Impact of Active and Passive Hypoxia as Re-Warm-Up Activities on Rugby Players’ Performance
Abstract
1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Design
2.3. Testing Procedure
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Silva, L.M.; Neiva, H.P.; Marques, M.C.; Izquierdo, M.; Marinho, D.A. Effects of Warm-Up, Post-Warm-Up, and Re-Warm-Up Strategies on Explosive Efforts in Team Sports: A Systematic Review. Sport. Med. 2018, 48, 2285–2299. [Google Scholar] [CrossRef]
- Bishop, D. Warm up II: Performance changes following active warm up and how to structure the warm up. Sport. Med. 2003, 33, 483–498. [Google Scholar] [CrossRef] [PubMed]
- Neiva, H.P.; Marques, M.C.; Barbosa, T.M.; Izquierdo, M.; Marinho, D.A. Warm-up and performance in competitive swimming. Sport. Med. 2014, 44, 319–330. [Google Scholar] [CrossRef] [PubMed]
- Febbraio, M.A.; Carey, M.F.; Snow, R.J.; Stathis, C.G.; Hargreaves, M. Influence of elevated muscle temperature on metabolism during intense, dynamic exercise. Am. J. Physiol. Integr. Comp. Physiol. 2017, 271, R1251–R1255. [Google Scholar] [CrossRef] [PubMed]
- Racinais, S.; Oksa, J. Temperature and neuromuscular function. Scand. J. Med. Sci. Sport. 2010, 20, 1–18. [Google Scholar] [CrossRef]
- Burnley, M.; Davison, G.; Baker, J.R. Effects of priming exercise on V·O2 kinetics and the power-duration relationship. Med. Sci. Sport. Exerc. 2011, 43, 2171–2179. [Google Scholar] [CrossRef]
- Kilduff, L.P.; West, D.J.; Williams, N.; Cook, C.J. The influence of passive heat maintenance on lower body power output and repeated sprint performance in professional rugby league players. J. Sci. Med. Sport 2013, 16, 482–486. [Google Scholar] [CrossRef]
- Sargeant, A.J. Effect of muscle temperature on leg extension force and short-term power output in humans. Eur. J. Appl. Physiol. Occup. Physiol. 1987, 56, 693–698. [Google Scholar] [CrossRef]
- Russell, M.; West, D.J.; Harper, L.D.; Cook, C.J.; Kilduff, L.P. Half-Time Strategies to Enhance Second-Half Performance in Team-Sports Players: A Review and Recommendations. Sport. Med. 2015, 45, 353–364. [Google Scholar] [CrossRef]
- Edholm, P.; Krustrup, P.; Randers, M.B. Half-time re-warm up increases performance capacity in male elite soccer players. Scand. J. Med. Sci. Sport. 2015, 25, e40–e49. [Google Scholar] [CrossRef]
- Waldron, M.; Twist, C.; Highton, J.; Worsfold, P.; Daniels, M. Movement and physiological match demands of elite rugby league using portable global positioning systems. J. Sport. Sci. 2011, 29, 1223–1230. [Google Scholar] [CrossRef] [PubMed]
- Abade, E.; Sampaio, J.; Goncalves, B.; Baptista, J.; Alves, A.; Viana, J. Effects of different re-warm up activities in football players’ performance. PLoS ONE 2017, 12, e0180152. [Google Scholar] [CrossRef] [PubMed]
- Ramos-Campo, D.J.; Batalha, N.; Olcina, G.; Parraça, J.; Sousa, J.; Tomas-Carus, P. Effects on performance of active and passive hypoxia as re-warm-up routine before a 100-meter swimming time trial. Biol. Sport 2020, 37, 113–119. [Google Scholar] [CrossRef]
- Lundby, C.; Calbet, J.A.L.; Robach, P. The response of human skeletal muscle tissue to hypoxia. Cell. Mol. Life Sci. 2009, 66, 3615–3623. [Google Scholar] [CrossRef]
- Wenger, R.H. Cellular adaptation to hypoxia: O2-sensing protein hydroxylases, hypoxia-inducible transcription factors, and O2-regulated gene expression. FASEB J. 2002, 16, 1151–1162. [Google Scholar] [CrossRef]
- Zoll, J.; Ponsot, E.; Dufour, S.; Doutreleau, S.; Ventura-Clapier, R.; Vogt, M.; Hoppeler, H.; Richard, R.; Flück, M. Exercise training in normobaric hypoxia in endurance runners. III. Muscular adjustments of selected gene transcripts. J. Appl. Physiol. 2006, 100, 1258–1266. [Google Scholar] [CrossRef]
- Ramos-Campo, D.J.; Rubio-Arias, J.A.; Dufour, S.; Chung, L.; Ávila-Gandía, V.; Alcaraz, P.E. Biochemical responses and physical performance during high-intensity resistance circuit training in hypoxia and normoxia. Eur. J. Appl. Physiol. 2017, 117, 809–818. [Google Scholar] [CrossRef]
- Casey, D.P.; Joyner, M.J. Compensatory vasodilatation during hypoxic exercise: Mechanisms responsible for matching oxygen supply to demand. J. Physiol. 2012, 590, 6321–6326. [Google Scholar] [CrossRef]
- Ramos-Campo, D.J.; Camacho, A.; Freitas, T.T.; Alcaraz, P.E.; Jiménez-Diaz, J.F.; Rubio-Arias, J.Á. Acute physiological and performance responses to high-intensity resistance circuit training in hypoxic and normoxic conditions. J. Strength Cond. Res. 2016, 31, 1040–1047. [Google Scholar] [CrossRef]
- Cleland, S.M.; Murias, J.M.; Kowalchuk, J.M.; Paterson, D.H. Effects of prior heavy-intensity exercise on oxygen uptake and muscle deoxygenation kinetics of a subsequent heavy-intensity cycling and knee-extension exercise. Appl. Physiol. Nutr. Metab. 2012, 37, 138–148. [Google Scholar] [CrossRef]
- Scott, B.R.; Slattery, K.M.; Sculley, D.V.; Lockhart, C.; Dascombe, B.J. Acute physiological responses to moderate-load resistance exercise in hypoxia. J. Strength Cond. Res. 2017, 31, 1973–1981. [Google Scholar] [CrossRef] [PubMed]
- Ramos-Campo, D.J.; Martínez-Guardado, I.; Olcina, G.; Marín-Pagán, C.; Martínez-Noguera, F.J.; Carlos-Vivas, J.; Alcaraz, P.E.; Rubio, J. Effect of high-intensity resistance circuit-based training in hypoxia on aerobic performance and repeat sprint ability. Scand. J. Med. Sci. Sport. 2018, 28, 2135–2143. [Google Scholar] [CrossRef] [PubMed]
- Mohr, M.; Krustrup, P.; Nybo, L.; Nielsen, J.J.; Bangsbo, J. Muscle temperature and sprint performance during soccer matches—Beneficial effect of re-warm-up at half-time. Scand. J. Med. Sci. Sport. 2004, 14, 156–162. [Google Scholar] [CrossRef] [PubMed]
- West, D.J.; Russell, M.; Bracken, R.M.; Cook, C.J.; Giroud, T.; Kilduff, L.P. Post-warmup strategies to maintain body temperature and physical performance in professional rugby union players. J. Sport. Sci. 2016, 34, 110–115. [Google Scholar] [CrossRef] [PubMed]
- Abbes, Z.; Chamari, K.; Mujika, I.; Tabben, M.; Bibi, K.; Ali, H.; Martin, C.; Haddad, M. Do thirty-second post second post-activation potentiation exercises activation improve the 50-m freestyle sprint performance in adolescent swimmers? Front. Physiol. 2018, 9, 1464. [Google Scholar] [CrossRef]
- Gerbino, A.; Ward, S.A.; Whipp, B.J. Effects of prior exercise on pulmonary gas-exchange kinetics during high-intensity exercise in humans. J. Appl. Physiol. 1996, 80, 99–107. [Google Scholar] [CrossRef]
- Fortin, J.-F.; Billaut, F. Blood-flow restricted warm-up alters muscle hemodynamics and oxygenation during repeated sprints in american football players. Sports 2019, 7, 121. [Google Scholar] [CrossRef]
- Stewart, I.B.; Sleivert, G.G. The effect of warm-up intensity on range of motion and anaerobic performance. J. Orthop. Sports Phys. Ther. 1998, 27, 154–161. [Google Scholar] [CrossRef][Green Version]
- Ingjer, F.; StrØmme, S.B. Effects of active, passive or no warm-up on the physiological response to heavy exercise. Eur. J. Appl. Physiol. Occup. Physiol. 1979, 40, 273–282. [Google Scholar] [CrossRef]
- Faigenbaum, A.D.; McFarland, J.E.; Schwerdtman, J.A.; Ratamess, N.A.; Kang, J.; Hoffman, J.R. Dynamic warm-up protocols, with and without a weighted vest, and fitness performance in high school female athletes. J. Athl. Train. 2006, 41, 357. [Google Scholar]
95% Confidence Interval | ANOVA | |||||||
---|---|---|---|---|---|---|---|---|
Mean | SD | Lower | Upper | F | p | η2 | ||
Baseline Ttymp (°C) | RN | 36.35 | 0.48 | 36.00 | 36.70 | 0.228 | 0.874 | 0.089 |
AN | 36.26 | 0.44 | 35.95 | 36.57 | ||||
RH | 36.22 | 0.28 | 36.02 | 36.42 | ||||
AH | 36.21 | 0.39 | 35.93 | 36.49 | ||||
Mean HR WU (bpm) | RN | 138.70 | 20.76 | 123.85 | 153.55 | 0.995 | 0.449 | 0.299 |
AN | 141.60 | 19.58 | 127.59 | 155.61 | ||||
RH | 139.60 | 17.09 | 127.38 | 151.83 | ||||
AH | 138.20 | 16.98 | 126.05 | 150.35 | ||||
Peak HR WU (bpm) | RN | 171.90 | 9.92 | 164.81 | 178.99 | 0.542 | 0.668 | 0.189 |
AN | 170.70 | 10.06 | 163.51 | 177.89 | ||||
RH | 171.70 | 8.69 | 165.48 | 177.92 | ||||
AH | 172.00 | 11.24 | 163.96 | 180.04 | ||||
RPE WU (AU) | RN | 5.50 | 1.65 | 4.32 | 6.68 | 1.007 | 0.444 | 0.302 |
AN | 5.40 | 1.96 | 4.00 | 6.80 | ||||
RH | 5.80 | 1.87 | 4.46 | 7.14 | ||||
AH | 6.00 | 1.41 | 4.99 | 7.01 | ||||
20 m during WU (s) | RN | 3.63 | 0.30 | 3.42 | 3.85 | 1.631 | 0.267 | 0.411 |
AN | 3.67 | 0.36 | 3.42 | 3.93 | ||||
RH | 3.51 | 0.38 | 3.24 | 3.78 | ||||
AH | 3.62 | 0.33 | 3.38 | 3.85 | ||||
30 m during WU (s) | RN | 6.15 | 0.37 | 5.89 | 6.42 | 0.604 | 0.633 | 0.206 |
AN | 6.22 | 0.38 | 5.95 | 6.49 | ||||
RH | 6.17 | 0.46 | 5.84 | 6.49 | ||||
AH | 6.04 | 0.41 | 5.75 | 6.33 | ||||
CMJ height post WU (cm) | RN | 38.26 | 5.90 | 34.04 | 42.48 | 1.382 | 0.325 | 0.372 |
AN | 37.30 | 5.09 | 33.66 | 40.94 | ||||
RH | 36.58 | 4.12 | 33.63 | 39.53 | ||||
AH | 37.00 | 5.10 | 33.35 | 40.65 |
95% Confidence Interval | ANOVA | Post-Hoc | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Mean | SD | Lower | Upper | F | p | η2 | Comparison | p | ||
SaO2 (%) | RN | 97.50 | 0.53 | 97.12 | 97.88 | 30.443 | <0.001 | 0.929 | RN vs. RH | <0.001 |
AN | 97.30 | 0.82 | 96.71 | 97.89 | RN vs. AH | <0.001 | ||||
RH | 90.80 | 2.10 | 89.30 | 92.30 | AN vs. RH | <0.001 | ||||
AH | 87.90 | 4.20 | 84.89 | 90.91 | AN vs. AH | <0.001 | ||||
Mean HR (bpm) | RN | 95.40 | 15.95 | 83.99 | 106.81 | 1.424 | 0.314 | 0.379 | ||
AN | 103.40 | 13.89 | 93.46 | 113.34 | ||||||
RH | 102.30 | 18.66 | 88.96 | 115.65 | ||||||
AH | 106.50 | 12.73 | 97.39 | 115.61 | ||||||
Peak HR (bpm) | RN | 131.60 | 22.00 | 115.87 | 147.34 | 2.574 | 0.137 | 0.524 | ||
AN | 145.00 | 12.95 | 135.73 | 154.27 | ||||||
RH | 131.20 | 25.84 | 112.72 | 149.68 | ||||||
AH | 150.90 | 17.22 | 138.58 | 163.22 | ||||||
Ttymp post RWU (Δ from baseline) | RN | −0.18 | 0.36 | −0.43 | 0.08 | 7.007 | 0.016 | 0.750 | RN vs. AN | 0.031 |
AN | 0.37 | 0.21 | 0.22 | 0.52 | RN vs. AH | 0.023 | ||||
RH | −0.04 | 0.20 | −0.18 | 0.10 | RH vs. AN | 0.005 | ||||
AH | 0.47 | 0.31 | 0.25 | 0.69 | RH vs. AH | 0.015 |
95% Confidence Interval | ANOVA | Post-Hoc | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Mean | SD | Lower | Upper | F | p | η2 | Comparison | p | ||
CMJ height post R-WU (cm) | RN | 34.29 | 4.55 | 31.04 | 37.54 | 4.961 | 0.037 | 0.680 | RN vs. AH | 0.01 |
AN | 34.56 | 4.36 | 31.45 | 37.68 | ||||||
RH | 34.52 | 5.66 | 30.47 | 38.57 | ||||||
AH | 35.78 | 4.69 | 32.43 | 39.13 | ||||||
20 m post R-WU (s) | RN | 3.89 | 0.36 | 3.63 | 4.15 | 6.492 | 0.02 | 0.736 | RN vs. AH | <0.001 |
AN | 3.77 | 0.30 | 3.56 | 3.98 | ||||||
RH | 3.78 | 0.35 | 3.53 | 4.03 | ||||||
AH | 3.64 | 0.28 | 3.44 | 3.84 | ||||||
Mean HR RSA (bpm) | RN | 162.70 | 7.66 | 157.22 | 168.18 | 0.864 | 0.503 | 0.270 | ||
AN | 161.10 | 15.29 | 150.16 | 172.04 | ||||||
RH | 165.50 | 11.95 | 156.95 | 174.05 | ||||||
AH | 165.70 | 12.45 | 156.80 | 174.60 | ||||||
Peak HR RSA (bpm) | RN | 179.30 | 4.99 | 175.73 | 182.87 | 1.316 | 0.343 | 0.361 | ||
AN | 177.30 | 7.27 | 172.10 | 182.50 | ||||||
RH | 180.00 | 7.80 | 174.42 | 185.58 | ||||||
AH | 181.30 | 10.20 | 174.00 | 188.59 | ||||||
Blood lactate (mMol/l) | RN | 18.59 | 6.47 | 13.96 | 23.22 | 9.856 | 0.007 | 0.809 | RN vs. AH | 0.015 |
AN | 15.53 | 5.87 | 11.33 | 19.73 | AN vs. AH | 0.036 | ||||
RH | 13.28 | 4.26 | 10.24 | 16.33 | ||||||
AH | 9.96 | 1.64 | 8.79 | 11.13 | ||||||
RPE RSA (AU) | RN | 7.60 | 1.35 | 6.63 | 8.57 | 1.681 | 0.257 | 0.419 | ||
AN | 7.70 | 1.16 | 6.87 | 8.53 | ||||||
RH | 7.70 | 0.95 | 7.02 | 8.38 | ||||||
AH | 8.40 | 1.35 | 7.43 | 9.37 | ||||||
Best RSA (s) | RN | 6.08 | 0.35 | 5.82 | 6.33 | 2.791 | 0.119 | 0.545 | ||
AN | 6.04 | 0.34 | 5.79 | 6.28 | ||||||
RH | 6.04 | 0.37 | 5.78 | 6.31 | ||||||
AH | 5.98 | 0.33 | 5.75 | 6.22 | ||||||
Mean RSA (s) | RN | 6.27 | 0.38 | 6.00 | 6.54 | 9.143 | 0.008 | 0.797 | RN vs. AH | 0.02 |
AN | 6.24 | 0.34 | 5.99 | 6.48 | RH vs. AH | 0.02 | ||||
RH | 6.27 | 0.36 | 6.01 | 6.53 | ||||||
AH | 6.19 | 0.32 | 5.96 | 6.42 | ||||||
Fatigue Index RSA test (%) | RN | 3.14 | 1.59 | 2.00 | 4.27 | 0.465 | 0.716 | 0.166 | ||
AN | 3.34 | 0.90 | 2.70 | 3.99 | ||||||
RH | 3.85 | 1.45 | 2.81 | 4.89 | ||||||
AH | 3.43 | 1.31 | 2.49 | 4.36 | ||||||
Mean SmO2 RSA (%) | RN | 42.98 | 20.65 | 28.21 | 57.75 | 6.269 | 0.021 | 0.729 | RN vs. AH | <0.01 |
AN | 42.32 | 18.50 | 29.09 | 55.55 | RH vs. AH | 0.01 | ||||
RH | 42.27 | 18.08 | 29.33 | 55.20 | AN vs. AH | 0.01 | ||||
AH | 37.19 | 16.03 | 25.72 | 48.65 | ||||||
Mean muscle Hb RSA (mg/dl) | RN | 12.05 | 0.59 | 11.63 | 12.48 | 4.685 | 0.042 | 0.668 | RN vs. AH | 0.05 |
AN | 12.17 | 0.54 | 11.78 | 12.56 | ||||||
RH | 12.11 | 0.79 | 11.54 | 12.67 | ||||||
AH | 12.40 | 0.57 | 11.99 | 12.81 | ||||||
Tª post RSA (Δ from baseline) | RN | 0.26 | 0.52 | −0.11 | 0.63 | 0.477 | 0.708 | 0.170 | ||
AN | 0.14 | 0.96 | −0.55 | 0.83 | ||||||
RH | 0.15 | 0.47 | −0.18 | 0.48 | ||||||
AH | 0.14 | 0.39 | −0.14 | 0.42 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ramos-Campo, D.J.; Malta, J.; Olcina, G.; Timón, R.; Raimundo, A.; Tomas-Carus, P. Impact of Active and Passive Hypoxia as Re-Warm-Up Activities on Rugby Players’ Performance. Int. J. Environ. Res. Public Health 2020, 17, 2971. https://doi.org/10.3390/ijerph17082971
Ramos-Campo DJ, Malta J, Olcina G, Timón R, Raimundo A, Tomas-Carus P. Impact of Active and Passive Hypoxia as Re-Warm-Up Activities on Rugby Players’ Performance. International Journal of Environmental Research and Public Health. 2020; 17(8):2971. https://doi.org/10.3390/ijerph17082971
Chicago/Turabian StyleRamos-Campo, Domingo Jesús, João Malta, Guillermo Olcina, Rafael Timón, Armando Raimundo, and Pablo Tomas-Carus. 2020. "Impact of Active and Passive Hypoxia as Re-Warm-Up Activities on Rugby Players’ Performance" International Journal of Environmental Research and Public Health 17, no. 8: 2971. https://doi.org/10.3390/ijerph17082971
APA StyleRamos-Campo, D. J., Malta, J., Olcina, G., Timón, R., Raimundo, A., & Tomas-Carus, P. (2020). Impact of Active and Passive Hypoxia as Re-Warm-Up Activities on Rugby Players’ Performance. International Journal of Environmental Research and Public Health, 17(8), 2971. https://doi.org/10.3390/ijerph17082971