Standing Long Jump Performance in Youth with Visual Impairments: A Multidimensional Examination
Abstract
:1. Introduction
2. Materials and Methods
2.1. Design and Setting
2.2. Participants
2.3. Variables and Instrumentation
2.3.1. Qualitative (Process) Measures
- None (0). Participants ‘stuck the landing’ meaning that after both feet contacted the ground, no additional steps, loses of balance, or falls occurred.
- Mild (1). Participants required ≈1 step to maintain their upright posture. Note that ≈1 step was used to allow for context. For example, a participant may have taken two steps, but the second step was seen as a natural and controlled ‘follow through’ step from the first step as individuals would sometimes take multiple steps after landing. The overall concept was to determine if individuals appeared to have full control of their upright posture within one step.
- Moderate (2). Participants clearly needed more than one step to help maintain their upright posture.
- Severe (3). Participants clearly stumbled or had a loss of balance/verticality whereby a significant intervention/effort was made and/or they fell to the ground.
2.3.2. Quantitative (Product) Measures
2.3.3. Potential Variables of Influence
2.4. Procedures
2.5. Data Anlaysis
Inter- and Intra-Rater Reliability
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Smith, J.; Eather, N.; Morgan, P.; Plotnikoff, R.; Faigenbaum, A.; Lubans, D. The Health Benefits of Muscular Fitness for Children and Adolescents: A Systematic Review and Meta-Analysis. Sports Med. 2014, 44, 1209–1223. [Google Scholar] [CrossRef] [PubMed]
- Institute of Medicine. Health-Related Fitness Measures for Youth: Musculoskeletal Fitness. In Fitness Measures and Health Outcomes in Youth; Pate, R., Oria, M., Pillsbury, L., Eds.; The National Academies Press: Washington, DC, USA, 2012; pp. 163–186. [Google Scholar]
- García-Hermoso, A.; Ramírez-Campillo, R.; Izquierdo, M. Is Muscular Fitness Associated with Future Health Benefits in Children and Adolescents? A Systematic Review and Meta-Analysis of Longitudinal Studies. Sports Med. 2019, 49, 1079–1094. [Google Scholar] [CrossRef]
- Ortega, F.; Silventoinen, K.; Tynelius, P.; Rasmussen, F. Muscular Strength in Male Adolescents and Premature Death: Cohort Study of One Million Participants. BMJ 2012, 345, e7279. [Google Scholar] [CrossRef] [Green Version]
- Ruiz, J.; Castro-Piñero, J.; Artero, E.; Ortega, F.; Sjöström, M.; Suni, J.; Castillo, M. Predictive Validity of Health-Related Fitness in Youth: A Systematic Review. Br. J. Sports Med. 2009, 43, 909–923. [Google Scholar] [CrossRef] [PubMed]
- Sapega, A.; Drillings, G. The Definition and Assessment of Muscular Power. J. Orthop. Sports Phys. Ther. 1983, 5, 7–9. [Google Scholar] [CrossRef] [Green Version]
- Castro-Piñero, J.; Ortega, F.; Artero, E.; Girela-Rejón, M.; Mora, J.; Sjöström, M.; Ruiz, J. Assessing Muscular Strength in Youth: Usefulness of Standing Long Jump as a General Index of Muscular Fitness. J. Strength Cond. Res. 2010, 24, 1810–1817. [Google Scholar] [CrossRef]
- Docherty, D. Measurement in Pediatric Exercise Science, 1st ed.; Human Kinetics: Champaign, IL, USA, 1996. [Google Scholar]
- Logan, S.; Barnett, L.; Goodway, J.; Stodden, D. Comparison of Performance on Process- and Product-Oriented Assessments of Fundamental Motor Skills Across Childhood. J. Sports Sci. 2017, 35, 634–641. [Google Scholar] [CrossRef]
- Lane, A.; Molina, S.; Tolleson, D.; Langendorfer, S.; Goodway, J.; Stodden, D. Developmental Sequences for the Standing Long Jump Landing: A Pre-Longitudinal Screening. J. Mot. Learn. Dev. 2018, 6, 114–129. [Google Scholar] [CrossRef]
- Liebermann, D. Biomechanical Aspects of Motor Control in Human Landing. In Routledge Handbook of Biomechanics and Human Movement Science, 1st ed.; Hong, Y., Bartlett, R., Eds.; Routledge: New York, NY, USA, 2008; pp. 117–128. [Google Scholar]
- McKinley, P.; Pedotti, A. Motor Strategies in Landing from a Jump: The Role of Skill in Task Execution. Exp. Brain Res. 1992, 90, 427–440. [Google Scholar] [CrossRef] [PubMed]
- Pinoniemi, B.; Tomkinson, G.; Walch, T.; Roemmich, J.; Fitzgerald, J. Temporal Trends in the Standing Broad Jump Performance of United States Children and Adolescents. Res. Q. Exerc. Sport 2021, 92, 71–81. [Google Scholar] [CrossRef] [PubMed]
- Longmuir, P.; Bar-Or, O. Factors Influencing the Physical Activity Levels of Youths with Physical and Sensory Disabilities. Adapt. Phys. Activ. Q. 2000, 17, 40–53. [Google Scholar] [CrossRef]
- Lieberman, L.; Byrne, H.; Mattern, C.; Watt, C.; Fernández-Vivó, M. Health-Related Fitness of Youths with Visual Impairments. J. Vis. Impair. Blind. 2010, 104, 349–359. [Google Scholar] [CrossRef]
- Augestad, L.; Jiang, L. Physical Activity, Physical Fitness, and Body Composition Among Children and Young Adults with Visual Impairments: A Systematic Review. Br. J. Vis. Impair. 2015, 33, 167–182. [Google Scholar] [CrossRef]
- Houwen, S.; Hartman, E.; Visscher, C. Physical Activity and Motor Skills in Children with and Without Visual Impairments. Med. Sci. Sports Exerc. 2009, 41, 103–109. [Google Scholar] [CrossRef]
- Kolimechkov, S.; Petrov, L.; Alexandrova, A. Alpha-Fit Test Battery Norms for Children and Adolescents from 5 to 18 Years of Age Obtained by a Linear Interpolation of Existing European Physical Fitness References. Eur. J. Phys. Educ. Sport Sci. 2019, 5, 1–14. [Google Scholar]
- Reiff, G.; Dixon, W.; Jacoby, D.; Ye, X.; Spain, C.; Hunsiker, P. The President Council on Physical Fitness and Sports 1985: National School Population Survey; President’s Council of Physical Fitness and Sports: Washington, DC, USA, 1986. [Google Scholar]
- Thomas, E.; Petrigna, L.; Tabacchi, G.; Teixeira, E.; Pajaujiene, S.; Sturm, D.; Sahin, F.; Gómez-López, M.; Pausic, J.; Paoli, A.; et al. Percentile Values of the Standing Broad Jump in Children and Adolescents Aged 6–18 Years Old. Eur. J. Transl. Myol. 2020, 30, 240–246. [Google Scholar] [CrossRef]
- Pennell, A. Multidimensional Balance in Youth with Visual Impairments. Ph.D. Thesis, University of South Carolina, Columbia, SC, USA, 2019. [Google Scholar]
- Lieberman, L. Camp Abilities Start-Up Manual: A Handbook for Starting Camps for Children with Visual Impairments; Camp Abilities Press: Brockport, NY, USA, 2016. [Google Scholar]
- Espinoza, S.; Quiben, M.; Hazuda, H. Distinguishing Comorbidity, Disability, and Frailty. Curr. Geriatr. Rep. 2018, 7, 201–209. [Google Scholar] [CrossRef]
- International Blind Sports Association. Classification. Available online: https://www.ibsasport.org/classification/ (accessed on 1 July 2021).
- United States Association for Blind Athletes. Visual Classifications. Available online: https://www.usaba.org/membership/visual-classifications/ (accessed on 1 July 2021).
- Ulrich, D. Test of Gross Motor Development: Examiner’s Manual, 3rd ed.; Pro-Ed: Austin, TX, USA, 2019. [Google Scholar]
- Webster, E.; Ulrich, D. Evaluation of the Psychometric Properties of the Test of Gross Motor Development—Third Edition. J. Mot. Learn. Dev. 2017, 5, 45–58. [Google Scholar] [CrossRef]
- Houwen, S.; Hartman, E.; Jonker, L.; Visscher, C. Reliability and Validity of the TGMD-2 in Primary-School-Age Children with Visual Impairments. Adapt. Phys. Activ. Q. 2010, 27, 143–159. [Google Scholar] [CrossRef]
- Brian, A.; Taunton, S.; Lieberman, L.; Haibach-Beach, P.; Foley, J.; Santarossa, S. Psychometric Properties of the Test of Gross Motor Development-3 for Children with Visual Impairments. Adapt. Phys. Activ. Q. 2018, 35, 145–158. [Google Scholar] [CrossRef]
- Padua, D.; Marshall, S.; Boling, M.; Thigpen, C.; Garrett, W., Jr.; Beutler, A. The Landing Error Scoring System (LESS) is a Valid and Reliable Clinical Assessment Tool of Jump-Landing Biomechanics: The JUMP-ACL Study. Am. J. Sports Med. 2009, 37, 1996–2002. [Google Scholar] [CrossRef] [PubMed]
- Guy-Cherry, D.; Alanazi, A.; Miller, L.; Staloch, D.; Ortiz-Rodriguez, A. Landing Styles Influences Reactive Strength Index without Increasing Risk for Injury. Sports Med. Int. Open. 2018, 2, E35–E40. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Steeves, J. An Investigation of the Relationship Between Impact Force Attenuation in Landing and Isokinetic Strength of Knee Muscles in Individuals with Different Training Backgrounds. Master’s Thesis, University of Tennessee, Knoxville, TN, USA, 2008. [Google Scholar]
- Tamura, A.; Akasaka, K.; Otsudo, T. Energy Absorption Strategies in the Lower Extremities During Double-Leg Landings in Knee Valgus Alignment. Appl. Sci. 2020, 10, 8742. [Google Scholar] [CrossRef]
- Dai, B.; Garrett, W.; Gross, M.; Padua, D.; Queen, R.; Yu, B. The Effects of 2 Landing Techniques on Knee Kinematics, Kinetics, and Performance During Stop-Jump and Side-Cutting Tasks. Am. J. Sports Med. 2015, 43, 466–474. [Google Scholar] [CrossRef] [PubMed]
- Schöllhorn, W. Applications of Systems Dynamic Principles to Technique and Strength Training. Acta Academ. Olymp. Eston. 2000, 8, 67–85. [Google Scholar]
- Tomkinson, G.; Kaster, T.; Dooley, F.; Fitzgerald, J.; Annandale, M.; Ferrar, K.; Lang, J.; Smith, J. Temporal Trends in the Standing Broad Jump Performance of 10,940,801 Children and Adolescents Between 1960 and 2017. Sports Med. 2021, 51, 531–548. [Google Scholar] [CrossRef]
- Rutkowska, I.; Bednarczuk, G.; Molik, B.; Morgulec-Adamowicz, N.; Marszałek, J.; Kaźmierska-Kowalewska, K.; Koc, K. Balance Functional Assessment in People with Visual Impairment. J. Hum. Kinet. 2015, 48, 99–109. [Google Scholar] [CrossRef] [Green Version]
- Rutkowska, I.; Lieberman, L.; Bednarczuk, G.; Molik, B.; Kazimierska-Kowalewska, K.; Marszałek, J.; Gomez-Ruano, M. Bilateral Coordination of Children who are Blind. Percept. Mot. Ski. 2016, 122, 595–609. [Google Scholar] [CrossRef]
- Field-Fote, E. Mediators and Moderators, Confounders and Covariates: Exploring the Variables that Illuminate or Obscure the “Active Ingredients” in Neurorehabilitation. J. Neurol. Phys. Ther. 2019, 43, 83–84. [Google Scholar] [CrossRef]
- Sharma, S.; Durand, R.; Gur-Arie, O. Identification and Analysis of Moderator Variables. J. Mark. Res. 1981, 18, 291–300. [Google Scholar] [CrossRef]
- Malina, R.; Bouchard, C.; Bar-Or, O. Growth, Maturation, and Physical Activity, 2nd ed.; Human Kinetics: Champaign, IL, USA, 2004. [Google Scholar]
- Mirwald, R.; Baxter-Jones, A.; Bailey, D.; Beunen, G. An Assessment of Maturity from Anthropometric Measurements. Med. Sci. Sports Exerc. 2002, 34, 689–694. [Google Scholar] [PubMed]
- Sidhu, J. Anthropometric Parameters and Motor Abilities Among School Children’s. Int. J. Physiol. Nutr. Physic. Educ. 2018, 3, 366–369. [Google Scholar]
- Cole, T.; Green, P. Smoothing Reference Centile Curves: The LMS Method and Penalized Likelihood. Stat. Med. 1992, 11, 1305–1319. [Google Scholar] [CrossRef] [PubMed]
- Haibach, P.; Wagner, M.; Lieberman, L. Determinants of Gross Motor Skill Performance in Children with Visual Impairments. Res. Dev. Disabil. 2014, 35, 2577–2584. [Google Scholar] [CrossRef] [Green Version]
- Pennell, A. Postural Control and Balance. In Movement and Visual Impairment: Research Across Disciplines, 1st ed.; Haegele, J., Ed.; Routledge: New York, NY, USA, 2020; pp. 17–31. [Google Scholar]
- Plisky, P.; Rauh, M.; Kaminski, T.; Underwood, F. Star Excursion Balance Test as a Predictor of Lower Extremity Injury in High School Basketball Players. J. Orthop. Sports Phys. Ther. 2006, 36, 911–919. [Google Scholar] [CrossRef] [PubMed]
- Centers for Disease Control and Prevention. Percentile Data Files with LMS Values. Available online: https://www.cdc.gov/growthcharts/percentile_data_files.htm (accessed on 1 July 2021).
- Moore, S.; McKay, H.; Macdonald, H.; Nettlefold, L.; Baxter-Jones, A.; Cameron, N.; Brasher, P. Enhancing a Somatic Maturity Prediction Model. Med. Sci. Sports. Exerc. 2015, 47, 1755–1764. [Google Scholar] [CrossRef]
- Lieberman, L.; Lepore, M.; Lepore-Stevens, M.; Ball, L. Physical Education for Children with Visual Impairment or Blindness. J. Phys. Educ. Recreat. Danc. 2019, 90, 30–38. [Google Scholar] [CrossRef]
- Wang, J.; Zamar, R.; Marazzi, A.; Yohai, V.; Salibian-Barrera, M.; Maronna, R.; Zivot, E.; Rocke, D.; Martin, D.; Maechler, M.; et al. Robust: Port of the S+ “Robust Library”. Available online: https://cran.r-project.org/web/packages/robust/index.html (accessed on 1 July 2021).
- Renaud, O.; Victoria-Feser, M. A Robust Coefficient of Determination for Regression. J. Stat. Plan. Inference 2010, 140, 1852–1862. [Google Scholar] [CrossRef] [Green Version]
- Cohen, J. Statistical Power Analysis for the Behavioral Sciences, 2nd ed.; Lawrence Erlbaum Associates: Hillsdale, NJ, USA, 1988. [Google Scholar]
- Gwet, K. Handbook of Inter-Rater Reliability: The Definitive Guide to Measuring the Extent of Agreement Among Raters, 4th ed.; Advanced Analytics, LLC.: Gaithersburg, MD, USA, 2014. [Google Scholar]
- Koo, T.; Li, M. A Guideline of Selecting and Reporting Intraclass Correlation Coefficients for Reliability Research. J. Chiropr. Med. 2016, 15, 155–163. [Google Scholar] [CrossRef] [Green Version]
- Portney, L. Foundations of Clinical Research: Applications to Evidence-Based Practice, 4th ed.; F.A. Davis Company: Philadelphia, PA, USA, 2020. [Google Scholar]
- Brian, A.; Pennell, A.; Haibach-Beach, P.; Foley, J.; Taunton, S.; Lieberman, L. Correlates of Physical Activity Among Children with Visual Impairments. Disabil. Health J. 2019, 12, 328–333. [Google Scholar] [CrossRef] [PubMed]
- Brian, A.; Starrett, A.; Pennell, A.; Haibach-Beach, P.; Gilbert, E.; Stribing, A.; Taunton Miedema, S.; Lieberman, L. Longitudinal Locomotor Competence and BMI Across Self-Reported Gender and Vision Level for Youth with Visual Impairments: A Three-Year Investigation. Adapt. Phys. Act. Q. 2021, 38, 268–285. [Google Scholar]
- Reid, K.; Price, L.; Harvey, W.; Driban, J.; Hau, C.; Fielding, R.; Wang, C. Muscle Power is an Independent Determinant of Pain and Quality of Life in Knee Osteoarthritis. Arthritis Rheumatol. 2015, 67, 3166–3173. [Google Scholar]
- Horvat, M.; Ray, C.; Croce, R.; Blasch, B. A Comparison of Isokinetic Muscle Strength and Power in Visually Impaired and Sighted Individuals. Isokinet. Exerc. Sci. 2004, 12, 179–183. [Google Scholar] [CrossRef]
- Horvat, M.; Nocera, J.; Ray, C.; Croce, R. Comparison of Isokinetic Peak Force and Power in Adults with Partial and Total Blindness. Percept. Mot. Ski. 2006, 103, 231–237. [Google Scholar] [CrossRef]
- World Health Organization. International Classification of Functioning, Disability and Health; World Health Organization: Geneva, Switzerland, 2001. [Google Scholar]
- World Health Organization. International Classification of Functioning, Disability, and Health: Children & Youth Version: ICF-CY; World Health Organization: Geneva, Switzerland, 2007. [Google Scholar]
- Fitts, R.; McDonald, K.; Schluter, J. The Determinants of Skeletal Muscle Force and Power: Their Adaptability with Changes in Activity Pattern. J. Biomech. 1991, 24, 111–122. [Google Scholar] [CrossRef]
- Sargeant, A. Structural and Functional Determinants of Human Muscle Power. Exp. Physiol. 2007, 92, 323–331. [Google Scholar] [CrossRef] [PubMed]
- Lorger, M.; Hraski, M.; Hraski, Ž. The Effects of Motor Learning on Results of Standing Long Jump Performed by Female Students. Sport Sci. 2012, 5, 27–31. [Google Scholar]
- Porter, J.; Ostrowski, E.; Nolan, R.; Wu, W. Standing Long-Jump Performance is Enhanced when Using an External Focus of Attention. J. Strength Cond. Res. 2010, 24, 1746–1750. [Google Scholar] [CrossRef]
- Seefeldt, V.; Reuschlein, S.; Vogel, P. Sequencing Motor Skills Within the Physical Education Curriculum. In Proceedings of the Annual Convention of the American Association for Health, Physical Education, and Recreation, Houston, TX, USA, 24–28 March 1972; pp. 69–71. [Google Scholar]
- Wilson, D.; Brown, E. A Biomechanical Comparison of Developmental Stages of the Standing Long Jump. In Biomechanics in Sport XI, Proceedings of the XIth Symposium of the International Society of Biomechanics in Sports, Amherst, MA, USA, 23–26 June 1993; Hamill, J., Derrick, T., Hamill, T., Elliott, E., Eds.; International Society of Biomechanics in Sports: Amherst, MA, USA, 1993; pp. 69–71. [Google Scholar]
- Devita, P.; Skelly, W. Effect of Landing Stiffness on Joint Kinetics and Energetics in the Lower Extremity. Med. Sci. Sports Exerc. 1992, 24, 108–115. [Google Scholar] [CrossRef] [Green Version]
- Brian, A.; Getchell, N.; True, L.; De Meester, A.; Stodden, D. Reconceptualizing and Operationalizing Seefeldt’s Proficiency Barrier: Applications and Future Directions. Sports Med. 2020, 50, 1889–1900. [Google Scholar] [CrossRef]
- Horvat, M.; Ray, C.; Ramsey, V.; Miszko, T.; Keeney, R.; Blasch, B. Compensatory Analysis and Strategies for Balance in Individuals with Visual Impairments. J. Vis. Impair. Blind. 2003, 97, 695–703. [Google Scholar] [CrossRef]
- Ray, C.; Horvat, M.; Williams, M.; Blasch, B. Kinetic Movement Analysis in Adults with Vision Loss. Adapt. Phys. Activ. Q. 2007, 24, 209–217. [Google Scholar] [CrossRef]
- Henry, F.; Rogers, D. Increased Response Latency for Complicated Movements and a “Memory Drum” Theory of Neuromotor Reaction. Res. Q. Am. Assoc. Health Phys. Educ. 1960, 31, 448–458. [Google Scholar] [CrossRef]
- Peterka, R. Sensorimotor Integration in Human Postural Control. J. Neurophysiol. 2002, 88, 1097–1118. [Google Scholar] [CrossRef] [Green Version]
- Santello, M.; McDonagh, M.; Challis, J. Visual and Non-Visual Control of Landing Movements in Humans. J. Physiol. 2001, 537, 313–327. [Google Scholar] [CrossRef]
- Newell, K. Constraints on the Development of Coordination. In Motor Development in Children: Aspects of Coordination and Control, 1st ed.; Wade, M., Whiting, H., Eds.; Martinus Nijhoff Publishers: Dordrecht, The Netherlands, 1986; pp. 341–360. [Google Scholar]
- Bernstein, N. The Co-Ordination and Regulation of Movements, 1st ed.; Pergamon Press: Oxford, UK, 1967. (In English) [Google Scholar]
- Zhu, W. Which Should it be Called: Convergent Validity or Discriminant Validity? Res. Q. Exerc. Sport 2000, 71, 190–194. [Google Scholar] [CrossRef] [PubMed]
- Crews, J.; Jones, G.; Kim, J. Double Jeopardy: The Effects of Comorbid Conditions Among Older People with Vision Loss. J. Vis. Impair. Blind. 2006, 100, 824–848. [Google Scholar] [CrossRef]
- Brian, A. Motor Skill Development. In Movement and Visual Impairment: Research Across Disciplines, 1st ed.; Haegele, J., Ed.; Routledge: New York, NY, USA, 2020; pp. 4–16. [Google Scholar]
- Martin, J.; Snapp, E.; Moore, E.; Lieberman, L.; Armstrong, E.; Mannella, S. Factor Structure of the Barriers to Physical Activity Scale for Youth with Visual Impairments. Adapt. Phys. Activ. Q. 2021. ahead of print. [Google Scholar] [CrossRef] [PubMed]
- Office of Disease Prevention and Health Promotion. Social Determinants of Health. Available online: https://health.gov/healthypeople/objectives-and-data/social-determinants-health (accessed on 1 July 2021).
- Barnett, L.; Hnatiuk, J.; Salmon, J.; Hesketh, K. Modifiable Factors Which Predict Children’s Gross Motor Competence: A Prospective Cohort Study. Int. J. Behav. Nutr. Phys. Act. 2019, 16, 129. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Robinson, L.; Stodden, D.; Barnett, L.; Lopes, V.; Logan, S.; Rodrigues, L.; D’Hondt, E. Motor Competence and its Effect on Positive Developmental Trajectories of Health. Sports Med. 2015, 45, 1273–1284. [Google Scholar] [CrossRef] [PubMed]
- Stodden, D.; Goodway, J.; Langendorfer, S.; Roberton, M.; Rudisill, M.; Garcia, C.; Garcia, L. A Developmental Perspective on the Role of Motor Skill Competence in Physical Activity: An Emergent Relationship. Quest 2008, 60, 290–306. [Google Scholar] [CrossRef]
Variable | Trial 1 | Trial 2 | Max Trial 1 |
---|---|---|---|
M (SD) | M (SD) | M (SD) | |
Distance (m) | 1.08 (0.48) | 1.06 (0.52) | 1.15 (0.48) |
Total Dev. Seq. | 5.36 (1.52) | 5.25 (1.36) | 5.31 (1.36) |
LESS Joint Disp. | 1.66 (0.63) | 1.64 (0.68) | 1.59 (0.72) |
Suppl. Strategy | 0.87 (0.90) | 0.92 (0.88) | 0.82 (0.90) |
Mdn (MAD) | Mdn (MAD) | Mdn (MAD) | |
Distance (m) | 1.11 (0.42) | 1.15 (0.49) | 1.21 (0.39) |
Total Dev. Seq. | 5.00 (1.48) | 5.00 (1.48) | 5.00 (1.48) |
LESS Joint Disp. | 2.00 (0.00) | 2.00 (0.00) | 2.00 (0.00) |
Suppl. Strategy | 1.00 (1.48) | 1.00 (1.48) | 1.00 (1.48) |
Skew; Kurt | Skew; Kurt | Skew; Kurt | |
Distance (m) | −0.48; 0.02 | −0.40; −0.37 | −0.45; 0.06 |
Total Dev. Seq. | 0.49; −0.41 | 0.77; 0.52 | 0.57; 0.34 |
LESS Joint Disp. | −1.58; 1.20 | −1.58; 0.95 | −1.38; 0.34 |
Suppl. Strategy | 0.65; −0.63 | 0.59; −0.58 | 0.89; −0.10 |
Variable | Trial 1 | Trial 2 | Max Trial 2 |
---|---|---|---|
% | % | % | |
Common Component Profiles 1 | |||
1-1-1 | 9.84 | 6.56 | 8.20 |
1-1-2 | --- | 9.84 | 6.56 |
1-2-1 | 14.75 | 13.11 | 9.84 |
1-2-2 | 36.07 | 32.79 | 37.70 |
1-2-3 | --- | 9.84 | 8.20 |
1-2-4 | 8.20 | --- | --- |
2-2-2 | --- | 9.84 | 11.48 |
2-2-3 | 6.56 | --- | --- |
2-2-4 | 6.56 | --- | --- |
Component—Shank | |||
1 | 78.69 | 78.69 | 77.04; 20 † 3 |
2 | 21.31 | 21.31 | 22.96; 80 † 3 |
Component—Foot | |||
1 | 13.11 | 19.67 | 14.75; 15 † 3 |
2 | 81.97 | 73.77 | 80.33; 55 † 3 |
3 | 4.92 | 6.56 | 4.92; 30 † 3 |
Component—Arm | |||
1 | 24.59 | 19.67 | 18.03; 15 † 3 |
2 | 45.90 | 55.74 | 57.38; 45 † 3 |
3 | 11.48 | 13.11 | 13.11; 15 † 3 |
4 | 18.03 | 11.48 | 11.48; 25 † 3 |
LESS Joint Disp. | |||
0 (Soft) | 8.20 | 11.48 | 13.12 |
1 (Average) | 18.03 | 13.11 | 14.75 |
2 (Stiff) | 73.77 | 75.41 | 72.13 |
Suppl. Strategy | |||
0 (None) | 42.62 | 37.70 | 44.26 |
1 (Mild) | 32.79 | 37.70 | 36.07 |
2 (Moderate) | 19.67 | 19.67 | 13.11 |
3 (Severe) | 4.92 | 4.92 | 6.56 |
Predictor (x) | β | SE | t-Value | p | Robust R2adj |
---|---|---|---|---|---|
TGMD-3 Horiz. Jump (y) | |||||
β0 | 1.28 | 0.71 | 1.81 | 0.08 | |
β1: Max. SLJ Distance (m) | 2.95 | 0.57 | 5.16 | <0.001 *** | 0.37 |
β0 | −0.81 | 1.01 | −0.80 | 0.43 | |
β1: Total Dev. Seq. | 1.00 | 0.19 | 5.41 | <0.001 *** | 0.32 |
β0 | 6.54 | 1.27 | 5.14 | <0.001 *** | |
β1: LESS Joint Disp. | −1.28 | 0.74 | −1.73 | 0.09 | 0.12 |
β0 | 4.43 | 0.57 | 7.74 | <0.001 *** | |
β1: Suppl. Strategy | 0.21 | 0.46 | 0.45 | 0.66 | 0.00 |
Max. SLJ Distance (y) | |||||
β0 | 0.57 | 0.17 | 3.48 | <0.001 *** | |
β1: TGMD-3 Horiz. Jump | 0.13 | 0.03 | 3.94 | <0.001 *** | 0.31 |
β0 | −0.14 | 0.25 | −0.56 | 0.58 | |
β1: Total Dev. Seq. | 0.24 | 0.05 | 5.25 | <0.001 *** | 0.38 |
β0 | 1.67 | 0.14 | 11.80 | <0.001 *** | |
β1: LESS Joint Disp. | −0.30 | 0.08 | −3.66 | <0.001 *** | 0.22 |
β0 | 1.21 | 0.09 | 13.18 | <0.001 *** | |
β1: Suppl. Strategy | 0.01 | 0.08 | 0.13 | 0.90 | 0.00 |
Total Dev. Seq. (y) | |||||
β0 | 3.81 | 0.28 | 13.43 | <0.001 *** | |
β1: TGMD-3 Horiz. Jump | 0.30 | 0.06 | 5.18 | <0.001 *** | 0.33 |
β0 | 3.35 | 0.41 | 8.11 | <0.001 *** | |
β1: Max. SLJ Distance (m) | 1.67 | 0.34 | 4.89 | <0.001 *** | 0.42 |
β0 | 6.55 | 0.65 | 10.15 | <0.001 *** | |
β1: LESS Joint Disp. | −0.84 | 0.37 | −2.27 | 0.03 * | 0.17 |
β0 | 4.94 | 0.29 | 16.98 | <0.001 *** | |
β1: Suppl. Strategy | 0.22 | 0.24 | 0.92 | 0.36 | 0.00 |
Predictor (x) | β | SE | t-Value | p | Robust R2adj |
---|---|---|---|---|---|
TGMD-3 Horiz. Jump (y) | |||||
β0 | 5.06 | 3.17 | 1.59 | 0.12 | |
β1: Age | −0.04 | 0.24 | −0.15 | 0.88 | 0.00 |
β0 | 4.29 | 0.84 | 5.12 | <0.001 *** | |
β1: Sex | 0.50 | 1.14 | 0.43 | 0.67 | 0.00 |
β0 | 4.56 | 0.56 | 8.08 | <0.001 *** | |
β1: Maturity Offset | −0.10 | 0.31 | −0.31 | 0.76 | 0.00 |
β0 | 5.95 | 6.02 | 0.99 | 0.33 | |
β1: Height | −0.88 | 3.89 | −0.23 | 0.82 | 0.00 |
β0 | 4.97 | 6.15 | 0.81 | 0.42 | |
β1: Limb Length | −0.46 | 7.29 | −0.06 | 0.95 | 0.00 |
β0 | 4.79 | 1.57 | 3.05 | 0.003 ** | |
β1: Weight | −0.01 | 0.03 | −0.16 | 0.88 | 0.00 |
β0 | 4.90 | 0.68 | 7.25 | <0.001 *** | |
β1: BMIz | −0.37 | 0.53 | −0.69 | 0.49 | 0.00 |
β0 | 3.73 | 1.24 | 3.02 | 0.004 ** | |
β1: Vision Level | 0.37 | 0.50 | 0.74 | 0.46 | 0.00 |
β0 | 5.34 | 0.37 | 14.60 | <0.001 *** | |
β1: Multimorbidity | −1.81 | 0.64 | −2.84 | 0.006 ** | 0.09 |
Max. SLJ Distance (y) | |||||
β0 | 1.07 | 0.44 | 2.42 | 0.02 *** | |
β1: Age | 0.01 | 0.03 | 0.32 | 0.75 | 0.00 |
β0 | 1.10 | 0.12 | 9.12 | <0.001 *** | |
β1: Sex | 0.18 | 0.16 | 1.14 | 0.26 | 0.01 |
β0 | 1.21 | 0.07 | 16.80 | <0.001 *** | |
β1: Maturity Offset | −0.02 | 0.04 | −0.38 | 0.70 | 0.00 |
β0 | 1.01 | 0.86 | 1.18 | 0.24 | |
β1: Height | 0.13 | 0.56 | 0.24 | 0.81 | 0.00 |
β0 | 0.88 | 0.86 | 1.03 | 0.31 | |
β1: Limb Length | 0.40 | 1.01 | 0.39 | 0.70 | 0.00 |
β0 | 1.42 | 0.19 | 7.51 | <0.001 *** | |
β1: Weight | −0.004 | 0.003 | −1.12 | 0.27 | 0.00 |
β0 | 1.29 | 0.08 | 14.43 | <0.001 *** | |
β1: BMIz | −0.11 | 0.07 | −1.60 | 0.12 | 0.04 |
β0 | 1.01 | 0.15 | 6.56 | <0.001 *** | |
β1: Vision Level | 0.08 | 0.06 | 1.37 | 0.18 | 0.00 |
β0 | 1.33 | 0.06 | 21.07 | <0.001 *** | |
β1: Multimorbidity | −0.38 | 0.11 | −3.43 | 0.001 ** | 0.12 |
Total Dev. Seq. (y) | |||||
β0 | 4.10 | 1.06 | 3.87 | <0.001 *** | |
β1: Age | 0.08 | 0.08 | 1.02 | 0.31 | 0.00 |
β0 | 4.90 | 0.25 | 19.80 | <0.001 *** | |
β1: Sex | 0.56 | 0.35 | 1.60 | 0.11 | 0.03 |
β0 | 5.16 | 0.17 | 29.72 | <0.001 *** | |
β1: Maturity Offset | 0.04 | 0.10 | 0.42 | 0.68 | 0.00 |
β0 | 2.42 | 2.38 | 1.02 | 0.31 | |
β1: Height | 1.79 | 1.54 | 1.16 | 0.25 | 0.00 |
β0 | 3.72 | 2.18 | 1.71 | 0.09 | |
β1: Limb Length | 1.72 | 2.59 | 0.66 | 0.51 | 0.00 |
β0 | 4.73 | 0.48 | 9.76 | <0.001 *** | |
β1: Weight | 0.01 | 0.01 | 0.95 | 0.35 | 0.00 |
β0 | 5.24 | 0.21 | 25.15 | <0.001 *** | |
β1: BMIz | −0.15 | 0.17 | −0.90 | 0.38 | 0.00 |
β0 | 4.37 | 0.40 | 11.19 | <0.001 *** | |
β1: Vision Level | 0.35 | 0.16 | 2.22 | 0.03 * | 0.03 |
β0 | 5.17 | 0.21 | 25.06 | <0.001 *** | |
β1: Multimorbidity | −0.07 | 0.39 | −0.17 | 0.87 | 0.00 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pennell, A.; Yee, N.; Conforti, C.; Yau, K.; Brian, A. Standing Long Jump Performance in Youth with Visual Impairments: A Multidimensional Examination. Int. J. Environ. Res. Public Health 2021, 18, 9742. https://doi.org/10.3390/ijerph18189742
Pennell A, Yee N, Conforti C, Yau K, Brian A. Standing Long Jump Performance in Youth with Visual Impairments: A Multidimensional Examination. International Journal of Environmental Research and Public Health. 2021; 18(18):9742. https://doi.org/10.3390/ijerph18189742
Chicago/Turabian StylePennell, Adam, Nicole Yee, Carmen Conforti, Katienne Yau, and Ali Brian. 2021. "Standing Long Jump Performance in Youth with Visual Impairments: A Multidimensional Examination" International Journal of Environmental Research and Public Health 18, no. 18: 9742. https://doi.org/10.3390/ijerph18189742