Psychometric Properties of the Italian Version of the Burnout Assessment Tool (BAT)
Abstract
:1. Introduction
- (a)
- We assessed the factor structure of the core dimensions (BAT-C) and the secondary symptoms (BAT-S) of burnout by using an Exploratory Factor Analysis (EFA);
- (b)
- The reliability of the scales was then evaluated in terms of internal consistency, through the Cronbach’s alpha coefficient;
- (c)
- The factor structure that emerged from the EFA was validated by using Confirmatory Factor Analysis (CFA);
- (d)
- To assess the convergent and discriminant validity (of the BAT vis-à-vis other burnout instruments (i.e., MBI), four alternative MTMM models were compared;
- (e)
- A hierarchical regression was performed to evaluate the predictive and incremental validity of the BAT-C above and beyond the MBI-GS;
- (f)
- The descriptive results obtained on the Italian sample were compared with data obtained across seven nationally representative samples, as reported in De Beer (2020) [48].
2. Materials and Methods
2.1. Translation
2.2. Participants
2.3. Strategy of Analysis
2.3.1. Exploratory Factor Analysis
2.3.2. Internal Consistency
2.3.3. Confirmatory Factor Analysis
2.3.4. Convergent and Discriminant Validity
2.3.5. Predictive and Incremental Validity Analysis
2.3.6. Cross-National Comparison
3. Results
3.1. Exploratory Factor Analysis
3.2. Internal Consistency
3.3. Confirmatory Factor Analysis
3.4. Convergent and Discriminant Validity
3.5. Predictive and Incremental Validity Analysis
3.6. Cross-National Comparison
4. Discussion
4.1. Study Limitations
4.2. Practical Implications
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Mai | Raramente | Qualche Volta | Spesso | Sempre | |
---|---|---|---|---|---|
Esaurimento | |||||
Al lavoro mi sento mentalmente esausto/a | ☐ | ☐ | ☐ | ☐ | ☐ |
Ogni cosa che faccio al lavoro mi richiede un grande sforzo | ☐ | ☐ | ☐ | ☐ | ☐ |
Dopo una giornata di lavoro, per me è difficile recuperare le energie | ☐ | ☐ | ☐ | ☐ | ☐ |
Al lavoro mi sento fisicamente esausto/a | ☐ | ☐ | ☐ | ☐ | ☐ |
La mattina, quando mi alzo, mi mancano le energie per cominciare una nuova giornata di lavoro | ☐ | ☐ | ☐ | ☐ | ☐ |
Vorrei essere più attivo/a sul lavoro, ma per qualche ragione non ci riesco | ☐ | ☐ | ☐ | ☐ | ☐ |
Se faccio uno sforzo sul lavoro, mi stanco più velocemente del consueto | ☐ | ☐ | ☐ | ☐ | ☐ |
Alla fine della mia giornata lavorativa, mi sento mentalmente esausto/a e svuotato/a | ☐ | ☐ | ☐ | ☐ | ☐ |
Distanza mentale | |||||
Ho difficoltà a provare un qualche entusiasmo per il mio lavoro | ☐ | ☐ | ☐ | ☐ | ☐ |
Al lavoro non penso molto a quello che faccio e agisco in modo meccanico | ☐ | ☐ | ☐ | ☐ | ☐ |
Provo una forte avversione per il mio lavoro | ☐ | ☐ | ☐ | ☐ | ☐ |
Mi sento indifferente rispetto al mio lavoro | ☐ | ☐ | ☐ | ☐ | ☐ |
Sono scettico/a rispetto al significato che il mio lavoro ha per gli altri | ☐ | ☐ | ☐ | ☐ | ☐ |
Perdita di controllo cognitivo | |||||
Al lavoro faccio fatica a mantenere l’attenzione | ☐ | ☐ | ☐ | ☐ | ☐ |
Quando lavoro ho difficoltà a pensare con lucidità | ☐ | ☐ | ☐ | ☐ | ☐ |
Sul lavoro sono distratto/a e ho difficoltà a tenere a mente le cose | ☐ | ☐ | ☐ | ☐ | ☐ |
Quando lavoro faccio fatica a concentrarmi | ☐ | ☐ | ☐ | ☐ | ☐ |
Al lavoro faccio degli errori perché penso ad altro | ☐ | ☐ | ☐ | ☐ | ☐ |
Perdita di controllo emotivo | |||||
Al lavoro mi sento incapace di controllare le mie emozioni | ☐ | ☐ | ☐ | ☐ | ☐ |
Sul lavoro ho delle reazioni emotive che non mi appartengono | ☐ | ☐ | ☐ | ☐ | ☐ |
Mentre lavoro divento irritabile se le cose non vanno come vorrei | ☐ | ☐ | ☐ | ☐ | ☐ |
Al lavoro mi capita di arrabbiarmi o sentirmi triste senza sapere perché | ☐ | ☐ | ☐ | ☐ | ☐ |
Al lavoro mi capita di avere delle reazioni esagerate senza volerlo | ☐ | ☐ | ☐ | ☐ | ☐ |
Mai | Raramente | Qualche Volta | Spesso | Sempre | |
---|---|---|---|---|---|
Disturbi psicologici | |||||
Faccio fatica ad addormentarmi o a mantenere il sonno | ☐ | ☐ | ☐ | ☐ | ☐ |
Tendo a preoccuparmi | ☐ | ☐ | ☐ | ☐ | ☐ |
Mi sento teso/a e stressato/a | ☐ | ☐ | ☐ | ☐ | ☐ |
Mi sento ansioso/a e/o soffro di attacchi di panico | ☐ | ☐ | ☐ | ☐ | ☐ |
Il rumore e la folla mi disturbano | ☐ | ☐ | ☐ | ☐ | ☐ |
Disturbi psicosomatici | |||||
Soffro di palpitazioni o di dolori al petto | ☐ | ☐ | ☐ | ☐ | ☐ |
Soffro di disturbi di stomaco e/o disturbi intestinali | ☐ | ☐ | ☐ | ☐ | ☐ |
Soffro di mal di testa | ☐ | ☐ | ☐ | ☐ | ☐ |
Soffro di dolori muscolari, ad esempio al collo, alle spalle o alla schiena | ☐ | ☐ | ☐ | ☐ | ☐ |
Tendo ad ammalarmi facilmente | ☐ | ☐ | ☐ | ☐ | ☐ |
References
- Maslach, C.; Schaufeli, W.B.; Leiter, M.P. Job Burnout. Annu. Rev. Psychol. 2001, 52, 397–422. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schaufeli, W.B.; Leiter, M.P.; Maslach, C. Burnout: 35 Years of Research and Practice. Career Dev. Int. 2009, 14, 204–220. [Google Scholar] [CrossRef] [Green Version]
- Schaufeli, W.; De Witte, H. Outlook Work Engagement in Contrast to Burnout: Real and Redundant! Burn. Res. 2017, 5, 58–60. [Google Scholar] [CrossRef]
- Hadžibajramović, E.; Schaufeli, W.B.; De Witte, H. A Rasch Analysis of the Burnout Assessment Tool. PLoS ONE 2020, 15, e0242241. [Google Scholar] [CrossRef] [PubMed]
- Maslach, C.; Leiter, M.P. The Truth about Burnout; Jossey-Bass: San Francisco, CA, USA, 1997. [Google Scholar]
- Maslach, C.; Jackson, S.E.; Leiter, M.P. Maslach Burnout Inventory Manual, 3rd ed.; Consulting Psychologists Press: Palo Alto, CA, USA, 1996. [Google Scholar]
- Schaufeli, W.B.; Taris, T.W. The Conceptualization and Measurement of Burnout: Common Ground and Worlds Apart. Work Stress 2005, 19, 256–262. [Google Scholar] [CrossRef]
- WHO [World Health Organization]. Burn-out an “Occupational Phenomenon”: International Classification of Diseases. Available online: https://www.who.int/mental_health/evidence/burn-out/en/ (accessed on 1 May 2021).
- May, R.W.; Seibert, G.S.; Sanchez-Gonzalez, M.A.; Fincham, F.D. School Burnout and Heart Rate Variability: Risk of Cardiovascular Disease and Hypertension in Young Adult Females. Stress 2018, 21, 211–216. [Google Scholar] [CrossRef]
- Shi, Y.; Jiang, R.; Zhu, C.; Zhang, M.; Cai, H.; Hu, Z.; Ye, Y.; Liu, Y.; Sun, H.; Ma, Y.; et al. High Job Burnout Predicts Low Heart Rate Variability in The Working Population After a First Episode of Acute Coronary Syndrome. Int. J. Environ. Res. Public Health 2021, 18, 3431. [Google Scholar] [CrossRef] [PubMed]
- Chico-Barba, G.; Jiménez-Limas, K.; Sánchez-Jiménez, B.; Sámano, R.; Rodríguez-Ventura, A.L.; Castillo-Pérez, R.; Tolentino, M. Burnout and Metabolic Syndrome in Female Nurses: An Observational Study. Int. J. Environ. Res. Public Health 2019, 16, 1993. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Amaral, A.P.; Santos, G. Burnout and Musculoskeletal Pain: A Health Promotion Intervention. Stud. Syst. Decis. Control 2019, 202, 239–247. [Google Scholar] [CrossRef]
- Alqahtani, N.; Abdulaziz, A.; Hendi, O.; Mahfouz, M.M. Prevalence of Burnout Syndrome among Students of Health Care Colleges and Its Correlation to Musculoskeletal Disorders in Saudi Arabia. Int. J. Prev. Med. 2020, 11, 38. [Google Scholar] [CrossRef] [PubMed]
- Simbula, S.; Mazzetti, G.; Guglielmi, D. A three-wave study on the reciprocal relationships between emotional dissonance, need for recovery, and exhaustion. Sustainability 2019, 11, 5183. [Google Scholar] [CrossRef] [Green Version]
- Koutsimani, P.; Montgomery, A.; Georganta, K. The Relationship between Burnout, Depression, and Anxiety: A Systematic Review and Meta-Analysis. Front. Psychol. 2019, 10, 284. [Google Scholar] [CrossRef] [Green Version]
- Capone, V.; Joshanloo, M.; Sang-Ah Park, M. Burnout, Depression, Efficacy Beliefs, and Work-Related Variables among School Teachers. Int. J. Educ. Res. 2019, 95, 97–108. [Google Scholar] [CrossRef]
- Hsieh, H.-F.; Liu, Y.; Hsu, H.-T.; Ma, S.-C.; Wang, H.-H.; Ko, C.-H. Relations between Stress and Depressive Symptoms in Psychiatric Nurses: The Mediating Effects of Sleep Quality and Occupational Burnout. Int. J. Environ. Res. Public Health 2021, 18, 7327. [Google Scholar] [CrossRef] [PubMed]
- Guclu, O.A.; Karadag, M.; Akkoyunlu, M.E.; Acican, T.; Sertogullarindan, B.; Kirbas, G.; Sen, H.S.; Lakadamyali, H.; Intepe, Y.S.; Arslan, S.; et al. Association Between Burnout, Anxiety and Insomnia in Healthcare Workers: A Cross-Sectional Study. Psychol. Health Med. 2021, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Dyrbye, L.N.; Shanafelt, T.D.; Johnson, P.O.; Johnson, L.A.; Satele, D.; West, C.P. A Cross-Sectional Study Exploring the Relationship Between Burnout, Absenteeism, And Job Performance Among American Nurses. BMC Nurs. 2019, 18, 57. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Indregard, A.M.R.; Ulleberg, P.; Knardahl, S.; Nielsen, M.B. Emotional Dissonance and Sickness Absence among Employees Working with Customers and Clients: A Moderated Mediation Model Via Exhaustion and Human Resource Primacy. Front. Psychol. 2018, 9, 436–446. [Google Scholar] [CrossRef] [PubMed]
- Consiglio, C.; Borgogni, L.; Alessandri, G.; Schaufeli, W.B. Does Self-Efficacy Matter for Burnout nd Sickness Absenteeism? The Mediating Role of Demands and Resources at the Individual and Team Levels. Work Stress 2013, 27, 22–42. [Google Scholar] [CrossRef] [Green Version]
- Vîrga, D.; Schaufeli, W.B.; Taris, T.W.; Van Beek, I.; Sulea, C. Attachment Styles and Employee Performance: The Mediating Role of Burnout. J. Psychol. 2019, 153, 383–401. [Google Scholar] [CrossRef] [PubMed]
- Kim, W.H.; Ra, Y.A.; Park, J.G.; Kwon, B. Role of Burnout on Job Level, Job Satisfaction, and Task Performance. Leadersh. Organ. Dev. J. 2017, 38, 630–645. [Google Scholar] [CrossRef]
- Wen, B.; Zhou, X.; Hu, Y.; Zhang, X. Role Stress and Turnover Intention of Front-Line Hotel Employees: The Roles of Burnout and Service Climate. Front. Psych. 2020, 11, 36. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chami-Malaeb, R. Relationship of Perceived Supervisor Support, Self-Efficacy and Turnover Intention, the Mediating Role of Burnout. Pers. Rev. 2021. [Google Scholar] [CrossRef]
- Kelly, L.A.; Gee, P.M.; Butler, R.J. Impact of Nurse Burnout on Organizational and Position Turnover. Nurs. Outlook 2021, 69, 96–102. [Google Scholar] [CrossRef] [PubMed]
- Garcia, C.; Abreu, L.; Ramos, J.; Castro, C. Influence of Burnout on Patient Safety: Systematic Review and Meta-Analysis. Medicina 2019, 55, 553. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jun, J.; Ojemeni, M.M.; Kalamani, R.; Tong, J.; Crecelius, M.L. Relationship between Nurse Burnout, Patient and Organizational Outcomes: Systematic Review. Int. J. Nurs. Stud. 2021, 119, 103933. [Google Scholar] [CrossRef]
- Aumayr-Pintar, C.; Cerf, C.; Parent-Thirion, A. Burnout in the Workplace: A Review of Data and Policy Responses in the EU. 2018. Available online: https://www.eurofound.europa.eu/publications/report/2018/burnout-in-theworkplace-a-review-of-data-and-policy-responses-in-the-eu (accessed on 3 May 2021).
- Lastovkova, A.; Carder, M.; Rasmussen, H.M.; Sjobergg, L.; de Groene, G.J.; Sauni, R.; Vevoda, J.; Vevodova, S.; Lasfargues, G.; Svartegren, M.; et al. Burnout Syndrome as an Occupational Disease in the European Union: An Exploratory Study. Ind. Health 2018, 56, 160–165. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maslach, C. Burnout: The Cost of Caring; Prentice-Hall: Englewood Cliffs, NJ, USA, 1982. [Google Scholar]
- Kristensen, T.S.; Borritz, M.; Villadsen, E.; Christensen, K.B. The Copenhagen Burnout Inventory: A New Tool for the Assessment of Burnout. Work Stress 2005, 19, 192–207. [Google Scholar] [CrossRef]
- Demerouti, E.; Bakker, A.B. The Oldenburg Burnout Inventory: A good alternative to measure burnout and engagement. In Handbook of Stress and Burnout in Health Care; Halbesleben, J.R.B., Ed.; Nova Science: New York, NY, USA, 2008; pp. 65–78. [Google Scholar]
- Lundgren-Nilsson, Åsa; Jonsdottir, I.H.; Pallant, J.F.; Ahlborg, G., Jr. Internal Construct Validity of the Shirom-Melamed Burnout Questionnaire (SMBQ). BMC Public Health 2012, 12, 1. [Google Scholar] [CrossRef] [Green Version]
- Boudreau Boudreau, R.A.; Boudreau, W.F.; Mauthe-Kaddoura, A.J. From 57 for 57: A Bibliography of Burnout Citations. In Proceedings of the 17th Conference of the European Association of Work and Organizational Psychology (EAWOP), Oslo, Norway, 20–22 May 2015. [Google Scholar]
- Schaufeli, W.B.; Desart, S.; De Witte, H. Burnout Assessment Tool (BAT)—Development, Validity, and Reliability. Int. J. Environ. Res. Public Health 2020, 17, 9495. [Google Scholar] [CrossRef]
- Van den Broeck, A.; Vander Elst, T.; Baillien, E.; Sercu, M.; Schouteden, M.; De Witte, H.; Godderis, L. Job Demands, Job Resources, Burnout, Work Engagement, and Their Relationships. J. Occup. Environ. Med. 2017, 59, 369–376. [Google Scholar] [CrossRef]
- Salanova, M.; Llorens, S.; Garcia-Renedo, M.; Burriel, R.; Bresó, E.; Schaufeli, W.B. Toward a Four-Dimensional Model of Burnout: A Multigroup Factor-Analytic Study Including Depersonalization and Cynicism. Educ. Psychol. Meas. 2005, 65, 901–991. [Google Scholar] [CrossRef]
- Borgogni, L.; Consiglio, C.; Alessandri, G.; Schaufeli, W.B. “Do Not Throw the Baby Out with the Bath Water!” Interpersonal Strain at Work and Burnout. Eur. J. Work Organ. Psychol. 2012, 21, 875–898. [Google Scholar] [CrossRef] [Green Version]
- Worley, J.A.; Vassar, M.; Wheeler, D.L.; Barnes, L.L.B. Factor Structure of Scores from the Maslach Burnout Inventory: A Review and Meta-Analysis of 45 Exploratory and Confirmatory Factor-Analytic Studies. Educ. Psychol. Meas. 2008, 68, 797–823. [Google Scholar] [CrossRef]
- Galanakis, M.; Moraitou, M.; Garivaldis, F.J.; Stalikas, A. Factorial Structure and Psychometric Properties of the Maslach Burnout Inventory (MBI) in Greek midwives. Eur. J. Psychol. 2009, 5, 52–70. [Google Scholar] [CrossRef]
- De Beer, L.T.; Bianchi, R. Confirmatory Factor Analysis of the Maslach Burnout Inventory: A Bayesian Structural Equation Modeling Approach. Eur. J. Psychol. Assess. 2019, 35, 217–224. [Google Scholar] [CrossRef]
- Aboagye, M.O.; Qin, J.; Qayyum, A.; Antwi, C.O.; Jababu, Y.; Affum-Osei, E. Teacher Burnout in Preschools: A Cross-Cultural Factorial Validity, Measurement Invariance and Latent Mean Comparison of the Maslach Burnout Inventory, Educators Survey (MBI-ES). Child. Youth Serv. Rev. 2018, 94, 186–197. [Google Scholar] [CrossRef]
- Wheeler, D.L.; Vassar, M.; Worley, J.A.; Barnes, L.L.B.A. Reliability Generalization Meta-Analysis of Coefficient Alpha for the Maslach Burnout Inventory. Educ. Psychol. Meas. 2011, 71, 231–244. [Google Scholar] [CrossRef]
- Maslach, C.; Leiter, M.P.; Jackson, S.E. Maslach Burnout Inventory Manual, 4th ed.; Mind Garden, Inc.: Palo Alto, CA, USA, 2017. [Google Scholar]
- Schaufeli, W.B.; De Witte, H.; Desart, S. Manual Burnout Assessment Tool (BAT); KU: Leuven, Belgium, 2019. [Google Scholar]
- Van der Heiden, C.; Hoogduin, C.A.L. Burn-out: Diagnostiek En Behandeling. TBV Tijdschr. Voor Bedrijfs-En Verzek. 2010, 10, 48–53. [Google Scholar] [CrossRef]
- De Beer, L.T.; Schaufeli, W.B.; DeWitte, H.; Hakanen, J.J.; Shimazu, A.; Glaser, J.; Seubert, C.; Bosak, J.; Sinval, J.; Rudnev, M. Measurement Invariance of the Burnout Assessment Tool (BAT) across Seven Cross-National Representative Samples. Int. J. Environ. Res. Public Health 2020, 17, 5604. [Google Scholar] [CrossRef]
- Sakakibara, K.; Shimazu, A.; Toyama, H.; Schaufeli, W.B. Validation of the Japanese Version of the Burnout Assessment Tool. Front. Psychol. 2020, 11, 1819. [Google Scholar] [CrossRef]
- Vazquez, A.C.; dos Santos, A.S.; da Costa, P.V.; de Freitas, C.P.P.; De Witte, H.; Schaufeli, W.B. Trabalho e Bem-Estar: Evidências da Relação entre Burnout e Satisfação de Vida. Avaliaçao Psicol. Interam. J. Psychol. Assess. 2019, 18, 372–381. [Google Scholar] [CrossRef]
- Vinueza-Solórzano, A.M.; Portalanza-Chavarría, C.A.; de Freitas, C.P.P.; Schaufeli, W.B.; De Witte, H.; Hutz, C.S.; Souza Vazquez, A.C. The Ecuadorian Version of the Burnout Assessment Tool (BAT): Adaptation and Validation. Int. J. Environ. Res. Public Health 2021, 18, 7121. [Google Scholar] [CrossRef] [PubMed]
- Brislin, R.W. Translation and content analysis of oral and written material. In Handbook of Cross-Cultural Psychology: Methodology; Triandis, H.C., Berry, J.W., Eds.; Allyn and Bacon: Boston, MA, USA, 1980; pp. 389–444. [Google Scholar]
- Peterson, R.A. A Meta-Analysis of Variance Accounted for and Factor Loadings in Exploratory Factor Analysis. Mark. Lett. 2000, 11, 261–275. [Google Scholar] [CrossRef]
- Hair, J.F.; Anderson, R.E.; Babin, B.J.; Black, W.C. Multivariate Data Analysis: A Global Perspective; Pearson Education: Upper Saddle River, NJ, USA, 2010; p. 7. [Google Scholar]
- De Vaus, D. Surveys in Social Research; Routledge: London, UK, 2013. [Google Scholar] [CrossRef]
- Arbuckle, J.L. Amos 25 User’s Guide; IBM Corp.: Armonk, NY, USA, 2017. [Google Scholar]
- Byrne, B.M. Structural Equation Modeling with AMOS; Routledge Academic: New York, NY, USA, 2009. [Google Scholar]
- Hu, L.; Bentler, P.M. Cutoff Criteria for Fit Indexes in Covariance Structure Analysis: Conventional Criteria Versus New Alternatives. Struct. Equ. Model. Multidiscip. J. 1999, 6, 1–55. [Google Scholar] [CrossRef]
- Widaman, K.F. Hierarchically Nested Covariance Structure Models for Multitrait-Multimethod Data. Appl. Psychol. Meas. 1985, 9, 1–26. [Google Scholar] [CrossRef] [Green Version]
- Schaufeli, W.B.; Salanova, M. Burnout, boredom and engagement in the workplace. In An Introduction to Contemporary Work Psychology; Peeters, M.C., De Jonge, J., Taris, T.W., Eds.; Wiley-Blackwell: Chichester, UK, 2014; pp. 293–320. [Google Scholar]
- Bresó, E.; Salanova, M.; Schaufeli, W.B. In Search of the “Third Dimension” of Burnout: Efficacy or inefficacy? Appl. Psychol. Int. Rev. 2007, 56, 460–478. [Google Scholar] [CrossRef]
- Cheung, G.W.; Rensvold, R.B. Evaluating Goodness-Of-Fit Indexes for Testing Measurement Invariance. Struct. Equ. Model. Multidiscip. J. 2002, 9, 233–255. [Google Scholar] [CrossRef]
- Hutcheson, G.; Sofroniou, N. The Multivariate Social Scientist: Introductory Statistics Using Generalized Linear Models; Sage Publications: Thousand Oaks, CA, USA, 1999. [Google Scholar]
- Schaufeli, W.B.; Bakker, A.B.; Hoogduin, K.; Schaap, C.; Kladler, A. On the Clinical Validity of the Maslach Burnout Inventory and the Burnout Measure. Psychol. Health 2001, 16, 565–582. [Google Scholar] [CrossRef]
Total Sample (n = 738) | |
---|---|
Gender | |
Female | 52.9% |
Male | 47.1% |
Age | |
Mean (SD) | 41.57 (SD = 10.51) |
Work sector | |
Health, social services, law enforcement | 26.2% |
Business services (e.g., consulting or ICT) | 24.4% |
Industry | 7.9% |
Public Administration | 6.9% |
Education sector | 6.4% |
Wholesale or retail trade, repairs | 3.8% |
Construction | 2.2% |
Tourism, hospitality, and catering | 2.2% |
Other | 20.2% |
Work role | |
Technician (e.g., computer technician, nurse) | 31.8% |
White-collar workers (e.g., office clerk, secretary, salesperson) | 30.6% |
Professional (e.g., physician, teacher, lawyer, consultant) | 18.6% |
Manager (e.g., Manager, Supervisor, CEO) | 8.3% |
Blue-collar workers (e.g., cleaners, construction worker) | 5.4% |
Craftsman (e.g., electrician, plumber, blacksmith) | 1.1% |
Other | 4.2% |
Educational level | |
Middle School | 4.5% |
High School | 46.6% |
University degree | 40% |
Post-graduate degree | 8.9% |
Work contract | |
Full time open-ended contract | 57.6% |
Part time open-ended contract | 23% |
Full time fixed term contract | 6.5% |
Part time fixed term contract | 1.8% |
Other | 11.1% |
Job tenure (years) | |
Mean (SD) | 9.65 (SD = 8.50) |
Working hours by contract | |
Mean (SD) | 34.51 (SD = 8.24) |
Effective working hours | |
Mean (SD) | 37.34 (SD = 9.46) |
Items | Factor Loadings | ||||||
---|---|---|---|---|---|---|---|
M | SD | rtot | Exhaustion | Mental Distance | Cognitive Impairment | Emotional Impairment | |
| 2.75 | 0.94 | 0.64 | 0.70 | |||
| 2.52 | 1 | 0.61 | 0.72 | |||
| 2.60 | 1.02 | 0.60 | 0.77 | |||
| 2.39 | 1.03 | 0.65 | 0.73 | |||
| 2.37 | 1.06 | 0.67 | 0.71 | |||
| 2.24 | 1.06 | 0.67 | 0.53 | |||
| 2.12 | 1 | 0.65 | 0.67 | |||
| 2.62 | 1.04 | 0.67 | 0.73 | |||
| 2.14 | 1.05 | 0.61 | 0.63 | |||
| 1.78 | 0.97 | 0.55 | 0.70 | |||
| 1.85 | 1.05 | 0.70 | 0.76 | |||
| 1.78 | 1.02 | 0.63 | 0.81 | |||
| 2.07 | 1.12 | 0.62 | 0.67 | |||
| 2.00 | 0.85 | 0.62 | 0.73 | |||
| 1.80 | 0.80 | 0.65 | 0.75 | |||
| 1.92 | 0.81 | 0.58 | 0.79 | |||
| 1.96 | 0.83 | 0.67 | 0.80 | |||
| 1.94 | 0.81 | 0.57 | 0.67 | |||
| 1.86 | 0.87 | 0.52 | 0.76 | |||
| 1.77 | 0.91 | 0.65 | 0.69 | |||
| 2.13 | 0.96 | 0.48 | 0.76 | |||
| 1.76 | 0.93 | 0.66 | 0.64 | |||
| 1.80 | 0.93 | 0.64 | 0.67 | |||
Eigenvalue | 4.71 | 3.50 | 3.59 | 3.11 | |||
% of variance | 20.49 | 15.21 | 15.60 | 13.54 | |||
Cronbach’s α | 0.90 | 0.87 | 0.89 | 0.85 |
Items | Factor Loadings | ||||
---|---|---|---|---|---|
M | SD | rtot | Psychological Complaints | Psychosomatic Complaints | |
| 2.29 | 1.15 | 0.60 | 0.67 | |
| 2.81 | 1.01 | 0.65 | 0.79 | |
| 2.79 | 1 | 0.71 | 0.79 | |
| 1.81 | 1.01 | 0.66 | 0.73 | |
| 2.27 | 1.09 | 0.51 | 0.62 | |
| 1.61 | 0.92 | 0.61 | 0.50 | |
| 2.16 | 1.13 | 0.60 | 0.66 | |
| 2.24 | 1.02 | 0.55 | 0.69 | |
| 2.72 | 1.13 | 0.59 | 0.68 | |
| 1.68 | 0.86 | 0.49 | 0.75 | |
Eigenvalue | 3.16 | 2.52 | |||
% of variance | 31.62 | 25.24 | |||
Cronbach’s α | 0.82 | 0.78 |
Model | χ2 | P | df | CFI | TLI | SRMR | RMSEA [90%CI] |
---|---|---|---|---|---|---|---|
M1. Unidimensional model | 6465.46 | 0.000 | 860 | 0.72 | 0.71 | 0.07 | 0.09 [0.09–0.10] |
M2. Correlated four-factor model | 3624.17 | 0.000 | 494 | 0.76 | 0.75 | 0.07 | 0.09 [0.09–0.10] |
M3. Correlated six-factor model | 1292.88 | 0.000 | 480 | 0.93 | 0.93 | 0.04 | 0.05 [0.04–0.05] |
M4. Second-order model (6 first-order; 2 s-order) | 1386.37 | 0.000 | 488 | 0.93 | 0.93 | 0.04 | 0.05 [0.04–0.05] |
Δχ2 | Δdf | p | |||||
M2 vs. M1 | 2841.29 | 366 | <0.0001 | ||||
M3 vs. M1 M3 vs. M2 | 5172.58 2331.29 | 380 14 | <0.0001 <0.0001 | ||||
M4 vs. M1 M4 vs. M2 M4 vs. M3 | 5079.09 2331.29 93.49 | 372 6 8 | <0.0001 <0.0001 <0.0001 |
First-Order Factors | |||||
---|---|---|---|---|---|
BAT-C | BAT-S | ||||
First-Order Factor | Item | λ | First-Order Factor | Item | λ |
Exhaustion | 1 | 0.73 *** | Psychological Complaints | 1 | 0.65 *** |
2 | 0.71 *** | 2 | 0.74 *** | ||
3 | 0.73 *** | 3 | 0.83 *** | ||
4 | 0.76 *** | 4 | 0.73 *** | ||
5 | 0.76 *** | 5 | 0.57 *** | ||
6 | 0.69 *** | ||||
7 | 0.74 *** | Psychosomatic Complaints | 1 | 0.66 *** | |
8 | 0.77 *** | 2 | 0.67 *** | ||
3 | 0.63 *** | ||||
Mental Distance | 1 | 0.71 *** | 4 | 0.67 *** | |
2 | 0.66 *** | 5 | 0.57 *** | ||
3 | 0.86 *** | ||||
4 | 0.81 *** | ||||
5 | 0.72 *** | ||||
Cognitive Impairment | 1 | 0.78 *** | |||
2 | 0.82 *** | ||||
3 | 0.78 *** | ||||
4 | 0.87 *** | ||||
5 | 0.69 *** | ||||
Emotional Impairment | 1 | 0.66 *** | |||
2 | 0.81 *** | ||||
3 | 0.62 *** | ||||
4 | 0.79 *** | ||||
5 | 0.79 *** | ||||
Second-order factors | |||||
BAT-C | γ | BAT-S | γ | ||
Exhaustion | 0.88 *** | Psychological Complaints | 0.97 *** | ||
Mental Distance | 0.76 *** | Psychosomatic Complaints | 0.86 *** | ||
Cognitive Impairment | 0.75 *** | ||||
Emotional Impairment | 0.82 *** | ||||
Correlation between second-order factors | |||||
BAT-C ↔ BAT-S | 0.89 *** |
Model | χ2 | P | df | CFI | TLI | SRMR | RMSEA [90%CI] |
---|---|---|---|---|---|---|---|
M11. CT-CM model | 1251.50 | 0.000 | 455 | 0.95 | 0.94 | 0.03 | 0.04 [0.04–0.05] |
M12. NT-CM model | 4463.08 | 0.000 | 494 | 0.76 | 0.74 | 0.07 | 0.10 [0.10–0.10] |
M13. PCT-CM model | 1656.37 | 0.000 | 461 | 0.92 | 0.91 | 0.11 | 0.05 [0.05–0.06] |
M14. CT-PCM model | 1306.42 | 0.000 | 456 | 0.94 | 0.94 | 0.08 | 0.05 [0.04–0.06] |
Δχ2 | p | Δdf | |||||
M12 vs. M11 | 3211.58 | <0.0001 | 39 | ||||
M13 vs. M11 | 404.87 | <0.0001 | 6 | ||||
M14 vs. M11 | 54.92 | <0.0001 | 1 |
R2 | F | β | p | ΔR2 | |
---|---|---|---|---|---|
Step 1: Covariate 1. Sex 2. Age | 0.09 | 37.89 | −0.31 0.05 | 0.000 0.170 | 0.09 |
MBI-GS and BAT-C | |||||
Step 2: MBI-GS | 0.50 | 248.00 | 0.65 | 0.000 | 0.41 |
Step 3: BAT-C | 0.58 | 253.03 | 0.53 | 0.000 | 0.08 |
Alternative solution: BAT-C and MBI-GS | |||||
Step 3: BAT-C | 0.57 | 803.38 | 0.71 | 0.000 | 0.48 |
Step 3: MBI-GS | 0.58 | 22.23 | 0.22 | 0.000 | 0.01 |
Burnout Core Symptoms (BAT-C) | ||||||
---|---|---|---|---|---|---|
Mean | SD | Median | 25th Percentile | 50th Percentile | 75th Percentile | |
Italy (n = 738) | 2.09 | 0.64 | 2.04 | 1.61 | 2.04 | 2.48 |
The Netherlands (n = 1500) | 2.05 | 0.63 | 2 | 1.59 | 2 | 2.38 |
Belgium (Flanders) (n = 1500) | 2.19 | 0.83 | 2.05 | 1.53 | 2.05 | 2.80 |
Germany (n = 1073) | 2.08 | 0.70 | 2 | 1.55 | 2 | 2.49 |
Austria (n = 1059) | 2.05 | 0.72 | 1.93 | 1.55 | 1.93 | 2.43 |
Japan (n = 1032) | 2.51 | 0.80 | 2.46 | 1.98 | 2.46 | 3 |
Finland (n = 2299) | 2.04 | 0.54 | 2 | 1.67 | 2 | 2.35 |
Ireland (n = 431) | 2.41 | 0.64 | 2.01 | 1.60 | 2.01 | 2.51 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Consiglio, C.; Mazzetti, G.; Schaufeli, W.B. Psychometric Properties of the Italian Version of the Burnout Assessment Tool (BAT). Int. J. Environ. Res. Public Health 2021, 18, 9469. https://doi.org/10.3390/ijerph18189469
Consiglio C, Mazzetti G, Schaufeli WB. Psychometric Properties of the Italian Version of the Burnout Assessment Tool (BAT). International Journal of Environmental Research and Public Health. 2021; 18(18):9469. https://doi.org/10.3390/ijerph18189469
Chicago/Turabian StyleConsiglio, Chiara, Greta Mazzetti, and Wilmar B. Schaufeli. 2021. "Psychometric Properties of the Italian Version of the Burnout Assessment Tool (BAT)" International Journal of Environmental Research and Public Health 18, no. 18: 9469. https://doi.org/10.3390/ijerph18189469
APA StyleConsiglio, C., Mazzetti, G., & Schaufeli, W. B. (2021). Psychometric Properties of the Italian Version of the Burnout Assessment Tool (BAT). International Journal of Environmental Research and Public Health, 18(18), 9469. https://doi.org/10.3390/ijerph18189469