Effect of the COVID-19 Emergency on Physical Function among School-Aged Children
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Study Population
2.2. Data Collection
2.2.1. Questionnaire
2.2.2. Body Fat Percentage
2.2.3. Single-Leg Standing Time
2.2.4. Grip Strength
2.2.5. Gait Analysis
2.3. Statistical Analyses
3. Results
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Isumi, A.; Doi, S.; Yamaoka, Y.; Takahashi, K.; Fujiwara, T. Do suicide rates in children and adolescents change during school closure in Japan? The acute effect of the first wave of COVID-19 pandemic on child and adolescent mental health. Child. Abuse Negl. 2020, 110, 104680. [Google Scholar] [CrossRef]
- Chen, P.; Mao, L.; Nassis, G.P.; Harmer, P.; Ainsworth, B.E.; Li, F. Coronavirus disease (COVID-19): The need to maintain regular physical activity while taking precautions. J. Sport Health Sci. 2020, 9, 103–104. [Google Scholar] [CrossRef]
- Pombo, A.; Luz, C.; de Sá, C.; Rodrigues, L.P.; Cordovil, R. Effects of the COVID-19 Lockdown on Portuguese Children’s Motor Competence. Children 2021, 8, 199. [Google Scholar] [CrossRef]
- Nathan, A.; George, P.; Ng, M.; Wenden, E.; Bai, P.; Phiri, Z.; Christian, H. Impact of COVID-19 Restrictions on Western Australian Children’s Physical Activity and Screen Time. Int. J. Environ. Res. Public Health 2021, 18, 2583. [Google Scholar] [CrossRef]
- Riazi, N.A.; Wunderlich, K.; Gierc, M.; Brussoni, M.; Moore, S.A.; Tremblay, M.S.; Faulkner, G. “You Can’t Go to the Park, You Can’t Go Here, You Can’t Go There”: Exploring Parental Experiences of COVID-19 and Its Impact on Their Children’s Movement Behaviours. Children 2021, 8, 219. [Google Scholar] [CrossRef]
- Raven, J.; Raven, J.C.; Court, J.H. Manual for Raven’s Progressive Matrices and Vocabulary Scales; Oxford Psychologists Press: Oxford, UK, 1998. [Google Scholar]
- Matsuishi, T.; Nagano, M.; Araki, Y.; Tanaka, Y.; Iwasaki, M.; Yamashita, Y.; Nagamitsu, S.; Iizuka, C.; Ohya, T.; Shibuya, K.; et al. Scale properties of the Japanese version of the Strengths and Difficulties Questionnaire (SDQ): A study of infant and school children in community samples. Brain Dev. 2008, 30, 410–415. [Google Scholar] [CrossRef]
- Kobayashi, K.; Kamibeppu, K. Measuring quality of life in Japanese children: Development of Japanese version of PedsQL™. Pediatr. Int. 2010, 52, 80–88. [Google Scholar] [CrossRef]
- Ito, T.; Sugiura, H.; Ito, Y.; Noritake, K.; Ochi, N. Relationship between the skeletal muscle mass index and physical activity of Japanese children: A cross-sectional, observational study. PLoS ONE 2021, 16, e0251025. [Google Scholar] [CrossRef] [PubMed]
- Ng, A.K.; Hairi, N.N.; Jalaludin, M.Y.; Majid, H.A. Dietary intake, physical activity and muscle strength among adolescents: The Malaysian Health and Adolescents Longitudinal Research Team (MyHeART) study. BMJ Open 2019, 9, e026275. [Google Scholar] [CrossRef] [Green Version]
- Uchiyama, T.; Nakayama, T.; Kuru, S. Muscle development in healthy children evaluated by bioelectrical impedance analysis. Brain Dev. 2017, 39, 122–129. [Google Scholar] [CrossRef]
- McCarthy, H.D.; Samani-Radia, D.; Jebb, S.A.; Prentice, A.M. Skeletal muscle mass reference curves for children and adolescents. Pediatr. Obes. 2014, 9, 249–259. [Google Scholar] [CrossRef] [PubMed]
- Zumbrunn, T.; MacWilliams, B.A.; Johnson, B.A. Evaluation of a single leg stance balance test in children. Gait Posture 2011, 34, 174–177. [Google Scholar] [CrossRef] [PubMed]
- Condon, C.; Cremin, K. Static balance norms in children. Physiother. Res. Int. 2014, 19, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Savva, C.; Karagiannis, C.; Rushton, A. Test-retest reliability of grip strength measurement in full elbow extension to evaluate maximum grip strength. J. Hand Surg. Eur. Vol. 2013, 38, 183–186. [Google Scholar] [CrossRef] [PubMed]
- Leboeuf, F.; Baker, R.; Barré, A.; Reay, J.; Jones, R.; Sangeux, M. The conventional gait model, an open-source implementation that reproduces the past but prepares for the future. Gait Posture 2019, 69, 126–129. [Google Scholar] [CrossRef] [PubMed]
- Schwartz, M.H.; Rozumalski, A. The Gait Deviation Index: A new comprehensive index of gait pathology. Gait Posture 2008, 28, 351–357. [Google Scholar] [CrossRef]
- Faul, F.; Erdfelder, E.; Lang, A.G.; Buchner, A. G*Power 3: A flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behav. Res. Methods 2007, 39, 175–191. [Google Scholar] [CrossRef]
- Faul, F.; Erdfelder, E.; Buchner, A.; Lang, A.G. Statistical power analyses using G*Power 3.1: Tests for correlation and regression analyses. Behav. Res. Methods 2009, 41, 1149–1160. [Google Scholar] [CrossRef] [Green Version]
- Dunton, G.F.; Do, B.; Wang, S.D. Early effects of the COVID-19 pandemic on physical activity and sedentary behavior in children living in the U.S. BMC Public Health 2020, 20, 1351. [Google Scholar] [CrossRef]
- Mutz, M.; Müller, J.; Reimers, A.K. Use of digital media for home-based sports activities during the COVID-19 pandemic: Results from the German SPOVID survey. Int. J. Environ. Res. Public Health 2021, 18, 4409. [Google Scholar] [CrossRef]
- Cachón-Zagalaz, J.; . Zagalaz-Sánchez Ma, L.; Arufe-Giráldez, V.; Sanmiguel-Rodríguez, A.; González-Valero, G. Physical activity and daily routine among children aged 0–12 during the COVID-19 pandemic in Spain. Int. J. Environ. Res. Public Health 2021, 18, 703. [Google Scholar] [CrossRef]
- Fillon, A.; Genin, P.; Larras, B.; Vanhelst, J.; Luiggi, M.; Aubert, S.; Verdot, C.; Rey, O.; Lhuisset, L.; Bois, J.; et al. France’s 2020 report card on physical activity and sedentary behaviors in children and youth: Results and progression. J. Phys. Act. Health 2021, 18, 811–817. [Google Scholar] [CrossRef]
- Štveráková, T.; Jačisko, J.; Busch, A.; Šafářová, M.; Kolář, P.; Kobesová, A. The impact of COVID-19 on physical activity of Czech children. PLoS ONE 2021, 16, e0254244. [Google Scholar] [CrossRef]
- Ten Velde, G.; Lubrecht, J.; Arayess, L.; van Loo, C.; Hesselink, M.; Reijnders, D.; Vreugdenhil, A. Physical activity behaviour and screen time in Dutch children during the COVID-19 pandemic: Pre-, during- and post-school closures. Pediatr. Obes. 2021, 16, e12779. [Google Scholar] [CrossRef]
- Schmidt, S.C.E.; Anedda, B.; Burchartz, A.; Eichsteller, A.; Kolb, S.; Nigg, C.; Niessner, C.; Oriwol, D.; Worth, A.; Woll, A. Physical activity and screen time of children and adolescents before and during the COVID-19 lockdown in Germany: A natural experiment. Sci. Rep. 2020, 10, 21780. [Google Scholar] [CrossRef] [PubMed]
- Constandt, B.; Thibaut, E.; De Bossscher, V.; Scheerder, J.; Ricour, M.; Wilem, A. Exercising in times of lockdown: An analysis of the impact of COVID-19 on levels and patterns of exercise among adults in Belgium. Int. J. Environ. Res. Public Health 2020, 17, 4144. [Google Scholar] [CrossRef] [PubMed]
- Romero-Blanco, C.; Rodríguez-Almagro, J.; Onieva-Zafra, M.D.; Parra-Fernández, M.L.; Prado-Laguna, M.D.C.; Hernández-Martínez, A. Physical activity and sedentary lifestyle in university students: Changes during confinement due to the COVID-19 pandemic. Int. J. Environ. Res. Public Health 2020, 17, 6567. [Google Scholar] [CrossRef]
- Ng, K.; Cosma, A.; Svacina, K.; Boniel-Nissim, M.; Badura, P. Czech adolescents’ remote school and health experiences during the spring 2020 COVID-19 lockdown. Prev. Med. Rep. 2021, 22, 101386. [Google Scholar] [CrossRef]
- Pietrobelli, A.; Pecoraro, L.; Ferruzzi, A.; Heo, M.; Faith, M.; Zoller, T.; Antoniazzi, F.; Piacentini, G.; Fearnbach, S.N.; Heymsfield, S.B. Effects of COVID-19 lockdown on lifestyle behaviors in children with obesity living in Verona, Italy: A longitudinal study. Obesity 2020, 28, 1382–1385. [Google Scholar] [CrossRef] [PubMed]
Variable | Children before the Emergency Declaration (N = 56) | Children after the Emergency Declaration (N = 54) | p1 | Effect Size 2 (r or Cramer’s V) |
---|---|---|---|---|
Age (years), median (range) | 7 (6–7) | 7 (6–7) | 0.131 | −0.1 |
Sex, n (%) | 0.698 | 0.04 | ||
Female | 28 (50.0) | 29 (53.7) | ||
Male | 28 (50.0) | 25 (46.3) | ||
Height (cm), mean (SD) | 118.7 (6.0) | 119.3 (5.7) | 0.560 | 0.1 |
Weight (kg), median (range) | 20.5 (16.1–31.5) | 21.6 (16.2–35.4) | 0.130 | −0.1 |
Body mass index, median (range) | 14.5 (13.0–19.2) | 15.3 (12.2–22.5) | 0.094 | −0.2 |
Number of falls per month, median (range) | 0 (0−8) | 0 (0−30) | <0.001 | −0.4 |
Strengths and Difficulties Questionnaire (points), median (range) | 9 (1–25) | 10 (1–20) | 0.947 | −0.01 |
PedsQL 4.0 (points), median (range) | 93.5 (64.1–100) | 95.7 (63.0–100) | 0.368 | −0.1 |
Physical activity (hour), median (range) | 3.0 (0–10.3) | 4.0 (0–12) | 0.025 | −0.2 |
Number of meals (time), median (range) | 21 (18–27) | 21 (14−21) | 0.399 | −0.1 |
Sports costs (yen), median (range) | 6000 (0–20,000) | 5000 (0–20,000) | 0.614 | −0.1 |
Sleep time per day (hour), median (range) | 9 (8−10) | 9 (7−11) | 0.544 | −0.1 |
Variable | Children before the Emergency Declaration (N = 56) | Children after the Emergency Declaration (N = 54) | p1 | Effect Size 2 (r or Cramer’s V) |
---|---|---|---|---|
Body fat percentage (%) | 10.1 (3.3–23.3) | 12.1 (3.0–34.1) | 0.037 | −0.2 |
Single-leg standing time (s) | 60.3 (2.6−120) | 33.1 (5.3−120) | 0.003 | −0.3 |
Grip strength (kg) | 8.5 (5.8–15.9) | 8.0 (5.4–15.5) | 0.203 | −0.1 |
Gait Deviation Index (points) | 93.7 (7.0) | 95.5 (7.9) | 0.207 | 0.1 |
Variable | β | SE | Wald | Odds Ratio (95% CI) | p |
---|---|---|---|---|---|
Single-leg standing time | −0.016 | 0.006 | 6.16 | 0.985 (0.972−0.997) | 0.013 |
Number of falls per month | 0.641 | 0.268 | 5.732 | 1.899 (1.123−3.210) | 0.017 |
Body fat percentage | 0.105 | 0.045 | 5.379 | 1.111 (1.016−1.215) | 0.020 |
Gait Deviation Index | 0.043 | 0.029 | 2.138 | 1.044 (0.986−1.106) | 0.144 |
Grip strength | −0.042 | 0.122 | 0.116 | 0.959 (0.754−1.219) | 0.733 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ito, T.; Sugiura, H.; Ito, Y.; Noritake, K.; Ochi, N. Effect of the COVID-19 Emergency on Physical Function among School-Aged Children. Int. J. Environ. Res. Public Health 2021, 18, 9620. https://doi.org/10.3390/ijerph18189620
Ito T, Sugiura H, Ito Y, Noritake K, Ochi N. Effect of the COVID-19 Emergency on Physical Function among School-Aged Children. International Journal of Environmental Research and Public Health. 2021; 18(18):9620. https://doi.org/10.3390/ijerph18189620
Chicago/Turabian StyleIto, Tadashi, Hideshi Sugiura, Yuji Ito, Koji Noritake, and Nobuhiko Ochi. 2021. "Effect of the COVID-19 Emergency on Physical Function among School-Aged Children" International Journal of Environmental Research and Public Health 18, no. 18: 9620. https://doi.org/10.3390/ijerph18189620