Modelling the 200 m Front-Crawl Performance Predictors at the Winter Season Peak
Abstract
1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Design and Procedures
2.3. Measures
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Pyne, D.B.; Lee, H.; Swanwick, K.M. Monitoring the lactate threshold in world ranked swimmers. Med. Sci. Sport Exer. 2001, 33, 291–297. [Google Scholar] [CrossRef]
- Pelarigo, J.G.; Greco, C.C.; Denadai, B.S.; Fernandes, R.J.; Vilas-Boas, J.P.; Pendergast, D.R. Do 5% changes around maximal lactate steady state lead to swimming biophysical modifications? Hum. Mov. Sci. 2016, 49, 258–266. [Google Scholar] [CrossRef]
- Carvalho, D.D.; Soares, S.; Zacca, R.; Sousa, J.; Marinho, D.A.; Silva, A.J.; Vilas-Boas, J.P.; Fernandes, R.J. Anaerobic Threshold Biophysical Characterisation of the Four Swimming Techniques. Int. J. Sports Med. 2020, in press. [Google Scholar] [CrossRef]
- Chatard, J.C.; Lavoie, J.M.; Lacour, J. Analysis of determinants of swimming economy in front crawl. Eur. J. Appl. Physiol. 1990, 61, 88–92. [Google Scholar] [CrossRef]
- Morris, K.S.; Osborne, M.A.; Shephard, M.E.; Jenkins, D.G.; Skinner, T.L. Velocity, oxygen uptake, and metabolic cost of pull kick, and whole-body swimming. Int. J. Sport Physiol. 2017, 12, 1046–1051. [Google Scholar] [CrossRef][Green Version]
- Fernandes, R.J.; Billat, V.; Cruz, A.; Colaço, P.; Cardoso, C.; Vilas-Boas, J.P. Does net energy of swimming affect time to exhaustion at the individual’s maximal oxygen consumption velocity? J. Sports Med. Phys. Fit. 2006, 46, 373–380. [Google Scholar]
- Fernandes, R.J.; Keskinen, K.; Colaço, P.; Querido, A.; Machado, L.; Morais, P.A.; Novais, D.Q.; Marinho, D.A.; Vilas-Boas, J.P. Time limit at VO2max velocity in elite crawl swimmers. Int. J. Sports Med. 2008, 29, 145–150. [Google Scholar] [CrossRef]
- Barbosa, T.M.; Keskinen, K.L.; Fernandes, R.J.; Vilas-Boas, J.P. The influence of stroke mechanics into energy cost of elite swimmers. Eur. J. Appl. Physiol. 2008, 103, 139–149. [Google Scholar] [CrossRef] [PubMed]
- Barbosa, T.M.; Morouço, P.G.; Jesus, S.; Feitosa, W.G.; Costa, M.J.; Marinho, D.A.; Silva, A.J.; Garrido, N.D. The interaction between intra-cyclic variation of the velocity and mean swimming velocity in young competitive swimmers. Int. J. Sports Med. 2013, 34, 123–130. [Google Scholar] [CrossRef] [PubMed]
- Zamparo, P.; Pendergast, D.; Mollendorf, J.; Termin, A.; Minetti, A. An energy balance of front crawl. Eur. J. Appl. Physiol. 2005, 94, 134–144. [Google Scholar] [CrossRef]
- Peterson Silveira, R.; Soares, S.M.; Zacca, R.; Alves, F.B.; Fernandes, R.J.; De Souza Castro, F.A.; Vilas-Boas, J.P. A Biophysical Analysis on the Arm Stroke Efficiency in Front Crawl Swimming: Comparing Methods and Determining the Main Performance Predictors. Int. J. Environ. Res. Public Health 2019, 16, 4715. [Google Scholar] [CrossRef] [PubMed]
- Ribeiro, J.P.; Cadavid, E.; Baena, J.; Monsalvete, E.; Barna, A.; De Rose, E.H. Metabolic predictors of middle-distance swimming performance. Br. J. Sport Med. 1990, 24, 196–200. [Google Scholar] [CrossRef] [PubMed]
- Obert, P.; Falgairette, G.; Bedu, M.; Coudert, J. Bioenergetic characteristics of swimmers determined during an arm-ergometer test and during swimming. Int. J. Sports Med. 1991, 13, 298–303. [Google Scholar] [CrossRef] [PubMed]
- Costa, M.J.; Bragada, J.A.; Marinho, D.A.; Lopes, V.P.; Silva, A.J.; Barbosa, T.M. Longitudinal study in male swimmers: A hierarchical modeling of energetics and biomechanical contributions for performance. J. Sports Sci. Med. 2013, 12, 614–622. [Google Scholar] [PubMed]
- Zacca, R.; Azevedo, R.; Ramos, V.; Abraldes, J.; Vilas-Boas, J.; Castro, F.; Pyne, D.; Fernandes, R. Biophysical Follow-up of Age-Group Swimmers During a Traditional Three-Peak Preparation Program. J. Strength Cond. Res. 2019, in press. [Google Scholar] [CrossRef] [PubMed]
- Fernandes, R.J.; Cardoso, C.S.; Soares, S.M.; Ascensão, A.; Colaço, P.J.; Vilas-Boas, J.P. Time limit and VO2 slow component at intensities corresponding to VO2max in swimmers. Int. J. Sports Med. 2003, 24, 576–581. [Google Scholar]
- Laffite, L.P.; Vilas-Boas, J.P.; Demarle, A.; Silva, J.; Fernandes, R.; Billat, V. Changes in physiological and stroke parameters during a maximal 400-m free swimming test in elite swimmers. Can. J. Appl. Physiol. 2004, 29, S17–S31. [Google Scholar] [CrossRef]
- Montpetit, R.R.; Léger, L.A.; Lavoie, J.M.; Cazorla, G. VO2 peak during free swimming using the backward extrapolation of the O2 recovery curve. Eur. J. Appl. Physiol. Occup. Physiol. 1981, 47, 385–391. [Google Scholar] [CrossRef]
- Costa, M.J.; Bragada, J.A.; Mejias, J.E.; Louro, H.; Marinho, D.A.; Silva, A.J.; Barbosa, T.M. Effects of swim training on energetics and performance. Int. J. Sports Med. 2013, 34, 507–513. [Google Scholar] [CrossRef][Green Version]
- Di Prampero, P.E. The energy cost of human locomotion on land and in water. Int. J. Sports Med. 1986, 7, 55–72. [Google Scholar] [CrossRef]
- Barbosa, T.M.; Keskinen, K.L.; Fernandes, R.J.; Colaço, P.; Carmo, C.; Vilas-Boas, J.P. Relationship between energetic, stroke determinants and velocity in butterfly stroke. Int. J. Sports Med. 2005, 26, 841–846. [Google Scholar] [CrossRef] [PubMed]
- Minetti, A. The biomechanics of skipping gaits: A third locomotion paradigm? Proc. Biol. Sci. 1998, 265, 1227–1235. [Google Scholar] [CrossRef] [PubMed]
- Craig, A.; Skehan, P.; Pawelczyk, J.; Boomer, W. Velocity, stroke rate and distance per stroke during elite swimming competition. Med. Sci. Sport Exer. 1985, 17, 625–634. [Google Scholar] [CrossRef] [PubMed]
- Costill, D.L.; Kovaleski, J.; Porter, D.; Fielding, R.; King, D. Energy expenditure during front crawl swimming: Predicting success in middle-distance events. Int. J. Sports Med. 1985, 6, 266–270. [Google Scholar] [CrossRef]
- Zamparo, P. Effects of age and gender on the propelling efficiency of the arm stroke. Eur. J. Appl. Physiol. 2006, 97, 52–58. [Google Scholar] [CrossRef]
- Phillips, E.; Davids, K.; Renshaw, I.; Portus, M. Expert performance in sport and the dynamics of talent development. Sports Med. 2010, 40, 271–283. [Google Scholar] [CrossRef]
- Anderson, M.; Hopkins, W.; Roberts, A.; Pyne, D. Monitoring seasonal ad long-term changes in test performance in elite swimmers. Eur. J. Sport Sci. 2006, 6, 145–154. [Google Scholar] [CrossRef]
- Troup, J. Aerobic characteristics of the four competitive strokes. In Studies by the International Center for Aquatic Research; Troup, J., Ed.; US Swimming Press: Colorado Spring, CO, USA, 1991; pp. 3–7. [Google Scholar]
- Zamparo, P.; Capelli, C.; Pendergast, D. Energetics of swimming: A historical perspective. Eur. J. Appl. Physiol. 2010, 111, 367–378. [Google Scholar] [CrossRef]
- Huot-Marchand, F.; Nesi, X.; Sidney, M.; Alberty, M.; Pelayo, P. Variations of stroking parameters associated with 200-m competitive performance improvement in top-standard front crawl swimmers. Sports Biomech. 2005, 4, 89–99. [Google Scholar] [CrossRef]
- Sánchez, J.; Arellano, R. Stroke index values according to level, gender, swimming style and event race distance. In Proceedings of the XXth International Symposium on Biomechanics in Sports; Gianikellis, K., Ed.; Universidad de Extremadura: Badajoz, Spain, 2002; pp. 56–59. [Google Scholar]
- Madsen, O. Aerobic training: Not so fast there. Swim. Tech. 1983, 20, 13–17. [Google Scholar]
- Ryan, R.; Coyle, E.; Quick, R. Blood lactate profile throughout a training season in elite female swimmers. J. Swim. Res. 1990, 6, 5–9. [Google Scholar]
- Costill, D.L.; Flynn, M.G.; Kirwan, J.P.; Houmard, J.A.; Mitchell, J.B.; Thomas, R.; Park, S.H. Effects of repeated days of intensified training on muscle glycogen and swimming performance. Med. Sci. Sport Exer. 1988, 20, 249–254. [Google Scholar] [CrossRef] [PubMed]
Variable | Mean (±1 SD) | Max | Min | Correlation with T200m |
---|---|---|---|---|
T200m (s) | 117.94 ± 4.88 | 111.42 | 120.70 | --- |
Height (m) | 1.81 ± 0.07 | 1.91 | 1.71 | −0.43 (p = 0.29) |
Body mass (kg) | 73.20 ± 5.33 | 80.10 | 66.2 | −0.33 (p = 0.42) |
Arm span (m) | 1.87 ± 0.07 | 2.00 | 1.80 | −0.38 (p = 0.35) |
V4 (m·s−1) | 1.43 ± 0.05 | 1.50 | 1.35 | −0.81 (p = 0.01) |
VO2max (ml·kg−1·min−1) | 70.61 ± 6.44 | 78.82 | 63.34 | −0.50 (p = 0.21) |
C (J·kg−1·m−1) | 15.26 ± 1.18 | 16.85 | 13.81 | 0.02 (p = 0.95) |
SF (Hz) | 0.69 ± 0.04 | 0.73 | 0.60 | −0.55 (p = 0.15) |
SL (m) | 2.48 ± 0.14 | 2.56 | 2.37 | −0.61 (p = 0.11) |
SI (m2·s−1) | 4.22 ± 0.31 | 4.48 | 3.77 | −0.67 (p = 0.07) |
ηp (%) | 39.06 ± 1.55 | 41.43 | 36.13 | 0.07 (p = 0.87) |
Group | Variable | r2 | Adjusted r2 | T | p | Beta | F | p |
---|---|---|---|---|---|---|---|---|
Anthropometrics | Height | 0.22 | 0.09 | 3.84 | 0.01 | −0.464 | (1;6 ) = 1.65 | 0.25 |
Body mass | 0.20 | 0.08 | 6.03 | <0.01 | −0.448 | (1;6) = 1.50 | 0.27 | |
Arm span | 0.26 | 0.14 | 3.86 | <0.01 | −0.510 | (1;6) = 2.11 | 0.20 | |
Physiology | V4 | 0.59 | 0.52 | 5.99 | <0.01 | −0.769 | (1;6) = 8.68 | 0.03 |
VO2max | 0.25 | 0.13 | 7.62 | <0.01 | −0.500 | (1;6) = 1.99 | 0.21 | |
C | 0.01 | −0.16 | 4.82 | <0.01 | −0.090 | (1;6) = 0.05 | 0.83 | |
Biomechanics | SF | 0.23 | 0.10 | 5.28 | <0.01 | −0.481 | (1;6) = 1.80 | 0.23 |
SL | 0.04 | −0.12 | 3.86 | <0.01 | −0.198 | (1;6) = 0.25 | 0.64 | |
SI | 0.48 | 0.39 | 8.39 | <0.01 | −0.691 | (1;6) = 5.47 | 0.06 | |
ηp | 0.02 | −0.14 | 2.77 | 0.03 | −0.156 | (1;6) = 0.15 | 0.71 |
Variable | r2 | Adjusted r2 | T | p | Beta | F | p | |
---|---|---|---|---|---|---|---|---|
T200m | V4 SI Arm span | 0.59 0.73 0.74 | 0.52 0.63 0.54 | 5.99 6.71 5.55 | <0.01 <0.01 <0.01 | −0.769 −0.571 −0.082 | (1;7) = 8.68 (2;7) = 6.84 (3;7) = 3.74 | 0.03 0.04 0.12 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Costa, M.J.; Santos, C.C.; Marinho, D.A.; Silva, A.J.; Barbosa, T.M. Modelling the 200 m Front-Crawl Performance Predictors at the Winter Season Peak. Int. J. Environ. Res. Public Health 2020, 17, 2126. https://doi.org/10.3390/ijerph17062126
Costa MJ, Santos CC, Marinho DA, Silva AJ, Barbosa TM. Modelling the 200 m Front-Crawl Performance Predictors at the Winter Season Peak. International Journal of Environmental Research and Public Health. 2020; 17(6):2126. https://doi.org/10.3390/ijerph17062126
Chicago/Turabian StyleCosta, Mário J., Catarina C. Santos, Daniel A. Marinho, António J. Silva, and Tiago M. Barbosa. 2020. "Modelling the 200 m Front-Crawl Performance Predictors at the Winter Season Peak" International Journal of Environmental Research and Public Health 17, no. 6: 2126. https://doi.org/10.3390/ijerph17062126
APA StyleCosta, M. J., Santos, C. C., Marinho, D. A., Silva, A. J., & Barbosa, T. M. (2020). Modelling the 200 m Front-Crawl Performance Predictors at the Winter Season Peak. International Journal of Environmental Research and Public Health, 17(6), 2126. https://doi.org/10.3390/ijerph17062126