1. Introduction
Residents of aged care services often live in close proximity to one another, have comorbid conditions, and have unavoidable contact with health care workers. These conditions are conducive to rapid infection transmission and increase the risk of morbidity and mortality from infectious diseases [
1]. Infections are one of the leading causes of hospitalization from residential aged care services (RACS) [
1,
2,
3,
4,
5]. RACS are synonymous with “nursing homes” and “long-term care facilities” and provide supported accommodation for people with care needs that can no longer be met in their own homes [
4,
6]. Australian and European studies have found that up to 25% of all hospitalizations from RACS are for infection [
3,
4], most commonly for respiratory, urinary tract, gastrointestinal, and skin infections [
2,
5,
7,
8]. One study in the United States (US) found that potentially preventable hospitalizations accounted for 23% (USD 223.8 million) of the total cost of hospitalizations from RACS in 2004 [
9]. Heterogeneity in RACS settings and different definitions of “preventable” means that the proportion of hospitalizations deemed potentially preventable varies [
2]. However, previous research suggests that 13%–67% of infection-related hospitalizations are potentially preventable [
2,
5,
10], and therefore preventing unnecessary hospitalizations is a priority for RACS providers.
Broad strategies for preventing infection-related hospitalization may aim to prevent an infection occurring (e.g., vaccinations) or to better manage an infection in the RACS to avoid hospitalization (e.g., early detection and administering appropriate antimicrobials). Prevention of infection in RACS is important as there is increasing concern regarding antimicrobial resistance [
11]. Antimicrobial resistance is associated with increased hospital costs and length of stay and death [
12]. Antimicrobial stewardship, outbreak control and initiatives to prevent urinary tract infections (UTIs) have strengthened in the US RACS from 2013 to 2018 [
13]. A recent systematic review found high-quality evidence to suggest that vaccinating residents against influenza reduces hospitalizations from RACS [
14]. Strategies to prevent infections include general infection control procedures, such as promoting hand hygiene [
8,
15]. Other strategies include ongoing staff education in infection control [
8], effective communication between staff and with external healthcare providers [
8], environmental cleaning, and use of personal protective equipment such as gloves and gowns [
16]. These are the same key principles of infection prevention and control outlined by the Australian Government for RACS providers [
17]. Hospitalizations for infectious diseases may be reduced if advance care directives are put in place on admission to RACS and reviewed when a resident’s condition changes and/or deterioration in resident condition suggestive of infection is identified earlier [
5]. Hospitalizations may also be reduced with effective communication among staff, and/or the management of infection at the RACS with the resources available, or with new models of care that facilitate provision of medical services that are not routinely available in Australian RACS [
2,
10,
18].
Several strategies have been developed and trialed to prevent specific types of infection in RACS [
16], although evidence regarding effectiveness of these strategies has been mixed [
19]. These include protocols to reduce the number of catheter-associated UTIs [
20], clinical care standards on infection [
21], toolkits and protocols for preventing and managing gastroenteritis outbreaks [
22], and protocols for effective monitoring and care of wounds including diabetic ulcers, pressure injuries, surgical wounds, and other injuries [
16]. Adequate oral care for residents [
23], identification of dysphagia and aspiration risk protocols [
24], and pneumococcal [
25] and influenza vaccination among residents [
14,
25] and RACS staff [
26] have been recommended for prevention of respiratory infections.
A root cause analysis (RCA) is a process undertaken in healthcare settings to understand the underlying factors that led to a specific event of interest and develop strategies to help avoid similar occurrences in the future [
27,
28]. Previous research from the US has shown that an aggregate RCA process, which investigates a group of similar events, can be used to identify and develop strategies to prevent hospitalizations from skilled nursing facilities [
18]. However, this strategy has yet to be applied in an Australian setting in the investigation of infection-related hospitalizations specifically.
In Australia, the formal, subsidized interdisciplinary antimicrobial stewardship programs that exist within the hospital setting are not routinely available in Australian RACS. However, new national Aged Care Quality Standards that apply from July 2019 outline the need for RACS provider organizations to implement antimicrobial stewardship policies and activities [
29]. One quarter of all hospitalizations from South Australian RACS are for infections [
4]. An improved understanding of strategies that could be applied to reduce infection risk and hospital transfers locally could assist stakeholders to enhance resident quality of care. The objective of this study was to examine root causes of infection-related hospitalizations from RACS and identify strategies to limit infections and avoid unnecessary hospitalizations among residents of aged care services.
3. Results
Among the infection-related hospitalizations reviewed in this study, the median age for residents hospitalized for infection was 86 years (interquartile range 82–92) and 65.3% were female (
Table 2). Heart failure (38.8%), chronic obstructive pulmonary disorders (COPD) (34.7%), and diabetes (32.7%) were the most common medical conditions among residents hospitalized for infection. Among residents hospitalized with infection, 12.2% had an indwelling urinary catheter and 20% were taking medications in the month prior to hospitalization that may increase infection risk.
In total, 59.2% of infection-related hospitalizations were for respiratory infections, followed by urinary (28.6%), and skin infections (10.2%) (
Table 3). Urinalysis or urinary dipstick testing was undertaken prior to 26.5% of hospital transfers for infection and 17% of residents had blood tests. At the time the infection was suspected and prior to hospital transfer, vital signs were monitored in 81.6% of residents and medications that may increase infection risk were charted in the previous fortnight in 20% of residents. Just over one-third of residents (37.8%) received antimicrobial therapy prior hospital transfer. In four out of five cases (81.6%), the resident’s usual GP, a GP from same practice, or a locum GP had evaluated the resident prior to hospital transfer. Almost three-quarters of hospital transfers for infection occurred on a weekday.
Figure 1 shows the time and day of week when each resident was transferred to hospital.
Table 4 lists the factors contributing to infection-related hospitalizations identified in the aggregate RCA. Factors identified include administration of medications that increase the risk of infection. Possible suboptimal selection of empirical antimicrobial therapy and access to medical services including intravenous access, radiology, and pathology were also identified as potential contributors to infection-related hospitalizations.
Table 4 also outlines potential strategies to mitigate risk of infection-related hospitalizations as identified by the expert panel. These include strategies such as targeted bundles of care, medication review, antimicrobial stewardship, earlier identification of infection, and models of care that facilitate timely access to medical services.
4. Discussion
This was the first Australian aggregate RCA to investigate hospitalizations for infectious diseases from RACS. Factors identified that potentially contributed to infection-related hospitalizations include the use of medications that may increase the risk of infection, selection of empirical antimicrobial therapy, and timely access to subsidized medical, radiology, and pathology services.
Medications that may increase the risk of infection were administered to one in five residents who were hospitalized for infection. It may not be possible to avoid administration of some of these medications, and therefore, prevention and careful monitoring for infection, and early intervention when an infection is present in these “higher risk” residents is important. Potential strategies suggested by the expert panel included medication reviews, implementation of screening tools to identify residents at high risk of infection, embedding flags and decision support tools for high-risk medication use, and education/support for staff.
Respiratory infections and UTIs were identified as the two most common reasons for hospitalization due to infection in our RCA. This is consistent with other studies in the RACS setting [
2,
5,
7,
8]. Prevention of respiratory tract infections, in particular pneumonia, is a priority among RACS providers due to associated high rates of morbidity and mortality including hospitalization [
43,
44]. Prevention strategies include influenza and pneumococcal vaccinations [
25]. An infection quality indicator program that includes four indicators pertaining to resident and staff vaccination was recently implemented in public-sector RACS in Victoria, Australia [
45]. A recent Cochrane review noted that further research is required to determine whether professional oral care reduces the incidence of pneumonia in comparison to usual oral care [
44]. Similarly, prevention of UTIs is important to minimize hospital transfer. A recent systematic review provided a comprehensive list of interventions for prevention of UTIs among residents with and without a urinary catheter [
20]. In the present study, only two of the six hospitalizations where an indwelling catheter was present were for UTIs. This may be because the organization involved in this project has implemented a range of strategies to manage residents with urinary catheters including organizational protocols, incontinence nurse reviews, staff training programs, and skills assessments.
An Australian RACS study found that one-third of residents were colonized with at least one antimicrobial-resistant pathogen, including either methicillin-resistant
Staphylococcus aureus, vancomycin-resistant enterococci, or multidrug-resistant Gram-negative bacilli [
12]. The prevalence of multidrug-resistant organisms (MDROs) in RACS is increasing worldwide, with evidence suggesting that some MDROs are more prevalent in RACSs than in acute hospitalized patients [
46,
47]. A German study reported an average annual cost of €50,306 (USD
$56,349) per resident due to antimicrobial-resistant pathogens [
48]. Strategies for preventing antimicrobial resistance include monitoring antimicrobial use with a focus on appropriateness [
8,
49], hand hygiene [
13,
49], and avoiding unnecessary hospitalization [
49]. Infection quality indicators to monitor for three significant organisms (methicillin-resistant
Staphylococcus aureus and vancomycin-resistant
Enterococcus and
Clostridium difficile) have recently been implemented in Victorian public-sector RACS [
45].
Selection of suboptimal empirical antimicrobial therapy was identified as a potential factor contributing to infection-related hospitalization. Inappropriate antimicrobial use increases the risk of treatment failure, drug interactions, adverse events, and treatment-related problems such as
Clostridium difficile infection and contributes to antimicrobial resistance [
50]. One of the potential strategies suggested by the expert panel was to optimize antimicrobial use by implementing an interdisciplinary antimicrobial stewardship program. Australian antimicrobial stewardship programs have predominantly focused on the hospital setting, although new Aged Care Quality Standards that apply from July 2019 outline the need for RACS to show evidence of policies and activities to minimize infection-related risks [
29]. Since November 2017, multidisciplinary antimicrobial stewardship programs are mandated in all RACS in the US [
51]. These programs were introduced to minimize inappropriate antimicrobial use and antimicrobial resistance. An Australian national survey [
52] showed that 55.2% of the antimicrobial prescriptions were for residents with no signs and/or symptoms of infection in the week prior to the start date and, of these, only 18.4% met the internationally recognized McGeer et al. [
53] infection definitions. Peron et al. found that in the US, 43% of all days of antimicrobial therapy in RACS were unnecessary based on guideline-recommendations [
54]. Increased awareness and access to evidence-based resources and guidelines for the management of common infections for health professionals at the RACS was identified by the expert panel as another potential strategy to mitigate risk of hospitalizations due to suboptimal antimicrobial choice. This includes increased on-site and electronic availability to infectious diseases clinical practice guidelines for GPs, locums, other prescribers, and health professionals.
Necessary equipment, appropriately trained staff, and access to external healthcare provider support are required to treat infection within the RACS. These were identified by the expert panel as factors that may contribute to infection-related hospitalizations. Australian RACS provide nursing support rather than acute medical services. Therefore, there is limited capacity for RACS nursing staff to establish intravenous access and administer parenteral antimicrobials [
6]. Increasing access to “hospital in the home” or outpatient antimicrobial therapy (OPAT) services to support parenteral antimicrobial administration in RACSs would likely improve resident satisfaction and comfort, minimize length of hospital stay, or avoid the need for hospitalization entirely. Two studies in Australia showed that a “hospital in the home” program could be effective in reducing hospital admissions from RACS residents [
55,
56]. As part of the RCA, data on the day and time of hospital transfer were recorded because there may be different access to staff and medical services at different times of the day. The availability of staff, equipment, clinical governance, and external clinical support, particularly after hours, have been identified in previous research as barriers to treatment within RACSs [
2,
18]. This indicates an opportunity that exists to reduce hospital transfers from RACSs by ensuring equipment and expertise are available. One potential solution is presented in a recent evaluation of a “Geriatric Flying Squad” (GFS) model [
57]. The team of healthcare providers (the GFS) included a geriatrician, nurse practitioners/nurse practitioner candidates, and clinical nurse consultant who provided a 7-day service. This model involves RACSs referring acutely deteriorating residents to the GP or directly to the GFS if the GP is not contactable. The GFS visit the RACS and provide additional diagnostic and management support not available within the facility. The evaluation indicated that the GFS were able to manage 90.3% of cases within the facility, preventing 578 hospitalizations from RACSs over 18 months. Similarly, a collaborative approach, led by an advanced practice nurse with aged care skills, found that residents receiving this intervention were 41% less likely to be admitted to hospital [
58]. Another potential solution may be to better equip primary care practitioners to better manage residents to minimize hospital transfer. This may include providing professional support and education for RACS staff on quality indicators, functional decline, and hospital transfers of residents [
59]. Rolland et al. found that this intervention had a significant positive effect on the prevalence of assessment of pressure injury risk, depression, pain, and prevalence of hospital transfers [
59].
Another factor identified as potentially contributing to hospitalization with infectious diseases was that the resident and/or family member’s wishes regarding hospital transfers may be unknown. Additionally, some advanced care directives may be difficult to interpret and may lack specific information about specific treatments or hospitalizations. In Canada, 21.7% (
n = 80,413) of residents had “do-not-hospitalize” directives documented between 2009–2010 and 2011–2012, and of these, 7.2% were hospitalized [
60]. Among residents who were hospitalized and had a do-not-hospitalize directive, almost half (46.3%) of the hospitalizations were deemed potentially preventable [
60]. A potential strategy suggested by the expert panel to mitigate the risk of hospitalization was employing nurse practitioners or training advance care directive “champions” in RACS. This could assist with documentation and interpretation of advanced care directives. A standardized approach to documentation of advanced care directives and specific examples may be important in preventing hospitalizations for infection.
Strengths and Limitations
This aggregate RCA recruited residents from six facilities in both metropolitan and rural areas of South Australia. However, the data for the RCA were retrospectively collected from a modest sample of residents, and the residents were recruited from six RACS maintained by one aged care provider organization, and therefore, generalizability may be limited. However, the 383 residents included in the original cohort study from which this aggregate RCA was derived were representative of all residents of the 6 RACS in terms of age, sex, and diagnosed dementia. Although the sample size is small compared to epidemiological studies, our study is based on a comprehensive and in-depth review of nursing progress notes, medical records, medication charts, hospital summaries, and incident reports for each of the participating residents. These data were reviewed independently by the research nurse, an infectious diseases physician, and an infectious diseases pharmacist. Additionally, the expert panel was composed of members internal and external to the RACS provider ensuring that reviews were well informed and independent. A lack of independence has previously been a criticism of RCA [
61]. The purpose-specific data collection tool was based on the SA Health RCA tool. The tool was developed by the expert panel ensuring that all relevant information was captured to inform the RCA. While single incident analysis may lead to prioritizing actions and resources to a rare event, an aggregate RCA identifies recurring events allowing for consideration of system and human factors contributing to hospitalizations [
61]. A limitation of our approach is that by only assessing infection-related hospitalizations, we were unable to ascertain whether factors perceived to contribute to infection-related hospitalizations were different to those which may contribute to hospitalizations for other health conditions. However, this is an important issue to examine because 25% of hospitalizations from RACS are for infection [
4].