COVID-19 Lockdown Restrictions and Online Media Consumption in Germany
Abstract
:1. Introduction
2. Materials and Methods
2.1. Recruitment of Participants
2.2. Assessment Instrument
2.3. Data Analyses
3. Results
3.1. Descriptive Statistics
3.2. The Consumption of Specific Online Media Applications
3.3. Differences in Increased Usage of Specific Applications between Age Categories and Gender and Its Interaction
3.4. Effects of Pandemic-Related Stress on the Changes in Usage of Specific Online Applications
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Amodio, E.; Vitale, F.; Cimino, L.; Casuccio, A.; Tramuto, F. Outbreak of novel coronavirus (SARS-Cov-2): First evidences from international scientific literature and pending questions. Healthcare 2020, 8, 51. [Google Scholar] [CrossRef] [Green Version]
- Johns Hopkins University. COVID-19 Dashboard by the Center for Systems Science and Engineering (CSSE) at Johns Hopkins University (JHU). 2020. Available online: https://covid19.who.int/?gclid=EAIaIQobChMI8prt_Pne7QIVj6ztCh3HsAMVEAAYASAAEgKD_vD_BwE (accessed on 29 July 2020).
- Brooks, S.K.; Webster, R.K.; Smith, L.E.; Woodland, L.; Wessely, S.; Greenberg, N.; Rubin, G.J. The psychological impact of quarantine and how to reduce it: Rapid review of the evidence. Lancet 2020, 395, 912–920. [Google Scholar] [CrossRef] [Green Version]
- Torales, J.; O’Higgins, M.; Castaldelli-Maia, J.M.; Ventriglio, A. The outbreak of COVID-19 coronavirus and its impact on global mental health. Int. J. Soc. Psychiatry 2020, 66, 317–320. [Google Scholar] [CrossRef] [Green Version]
- Brand, M.; Rumpf, H.J.; King, D.L.; Potenza, M.N.; Wegmann, E. Clarifying terminologies in research on gaming disorder and other addictive behaviors: Distinctions between core symptoms and underlying psychological processes. Curr. Opin. Psychol. 2020. [Google Scholar] [CrossRef]
- Dalvi-Esfahani, M.; Niknafs, A.; Kuss, D.J.; Nilashi, M.; Afrough, S. Social media addiction: Applying the DEMATEL approach. Telemat. Inform. 2019, 43, 101250. [Google Scholar] [CrossRef]
- Wegmann, E.; Brand, M. A narrative overview about psychosocial characteristics as risk factors of a problematic social networks use. Curr. Addict. Rep. 2019, 6, 402–409. [Google Scholar] [CrossRef] [Green Version]
- Duffy, A.; Dawson, D.L.; Das Nair, R. Pornography addiction in adults: A systematic review of definitions and reported impact. J. Sex. Med. 2016, 13, 760–777. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stark, R.; Klucken, T. Neuroscientific Approaches to (Online) Pornography Addiction, in Internet Addiction; Springer: BerlinHeidelberg, Germany, 2017; pp. 109–124. [Google Scholar]
- Brand, M.; Wegmann, E.; Stark, R.; Müller, A.; Wölfling, K.; Robbins, T.W.; Potenza, M.N. The Interaction of Person-Affect-Cognition-Execution (I-PACE) model for addictive behaviors: Update, generalization to addictive behaviors beyond Internet-use disorders, and specification of the process character of addictive behaviors. Neurosci. Biobehav. Rev. 2019, 104, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Brand, M.; Young, K.S.; Laier, C.; Wölfling, K.; Potenza, M.N. Integrating psychological and neurobiological considerations regarding the development and maintenance of specific Internet-use disorders: An Interaction of Person-Affect-Cognition-Execution (I-PACE) model. Neurosci. Biobehav. Rev. 2016, 71, 252–266. [Google Scholar] [CrossRef] [Green Version]
- Ioannidis, K.; Treder, M.S.; Chamberlain, S.R.; Kiraly, F.; Redden, S.A.; Stein, D.J.; Lochner, C.; Grant, J.E. Problematic internet use as an age-related multifaceted problem: Evidence from a two-site survey. Addict. Behav. 2018, 81, 157–166. [Google Scholar] [CrossRef]
- Cheng, S.S.; Chang, S.-L.; Chen, C.-Y. Problematic use of live video streaming services: Impact of personality traits, psychological factors, and motivations. In Proceedings of the 2019 8th International Conference on Software and Computer Applications, Penang, Malaysia, 19–21 February 2019. [Google Scholar]
- Camart, N.; Rafikazebdi, C.B. Between pleasure and Risk: The psychology of TV series watching-an empirical study with 400 participants. In Combining Aesthetic and Psychological Approaches to TV Series Addiction; Camart, N., Lefait, S., Paquet-Deyris, A.M., Romo, L., Eds.; Cambridge Scholars Publishing: Newcastle upon Tyne, UK, 2018; pp. 36–54. [Google Scholar]
- Exelmans, L.; Van den Bulck, J. Binge viewing, sleep, and the role of pre-sleep arousal. J. Clin. Sleep Med. 2017, 13, 1001–1008. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Steins-Loeber, S.; Reiter, T.; Averbeck, H.; Harbarth, L.; Brand, M. Binge-Watching Behaviour: The Role of Impulsivity and Depressive Symptoms. Eur. Addict. Res. 2020, 26, 141–150. [Google Scholar] [CrossRef] [PubMed]
- Riddle, K.; Peebles, A.; Davis, C.; Xu, F.; Schroeder, E. The addictive potential of television binge watching: Comparing intentional and unintentional binges. Psychol. Pop. Media Cult. 2018, 7, 589. [Google Scholar] [CrossRef]
- Abdel-Azim, A.; Ahmed, M. New era of TVwatching behavior: Binge watching and its psychological effects. Media Watch. 2017, 8, 192–207. [Google Scholar]
- Tukachinsky, R.; Eyal, K. The psychology of marathon television viewing: Antecedents and viewer involvement. Mass Commun. Soc. 2018, 21, 275–295. [Google Scholar] [CrossRef] [Green Version]
- Fernández-Villa, T.; Ojeda, J.A.; Gómez, A.A.; Carral, J.; Cancela, M.; Delgado-Rodríguez, M.; Garcia-Martin, M.; Jiménez-Mejías, E.; Llorca, J.; Molina, A.J.; et al. Problematic Internet Use in University Students: Associated factors and differences of gender. Adicciones 2015, 27, 265–275. [Google Scholar] [CrossRef]
- Mihara, S.; Higuchi, S. Cross-sectional and longitudinal epidemiological studies of Internet gaming disorder: A systematic review of the literature. Psychiatry Clin. Neurosci. 2017, 71, 425–444. [Google Scholar] [CrossRef] [Green Version]
- Sun, Y.; Bao, Y.; Meng, S.; Sun, Y.; Schumann, G.; Kosten, T.; Strang, J.; Lu, L.; Shi, J. Brief Report: Increased Addictive Internet and Substance Use Behavior During the COVID-19 Pandemic in China. Am. J. Addict. 2020, 29, 268–270. [Google Scholar] [CrossRef]
- Weber, M.; Aufenanger, S.; Dreier, M.; Quiring, O.; Reinecke, L.; Wölfling, K.; Mueller, K.W.; Beutel, M.E. Gender Differences in Escapist Uses of Sexually Explicit Internet Material: Results from a German Probability Sample. Sex. Cult. 2018, 22, 1171–1188. [Google Scholar] [CrossRef]
- Georgiadou, E.; Hillemacher, T.; Müller, A.; Koopmann, A.; Leménager, T.; Kiefer, F. Alkohol und Rauchen: Die COVID-19-Pandemie als idealer Nährboden für Süchte. Dtsch Ärztebl. 2020, 117, 1060–1062. [Google Scholar]
- Nuyens, F.M.; Kuss, D.J.; Lopez-Fernandez, O.; Griffiths, M.D. The Potential Interaction Between Time Perception and Gaming: A Narrative Review. Int. J. Ment. Health Addict. 2020, 18, 1226–1246. [Google Scholar] [CrossRef] [Green Version]
- Sniewski, L.; Farvid, P. Hidden in shame: Heterosexual men’s experiences of self-perceived problematic pornography use. Psychol. Men Masc. 2020, 21, 201–212. [Google Scholar] [CrossRef]
- Leménager, T.; Hoffmann, S.; Dieter, J.; Reinhard, I.; Mann, K.; Kiefer, F. The links between healthy, problematic, and addicted Internet use regarding comorbidities and self-concept-related characteristics. J. Behav. Addict. 2018, 7, 31–43. [Google Scholar] [CrossRef] [PubMed]
- Balhara, Y.P.S.; Kattula, D.; Singh, S.; Chukkali, S.; Bhargava, R. Impact of lockdown following COVID-19 on the gaming behavior of college students. Indian J. Public Health 2020, 64, S172–S176. [Google Scholar] [CrossRef]
- Hagström, D.; Kaldo, V. Escapism among players of MMORPGs--conceptual clarification, its relation to mental health factors, and development of a new measure. Cyberpsychol. Behav. Soc. Netw. 2014, 17, 19–25. [Google Scholar] [CrossRef]
- Kırcaburun, K.; Griffiths, M.D. Problematic Instagram Use: The Role of Perceived Feeling of Presence and Escapism. Int. J. Ment. Health Addict. 2019, 17, 909–921. [Google Scholar] [CrossRef] [Green Version]
Variables | n = 3245 | |
---|---|---|
n | % | |
Age | ||
18–24 years old | 394 | 12.1 |
25–34 years old | 880 | 27.1 |
35–54 years old | 1317 | 40.6 |
>55 years old | 654 | 20.1 |
Gender | ||
Female | 2074 | 63.9 |
Male | 1162 | 35.8 |
Diverse | 9 | 0.3 |
Living situation | ||
Alone | 794 | 24.5 |
With partner | 1118 | 34.5 |
With children | 135 | 4.2 |
With partner and children | 703 | 21.7 |
With parents | 211 | 6.5 |
Other forms | 284 | 8.8 |
School years | ||
<11 years | 1010 | 31.4 |
11< x ≤ 13 years | 755 | 23.5 |
>13 years | 1452 | 45.1 |
Working in a system-relevant job | ||
Yes | 1325 | 41.9 |
No | 1839 | 58.1 |
Employment before the lockdown | ||
Full-time | 1706 | 52.7 |
Part-time | 741 | 22.9 |
School/university/in training | 365 | 11.3 |
Pension | 238 | 7.3 |
Jobless | 40 | 1.2 |
Housewife/-man | 66 | 2 |
Other | 84 | 2.6 |
Changes in employment during the lockdown | ||
Yes | 1309 | 45.6 |
No | 1560 | 54.4 |
Consistently High Usage (Often/Very Often before and during the Lockdown) | Consistently Low Usage (Never/Rarely before and during the Lockdown) | Increased Usage (Never/Rarely before and Often/Very Often during the Lockdown) | Decreased Usage (Often/Very Often before and Never/Rarely during the Lockdown) | |
---|---|---|---|---|
Gaming | 15.7 | 73.2 | 9.2 | 1.9 |
Erotic | 7.8 | 86.7 | 4.1 | 1.4 |
Social media | 64.4 | 25.0 | 9.3 | 1.4 |
Information research | 70.5 | 13.0 | 13.7 | 2.8 |
Streaming | 50.8 | 31.5 | 15.9 | 1.8 |
Application | Mdiff | SD | SE Mean | t (3244) | p | d |
---|---|---|---|---|---|---|
Online games | 0.11 | 0.51 | 0.01 | 12.30 | <0.001 | 0.22 |
Online erotic services | 0.03 | 0.41 | 0.01 | 4.66 | <0.001 | 0.08 |
Social media | 0.27 | 0.57 | 0.01 | 27.06 | <0.001 | 0.47 |
Online information research | 0.32 | 0.65 | 0.01 | 27.77 | <0.001 | 0.48 |
Video/streaming services | 0.33 | 0.67 | 0.01 | 28.27 | <0.001 | 0.49 |
Age Group | Gender | |||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
18–24 | 25–34 | 35–54 | >55 | F (3, 3228) | p | η2 | Male | Female | F (1, 3228) | p | η2 | |||||||
M | SD | M | SD | M | SD | M | SD | M | SD | M | SD | |||||||
Gaming | 0.31 a | 0.69 | 0.15 b | 0.55 | 0.068 c | 0.46 | 0.03 c | 0.32 | 33.00 | <0.001 | 0.032 | 0.14 | 0.55 | 0.10 | 0.48 | 4.98 | 0.026 | 0.004 |
Erotic | 0.15 a | 0.56 | 0.02 b | 0.42 | 0.02 b | 0.37 | 0.02 b | 0.31 | 12.02 | <0.001 | 0.012 | 0.07 | 0.494 | 0.01 | 0.335 | 17.55 | <0.001 | 0.005 |
Social media | 0.33 a,b | 0.62 | 0.35 a | 0.57 | 0.26 b | 0.58 | 0.16 c | 0.49 | 15.99 | <0.001 | 0.013 | 0.21 | 0.53 | 0.31 | 0.59 | 18.92 | <0.001 | 0.003 |
Information research | 0.30 a,b | 0.66 | 0.37 a | 0.68 | 0.34 a | 0.65 | 0.23 b | 0.60 | 4.78 | 0.003 | 0.004 | 0.19 | 0.59 | 0.39 | 0.67 | 70.00 | <0.001 | 0.014 |
Streaming | 0.42 a | 0.73 | 0.37 a | 0.65 | 0.33 a | 0.68 | 0.21 b | 0.59 | 10.25 | <0.001 | 0.009 | 0.28 | 0.59 | 0.36 | 0. 70 | 10.24 | 0.001 | 0.003 |
B | SE | Beta | t (1, 3216) | p-Value | R2 | |
---|---|---|---|---|---|---|
Gaming | 0.011 | 0.003 | 0.073 | 4.153 | <0.001 | 0.005 |
Erotic | 0.012 | 0.002 | 0.094 | 5.358 | <0.001 | 0.009 |
Social media | 0.030 | 0.003 | 0.175 | 10.092 | <0.001 | 0.031 |
Information research | 0.035 | 0.003 | 0.175 | 10.072 | <0.001 | 0.031 |
Streaming | 0.036 | 0.003 | 0.181 | 10.410 | <0.001 | 0.033 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lemenager, T.; Neissner, M.; Koopmann, A.; Reinhard, I.; Georgiadou, E.; Müller, A.; Kiefer, F.; Hillemacher, T. COVID-19 Lockdown Restrictions and Online Media Consumption in Germany. Int. J. Environ. Res. Public Health 2021, 18, 14. https://doi.org/10.3390/ijerph18010014
Lemenager T, Neissner M, Koopmann A, Reinhard I, Georgiadou E, Müller A, Kiefer F, Hillemacher T. COVID-19 Lockdown Restrictions and Online Media Consumption in Germany. International Journal of Environmental Research and Public Health. 2021; 18(1):14. https://doi.org/10.3390/ijerph18010014
Chicago/Turabian StyleLemenager, Tagrid, Miriam Neissner, Anne Koopmann, Iris Reinhard, Ekaterini Georgiadou, Astrid Müller, Falk Kiefer, and Thomas Hillemacher. 2021. "COVID-19 Lockdown Restrictions and Online Media Consumption in Germany" International Journal of Environmental Research and Public Health 18, no. 1: 14. https://doi.org/10.3390/ijerph18010014
APA StyleLemenager, T., Neissner, M., Koopmann, A., Reinhard, I., Georgiadou, E., Müller, A., Kiefer, F., & Hillemacher, T. (2021). COVID-19 Lockdown Restrictions and Online Media Consumption in Germany. International Journal of Environmental Research and Public Health, 18(1), 14. https://doi.org/10.3390/ijerph18010014