V.; Gupta, S.; Chopra, R.; Verma, N.; Kaur, I.; Rai, S.; Rautela, R.; Rawat, D.; Singh, N.; Bhalla, P. Development of TaqMan real-time polymerase chain reaction for the detection of the newly emerging form of carbapenem resistance gene in clinical isolates of Escherichia coli, Klebsiella pneumoniae, and Acinetobacter baumannii. Indian J. Med. Microbiol. 2011, 29, 249–253. [Google Scholar] [CrossRef]
- Bogaerts, P.; de Castro, R.R.; de Mendonça, R.; Huang, T.D.; Denis, O.; Glupczynski, Y. Validation of carbapenemase and extended-spectrum β-lactamase multiplex endpoint PCR assays according to ISO 15189. J. Antimicrob. Chemother. 2013, 68, 1576–1582. [Google Scholar] [CrossRef] [Green Version]
- Stepanović, S.; Vuković, D.; Dakić, I.; Savić, B.; Švabić-Vlahović, M. A modified microtiter-plate test for quantification of staphylococcal biofilm formation. J. Microbiol. Methods 2000, 40, 175–179. [Google Scholar] [CrossRef]
- Surgical Site Infections-Infectious Disease Advisor. Available online: https://www.infectiousdiseaseadvisor.com/home/decision-support-in-medicine/hospital-infection-control/surgical-site-infections/ (accessed on 15 February 2021).
- View of Surgical Site Infections and Antimicrobial Resistance Pattern. Available online: https://jnhrc.com.np/index.php/jnhrc/article/view/1048/626 (accessed on 15 February 2021).
- Pal, S.; Sayana, A.; Joshi, A.; Juyal, D. Staphylococcus aureus: A predominant cause of surgical site infections in a rural healthcare setup of Uttarakhand. J. Fam. Med. Prim. Care 2019, 8, 3600–3606. [Google Scholar]
- Kime, L.; Randall, C.P.; Banda, F.I.; Coll, F.; Wright, J.; Richardson, J.; Empel, J.; Parkhill, J.; O’Neill, A.J. Transient silencing of antibiotic resistance by mutation represents a significant potential source of unanticipated therapeutic failure. mBio 2019, 10, e01755-19. [Google Scholar] [CrossRef] [Green Version]
- Hope, D.; Ampaire, L.; Oyet, C.; Muwanguzi, E.; Twizerimana, H.; Apecu, R.O. Antimicrobial resistance in pathogenic aerobic bacteria causing surgical site infections in Mbarara regional referral hospital, Southwestern Uganda. Sci. Rep. 2019, 9, 17299. [Google Scholar] [CrossRef] [Green Version]
- Lubega, A.; Joel, B.; Justina Lucy, N. Incidence and etiology of surgical site infections among emergency postoperative patients in Mbarara regional referral hospital, South Western Uganda. Surg. Res. Pract. 2017, 2017, 6365172. [Google Scholar] [CrossRef] [Green Version]
- Ali, K.M.; Al-Jaff, B.M.A. Source and antibiotic susceptibility of Gram-negative bacteria causing superficial incisional surgical site infections. Int. J. Surg. Open 2021, 30, 100318. [Google Scholar] [CrossRef]
- Cortés, G.; Borrell, N.; De Astorza, B.; Gómez, C.; Sauleda, J.; Albertí, S. Molecular analysis of the contribution of the capsular polysaccharide and the lipopolysaccharide O side chain to the virulence of Klebsiella pneumoniae in a murine model of pneumonia. Infect. Immun. 2002, 70, 2583–2590. [Google Scholar] [CrossRef] [Green Version]
- Neut, D.; Hendriks, J.G.E.; van Horn, J.R.; van der Mei, H.C.; Busscher, H.J. Pseudomonas aeruginosa biofilm formation and slime excretion on antibiotic-loaded bone cement. Acta Orthop. 2005, 76, 109–114. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Prasad, S.V.; Ballal, M.; Shivananda, P.G. Slime production a virulence marker in Pseudomonas aeruginosa strains isolated from clinical and environmental specimens: A comparative study of two methods. Indian J. Pathol. Microbiol. 2009, 52, 191–193. [Google Scholar] [PubMed]
- Kuang, Z.; Hao, Y.; Walling, B.E.; Jeffries, J.L.; Ohman, D.E.; Lau, G.W. Pseudomonas aeruginosa elastase provides an escape from phagocytosis by degrading the pulmonary surfactant protein-A. PLoS ONE 2011, 6, e27091. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kiratisin, P.; Apisarnthanarak, A.; Laesripa, C.; Saifon, P. Molecular characterization and epidemiology of extended-spectrum-β- lactamase-producing Escherichia coli and Klebsiella pneumoniae isolates causing health care-associated infection in Thailand, where the CTX-M family is endemic. Antimicrob. Agents Chemother. 2008, 52, 2818–2824. [Google Scholar] [CrossRef] [Green Version]
- Mahdi Yahya Mohsen, S.; Hamzah, H.A.; Muhammad Imad Al-Deen, M.; Baharudin, R. Antimicrobial susceptibility of Klebsiella pneumoniae and Escherichia coli with extended-spectrum β-lactamase associated genes in hospital Tengku Ampuan Afzan, Kuantan, Pahang. Malaysian J. Med. Sci. 2016, 23, 14–20. [Google Scholar]
- Apisarnthanarak, A.; Kiratisin, P.; Mundy, L.M. Clinical and molecular epidemiology of healthcare-associated infections due to extended-spectrum β -lactamase (ESBL)–producing strains of Escherichia coli and Klebsiella pneumoniae that harbor multiple ESBL genes. Infect. Control Hosp. Epidemiol. 2008, 29, 1026–1034. [Google Scholar] [CrossRef]
- Microbial Growth-Biology LibreTexts. Available online: https://bio.libretexts.org/Bookshelves/Microbiology/Book%3A_Microbiology_(Bruslind)/09%3A_Microbial_Growth (accessed on 15 February 2021).
- Weisblum, B. Erythromycin resistance by ribosome modification. Antimicrob. Agents Chemother. 1995, 39, 577–585. [Google Scholar] [CrossRef] [Green Version]
- Zmantar, T.; Kouidhi, B.; Miladi, H.; Bakhrouf, A. Detection of macrolide and disinfectant resistance genes in clinical Staphylococcus aureus and coagulase-negative staphylococci. BMC Res. Notes 2011, 4, 453. [Google Scholar] [CrossRef] [Green Version]
- Zmantar, T.; Kouidhi, B.; Hentati, H.; Bakhrouf, A. Detection of disinfectant and antibiotic resistance genes in Staphylococcus aureus isolated from the oral cavity of Tunisian children. Ann. Microbiol. 2012, 62, 123–128. [Google Scholar] [CrossRef]
- Eady, E.A.; Ross, J.I.; Tipper, J.L.; Walters, C.E.; Cove, J.H.; Noble, W.C. Distribution of genes encoding erythromycin ribosomal methylases and an erythromycin efflux pump in epidemiologically distinct groups of staphylococci. J. Antimicrob. Chemother. 1993, 31, 211–217. [Google Scholar] [CrossRef]
- Manyahi, J.; Matee, M.I.; Majigo, M.; Moyo, S.; Mshana, S.E.; Lyamuya, E.F. Predominance of multi-drug resistant bacterial pathogens causing surgical site infections in Muhimbili national hospital, Tanzania. BMC Res. Notes 2014, 7, 500. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tavajjohi, Z.; Moniri, R.; Khorshidi, A. Detection and characterization of multidrug resistance and extended-spectrum-beta-lactamase-producing (ESBL S) Pseudomonas aeruginosa isolates in teaching hospital. African J. Microbiol. Res. 2011, 5, 3223–3228. [Google Scholar]
- Motbainor, H.; Bereded, F.; Mulu, W. Multi-drug resistance of blood stream, urinary tract and surgical site nosocomial infections of Acinetobacter baumannii and Pseudomonas aeruginosa among patients hospitalized at Felegehiwot referral hospital, Northwest Ethiopia: A cross-sectional study. BMC Infect. Dis. 2020, 20, 92. [Google Scholar] [CrossRef] [Green Version]
- Zhu, Y.; Chen, J.; Shen, H.; Chen, Z.; Yang, Q.W.; Zhu, J.; Li, X.; Yang, Q.; Zhao, F.; Ji, J.; et al. Emergence and rising of ceftazidime-avibactam resistant KPC-producing Pseudomonas aeruginosa in China: A molecular epidemiology study. medRxiv 2020, 1–43. [Google Scholar] [CrossRef]
- Barsoumian, A.E.; Mende, K.; Sanchez, C.J.; Beckius, M.L.; Wenke, J.C.; Murray, C.K.; Akers, K.S. Clinical infectious outcomes associated with biofilm-related bacterial infections: A retrospective chart review. BMC Infect. Dis. 2015, 15, 223. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Russotto, V.; Cortegiani, A.; Raineri, S.M.; Giarratano, A. Bacterial contamination of inanimate surfaces and equipment in the intensive care unit. J. Intensive Care 2015, 3, 54. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chaoui, L.; Mhand, R.; Mellouki, F.; Rhallabi, N. Contamination of the surfaces of a health care environment by multidrug-resistant (MDR) bacteria. Int. J. Microbiol. 2019, 2019, 3236526. [Google Scholar] [CrossRef]
- Nadell, C.D.; Xavier, J.B.; Foster, K.R. The sociobiology of biofilms. FEMS Microbiol. Rev. 2009, 33, 206–224. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Savage, V.J.; Chopra, I.; O’neill, A.J. Staphylococcus aureus biofilms promote horizontal transfer of antibiotic resistance. Antimicrob. Agents Chemother. 2013, 57, 1968–1970. [Google Scholar] [CrossRef] [Green Version]
- Madsen, J.S.; Burmølle, M.; Hansen, L.H.; Sørensen, S.J. The interconnection between biofilm formation and horizontal gene transfer. FEMS Immunol. Med. Microbiol. 2012, 65, 183–195. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Isolates | Genes | Primers (5’−3’) | PCR Products (Base Pair) | PCR Programme Specifications | ||||
---|---|---|---|---|---|---|---|---|
Initial Denaturation | Denaturation | Annealing | Extension | Final Extension | ||||
S. aureus Streptococcus spp. | ermA | AAG CGG TAA ACC CCT CTG A; TTC GCA AAT CCC TTC TCA AC | 190 bp | 94 °C, 3 min | 35 cycles of 94 °C, 30 s | 55 °C, 45 s | 72 °C, 45 s | 72 °C, 10 min |
S. aureus Streptococcus spp. | ermB | CTATCTGATTGTTGAAGAAGGATT; GTTTACTCTTGGTTTAGGATGAAA | 142 bp | 94 °C, 3 min | 35 cycles of 94 °C, 30 s | 55 °C, 45 s | 72 °C, 45 s | 72 °C, 10 min |
S. aureus Streptococcus spp. | ermC | AAT CGT CAA TTC CTG CAT GT; TAA TCG TGG AAT ACG GGT TTG | 299 bp | 94 °C, 3 min | 35 cycles of 94 °C, 30 s | 55 °C, 45 s | 72 °C, 45 s | 72 °C, 10 min |
S. aureus Streptococcus spp. | tetK | GTA GCG ACA ATA GGT AAT AGT; GTA GTG ACA ATA AAC CTC CTA | 360 bp | 94 °C, 3 min | 35 cycles of 94 °C, 30 s | 55 °C, 45 s | 72 °C, 45 s | 72 °C, 10 min |
S. aureus Streptococcus spp. | tetM | AGT GGA GCG ATT ACA GAA; CAT ATG TCC TGG CGT GTC TA | 158 bp | 94 °C, 3 min | 35 cycles of 94 °C, 30 s | 55 °C, 45 s | 72 °C, 45 s | 72 °C, 10 min |
S. aureus Streptococcus spp. | msrA | GAA GCA CTT GAG CGT TCT; CCT TGT ATC GTG TGA TGT | 287 bp | 95 °C, 2 min | 30 cycles of 94 °C, 30 s | 50 °C, 30 s | 72 °C, 30 s | 72 °C, 4 min |
S. aureus Streptococcus spp. K. pneumoniae A. baumannii P. aeruginosa | mcr-1 | CGGTCAGTCCGTTTGTTC; CTTGGTCGGTCTGTAGGG | 309 bp | 94 °C, 15 min | 25 cycles of 94 °C, 30 s | 58 °C, 90 s | 72 °C, 1 min | 72 °C, 10 min |
S. aureus | aacA-aphD | TAA TCC AAG AGC AAT AAG GGC; GCC ACA CTA TCA TAA CCA CTA | 227 bp | 94 °C, 3 min | 35 cycles of 94 °C, 30 s | 55 °C, 45 s | 72 °C, 45 s | 7 2 °C, 10 min |
S. aureus | mecA | AAAATCGATGGTAAAGGTTGGC; AGTTCTGCAGTACCGGAT TTGC | 533 bp | 95 °C, 1 min | 35 cycles of 95 °C, 1 min | 54 °C, 1 min | 72 °C, 1 min | 72 °C, 5 min |
S. aureus | vanA | GGGAAAACGACAATTGC; GTACAATGCGGCCGTTA | 732 bp | 94 °C, 2 min | 30 cycles of 94 °C, 1 min | 54 °C, 1 min | 72 °C, 1 min | 72 °C, 10 min |
S. aureus | vanB | ATGGGAAGCCGATAGTC; GATTTCGTTCCTCGACC | 635 bp | 94 °C, 2 min | 30 cycles of 94 °C, 1 min | 54 °C, 1 min | 72 °C, 1 min | 72 °C, 10 min |
S. aureus Streptococcus spp. | mef(A) | AGT ATC ATT AAT CAC TAG TGC; TTC TTC TGG TAC AAA AGT GG | 348 bp | 95 °C, 5 min | 35 cycles of 95 °C, 30 s | 54 °C, 30 s | 72 °C, 1 min | 72 °C, 5 min |
S. aureus Streptococcus spp. | mef(E) | AGT ATC ATT AAT CAC TAG TGC; TTC TTC TGG TAC AAA AGT GG | 1218 bp | 94 °C, 5 min | 35 cycles of 94 °C, 30 s | 50 °C, 30 s | 72 °C, 90 s | 72 °C, 5 min |
A. baumannii Streptococcus spp. | pmrA | TCCAGTATGGGCTTTTCCAG; CCAATCCAAAGAGGAAACGA | 178 bp | 95 °C, 9 min | 40 cycles of 95 °C, 15 s | 53.7 °C, 1 min | 72 °C, 1 min | 72 °C, 5 min |
Streptococcus spp. | catQ | TAGAAAGCCATACTTTGAGC; CATGATGCACCTGTACAGAC | 536 bp | 95 °C, 2 min | 35 cycles of 95 °C, 30 s | 50 °C, 30 s | 72 °C, 30 s | 72 °C, 5 min |
Streptococcus spp. | InuB | CCTACCTATTGTTTGTGGAA; ATAACGTTACTCTCCTATTC | 944 bp | 94 °C, 5 min | 35 cycles of 94 °C, 45 s | 54 °C, 45 s | 72 °C, 1 min | 72 °C, 5 min |
K. pneumoniae A. baumannii | blaCTX-M | TTTGCGATGTGCAGTACCAGTAA; CGATATCGTTGGTGGTGCCATA | 544 bp | 95 °C, 5 min | 35 cycles of 95 °C, 30 s | 51 °C, 45 s | 72 °C, 1 min | 72 °C, 10 min |
K. pneumoniae A. baumannii | blaSHV | ATGCGTTATATTCGCCTGTG; TGCTTTGTTATTCGGGCCAA | 753 bp | 95 °C, 5 min | 35 cycles of 95 °C, 30 s | 60 °C, 45 s | 72 °C, 1 min | 72 °C, 10 min |
K. pneumoniae A. baumannii | blaKPC-2 | GTATCGCCGTCTAGTTCTG; CCTTGAATGAGCTGCACAGTGG | 209 bp | 95 °C, 3 min | 40 cycles of 95 °C, 5 s | 50 °C, 30 s | 72 °C, 1 min | 72 °C, 5 min |
K. pneumoniae A. baumannii | blaGES | GTTTTGCAATGTGCTCAACG; TGCCATAGCAATAGGCGTAG | 371 bp | 95 °C, 5 min | 35 cycles of 95 °C, 30 s | 53 °C, 45 s | 72 °C, 1 min | 72 °C, 10 min |
K. pneumoniae A. baumannii | blaIMP | GTTTATGTTCATACATCG; GGTTTAACAAAACAACCAC | 440 bp | 95 °C, 5 min | 35 cycles of 95 °C, 30 s | 45 °C, 45 s | 72 °C, 1 min | 72 °C, 10 min |
K. pneumoniae A. baumannii | blaVIM | TTTGGTCGCATATCGCAACG; CCATTCAGCCAGATCGGCAT | 500 bp | 95 °C, 5 min | 35 cycles of 95 °C, 30 s | 66 °C, 45 s | 72 °C, 1 min | 72 °C, 10 min |
K. pneumoniae A. baumannii | blaSPM-1 | CCTACAATCTAACGGCGACC; TCGCCGTGTCCAGGTATAAC | 674 bp | 95 °C, 5 min | 30 cycles of 95 °C, 1 min | 40 °C, 1 min | 68 °C, 1 min | 68 °C,5 min |
K. pneumoniae A. baumannii | blaNDM-1 | GGGCAGTCGCTTCCAACGGT; GTAGTGCTCAGTGTCGGCAT | 475 bp | 94 °C, 3 min | 40 cycles of 94v, 30 s | 60 °C, 30 s | 72 °C, 30 s | 72 °C, 3 min |
K. pneumoniae A. baumannii | blaOXA-23 | CCCCGAGTCAGATTGTTCAAGG; TAC GTCGCGCAAGTTCCTGA | 330 bp | 95 °C, 15 min | 30 cycles of 94 °C, 30 s | 57 °C, 90 s | 72 °C, 90 s | 72 °C, 10 min |
K. pneumoniae A. baumannii | blaOXA-24 | CACCTATGGTAATGCTCTTGC; CAACCTACCTGTGGAGTAACAC | 501 bp | 95 °C, 3 min | 40 cycles of 95 °C, 5 s | 50 °C, 30 s | 72 °C, 1 min | 72 °C, 5 min |
K. pneumoniae A. baumannii | blaOXA-58 | GGGGCTTGTGCTGAGCATAGT; CCACTTGCCCATCTGCCTTT | 688 bp | 95 °C, 15 min | 30 cycles of 94 °C, 30 s | 57 °C, 90 s | 72 °C, 90 s | 72 °C, 10 min |
Blood | Pus/Wound | Tracheal | Tissue | Bronchial | Urine | Sputum | |
---|---|---|---|---|---|---|---|
S. aureus | 18 | 9 | 2 | 1 | 0 | 0 | 0 |
K. pneumoniae | 35 | 5 | 4 | 0 | 1 | 0 | 1 |
A. baumannii | 5 | 0 | 1 | 0 | 0 | 1 | 0 |
P. aeruginosa | 2 | 8 | 20 | 2 | 1 | 0 | 0 |
Streptococcus spp. | 11 | 0 | 0 | 0 | 0 | 0 | 0 |
S. Aureus | K. Pneumoniae | A. Baumannii | P. Aeruginosa | Streptococcus spp. | |
---|---|---|---|---|---|
(n = 30) | (n = 46) | (n = 7) | (n = 33) | (n = 11) | |
Number (%) | Number (%) | Number (%) | Number (%) | Number (%) | |
ermA | 12 (40) | - | - | - | 0 (0) |
ermB | 1 (3.3) | - | - | - | 5 (45.5) |
ermC | 26 (86.7) | - | - | - | 0 (0) |
tetK | 0 (0) | - | - | - | 1 (9.1) |
tetM | 21 (70) | - | - | - | 9 (81.8) |
msrA | 0 (0) | - | - | - | 0 (0) |
mcr-1 | 0 (0) | 1 (2.17) | 0 (0) | 0 (0) | 0 (0) |
aacA-aphD | 19 (63.3) | - | - | - | - |
mecA | 20 (66.7) | - | - | - | - |
vanA | 0 (0) | - | - | - | - |
vanB | 0 (0) | - | - | - | - |
mef(A) | 0 (0) | - | - | - | 1 (9.1) |
mef(E) | 0 (0) | - | - | - | 0 (0) |
pmrA | - | - | 2 (28.6) | - | 8 (72.7) |
catQ | - | - | - | - | 0 (0) |
InuB | - | - | - | - | 0 (0) |
blaCTX-M | - | 46 (100) | 3 (42.9) | 33 (100) | - |
blaSHV | - | 46 (100) | 6 (85.7) | 31 (93.9) | - |
blaKPC-2 | - | 0 (0) | 1 (16.7) | 7 (21.2) | - |
blaGES | - | 37 (80.4) | 2 (28.6) | 33 (100) | - |
blaIMP | - | 0 (0) | 1 (16.7) | 0 (0) | - |
blaVIM | - | 7 (15.2) | 1 (16.7) | 0 (0) | - |
blaSPM-1 | - | 0 (0) | 0 (0) | 2 (6.1) | - |
blaNDM-1 | - | 9 (19.6) | 3 (42.9) | 1 (3.0) | - |
blaOXA-23 | - | 5 (10.9) | 5 (71.4) | 220 (66.7) | - |
blaOXA-24 | - | 0 (0) | 0 (0) | 0 (0) | - |
blaOXA-58 | - | 3 (6.5) | 0 (0) | 0 (0) | - |
Drug | S. aureus | K. pneumoniae | A. baumanni | P. aeruginosa | Streptococcus spp. |
---|---|---|---|---|---|
(n = 30) | (n = 46) | (n = 7) | (n = 33) | (n = 11) | |
Number (%) | Number (%) | Number (%) | Number (%) | Number (%) | |
Amikacin | - | 46 (100) | - | 32 (97) | - |
Tobramycin | - | 26 (56.5) | 4 (57.1) | 32 (97) | - |
Gentamicin | 29 (96.7) | - | - | - | - |
Benzylpenicillin | 5 (16.7) | - | - | - | 3 (27.3) |
Oxacillin | 19 (63.3) | - | - | - | - |
Ampicillin | - | - | - | - | 3 (27.3) |
Ampicillin/sulbactam | - | 14 (30.4) | 4 (57.1) | - | - |
Piperacillin/tazobactam | - | 25 (54.3) | 4 (57.1) | 22 (66.7) | - |
Ertapenem | - | 43 (93.5) | - | - | - |
Imipenem | - | 44 (95.7) | 4 (57.1) | 24 (72.7) | - |
Meropenem | - | 44 (95.7) | 4 (57.1) | 24 (72.7) | - |
Cefotetan | - | - | - | - | 1 (9.1) |
Cefazolin | - | 15 (32.6) | 0 (0) | 0 (0) | - |
Ceftazidime | - | 16 (34.8) | 4 (57.1) | 24 (72.7) | - |
Ceftriaxone | - | 17 (37.0) | - | - | 1 (9.1) |
Cefepime | - | 19 (41.3) | 4 (57.1) | 24 (72.7) | - |
Chloramphenicol | - | - | - | - | 1 (9.1) |
Levofloxacin | 19 (63.3) | 17(37.0) | 4 (57.1) | 24 (72.7) | 3 (27.3) |
Teicoplanin | - | - | - | - | 1 (9.1) |
Vancomycin | 30 (100) | - | - | - | 3 (27.3) |
Tigecycline | 30 (100) | - | - | - | 3 (27.3) |
Clindamycin | 21 (70) | - | - | - | 2 (18.2) |
Erythromycin | 20 (66.7) | - | - | - | 1 (9.1) |
Nitrofurantoin | 30 (100) | 9 (19.6) | - | - | 2 (18.2) |
Linezolid | 30 (100) | - | - | - | 3 (27.3) |
Ciprofloxacin | 19 (63.3) | 17 (37.0) | 4 (57.1) | 26 (78.8) | - |
Moxifloxacin | 19 (63.3) | - | - | - | 3 (27.3) |
Rifampicin | 29 (96.7) | - | - | - | - |
Quinupristin/Dalfoprostin | 30 (100) | - | - | - | 2 (6.1) |
Trimethoprim/Sulfamethoxazole | 29 (96.7) | 19 (41.3) | 5 (71.4) | - | - |
Tetracycline | 26 (86) | - | - | - | 2 (18.2) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yong, Y.K.; Wen, N.C.M.; Yeo, G.E.C.; Chew, Z.X.; Chan, L.L.; Md Zain, N.Z.; Chellappan, D.K.; Liew, Y.K. Characterisation of Bacterial Isolates from Infected Post-Operative Patients in a Malaysian Tertiary Heart Care Centre. Int. J. Environ. Res. Public Health 2021, 18, 9828. https://doi.org/10.3390/ijerph18189828
Yong YK, Wen NCM, Yeo GEC, Chew ZX, Chan LL, Md Zain NZ, Chellappan DK, Liew YK. Characterisation of Bacterial Isolates from Infected Post-Operative Patients in a Malaysian Tertiary Heart Care Centre. International Journal of Environmental Research and Public Health. 2021; 18(18):9828. https://doi.org/10.3390/ijerph18189828
Chicago/Turabian StyleYong, Yi Keng, Nicole Ce Mun Wen, Genieve Ee Chia Yeo, Zhi Xin Chew, Li Li Chan, Noor Zaitulakma Md Zain, Dinesh Kumar Chellappan, and Yun Khoon Liew. 2021. "Characterisation of Bacterial Isolates from Infected Post-Operative Patients in a Malaysian Tertiary Heart Care Centre" International Journal of Environmental Research and Public Health 18, no. 18: 9828. https://doi.org/10.3390/ijerph18189828
APA StyleYong, Y. K., Wen, N. C. M., Yeo, G. E. C., Chew, Z. X., Chan, L. L., Md Zain, N. Z., Chellappan, D. K., & Liew, Y. K. (2021). Characterisation of Bacterial Isolates from Infected Post-Operative Patients in a Malaysian Tertiary Heart Care Centre. International Journal of Environmental Research and Public Health, 18(18), 9828. https://doi.org/10.3390/ijerph18189828