Level of Pollution on Surrounding Environment from Landfill Aftercare
Abstract
1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Water Pollution
3.2. Soil and Sediments Pollution
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Krausmann, F.; Gingrich, S.; Eisenmenger, N.; Erb, K.; Haberl, H.; Fischer-Kowalski, M. Growth in global materials use, GDP and population during the 20th century. Ecol. Econ. 2009, 68, 2696–2705. [Google Scholar] [CrossRef]
- European Parliament Council. A Community Strategy for Waste Management; SEC/89/934 (Final); European Parliament Council: Brussels, Belgium, 1989.
- European Parliament. Council of the European Union. Council Directive 1999/31/EC of 26 April 1999 on the landfill of waste. Off. J. Eur. Communities 1999, 182, 1–19. [Google Scholar]
- European Parliament. Appendix XVII REACH. no. 552/2009. Eur. Union Off. J. 2009, 164, 7–31. [Google Scholar]
- European Parliament. Council of the European Union. Proposal for a Directive of the European Parliament and of the Council Amending Directive 1999/31/EC on the Landfill of Waste 2015; European Parliament. Council of the European Union: Brussels, Belgium, 2015.
- Öman, C.; Junestedt, C. Chemical characterization of landfill leachates – 400 parameters and compounds. Waste Manag. 2008, 28, 1876–1891. [Google Scholar] [CrossRef] [PubMed]
- El-Fadel, M.; Bou-Zeid, E.; Chahine, W.; Alayli, B. Temporal variation of leachate quality from pre-sorted and baled municipal solid waste with high organic and moisture content. Waste Manag. 2002, 22, 269–282. [Google Scholar] [CrossRef]
- Ghosh, P.; Thakur, I.S.; Kaushik, A. Bioassays for toxicological risk assessment of landfill leachate: A review. Ecotoxicol. Env. Saf. 2017, 141, 259–270. [Google Scholar] [CrossRef]
- Tlotleng, N.; Kootbodien, T.; Wilson, K.; Made, F.; Mathee, A.; Ntlebi, V.; Kgalamono, S.; Mokone, M.; Du Preez, K.; Naicker, N. Prevalence of Respiratory Health Symptoms among Landfill Waste Recyclers in the City of Johannesburg, South Africa. Int. J. Environ. Res. Public Health 2019, 16, 4277. [Google Scholar] [CrossRef]
- Yan, X.; Liu, M.; Zhong, J.; Guo, J.; Wu, W. How Human Activities Affect Heavy Metal Contamination of Soil and Sediment in a Long-Term Reclaimed Area of the Liaohe River Delta, North China. Sustainability 2018, 10, 338. [Google Scholar] [CrossRef]
- Viard, B.; Pihan, F.; Promeyrat, S.; Pihan, J.-C. Integrated assessment of heavy metal (Pb, Zn, Cd) highway pollution: bioaccumulation in soil, Graminaceae and land snails. Chemosphere 2004, 55, 1349–1359. [Google Scholar] [CrossRef]
- Herva, M.; Roca, E. Ranking municipal solid waste treatment alternatives based on ecological footprint and multi-criteria analysis. Ecol. Indic. 2013, 25, 77–84. [Google Scholar] [CrossRef]
- Nazir, R.; Khan, M.; Masab, M.; Rehman, H.U.; Rauf, N.U.; Shahab, S.; Shaheen, Z. Accumulation of heavy metals (Ni, Cu, Cd, Cr, Pb, Zn, Fe) in the soil, water and plants and analysis of physico-chemical parameters of soil and water collected from Tanda Dam Kohat. J. Pharm. Health Serv. Res. 2015, 7, 89–97. [Google Scholar]
- Khallaf, E.; Authman, M.M.; Alne-Na-Ei, A.A. Contamination and Ecological Hazard Assessment of Heavy Metals in Freshwater Sediments and Oreochromis niloticus (Linnaeus, 1758) Fish Muscles in a Nile River Canal in Egypt. Env. Sci. Pollut. Res. 2018, 25, 13796–13812. [Google Scholar] [CrossRef]
- Li, F.; Cai, Y.; Zhang, J. Spatial Characteristics, Health Risk Assessment and Sustainable Management of Heavy Metals and Metalloids in Soils from Central China. Sustainability 2018, 10, 91. [Google Scholar] [CrossRef]
- Kumpiene, J.; Brännvall, E.; Taraškevičius, R.; Aksamitauskas, Č.; Zinkutė, R. Spatial variability of topsoil contamination with trace elements in preschools in Vilnius, Lithuania. J. Geochem. Explor. 2011, 108, 15–20. [Google Scholar] [CrossRef]
- Widomski, M.; Stępniewski, W.; Musz-Pomorska, A. Clays of Different Plasticity as Materials for Landfill Liners in Rural Systems of Sustainable Waste Management. Sustainability 2018, 10, 2489. [Google Scholar] [CrossRef]
- Zhou, M.-H.; Shen, S.-L.; Xu, Y.-S.; Zhou, A. New Policy and Implementation of Municipal Solid Waste Classification in Shanghai, China. Int. J. Environ. Res. Public Health 2019, 16, 3099. [Google Scholar] [CrossRef]
- Long, Y.; Shen, D.-S.; Wang, H.; Lu, W.; Zhao, Y. Heavy metal source analysis in municipal solid waste (MSW): Case study on Cu and Zn. J. Hazard. Mater. 2011, 186, 1082–1087. [Google Scholar] [CrossRef] [PubMed]
- Kanmani, S.; Gandhimathi, R. Assessment of heavy metal contamination in soil due to leachate migration from an open dumping site. Appl. Water Sci. 2012, 3, 193–205. [Google Scholar] [CrossRef]
- Van Ryan Kristopher, R.G.; Parilla, R. Analysis of heavy metals in Cebu city sanitary landfill, Philippines. J. Environ. Sci. Manag. 2014, 17, 50–59. [Google Scholar]
- Asgele, T.; Gebremedhin, K. Heavy metals analysis in solid municipal wastes. Int. J. Technol. Enhanc. Emerg. Eng. Res. 2015, 3, 7–10. [Google Scholar]
- Gworek, B.; Dmuchowski, W.; Koda, E.; Marecka, M.; Baczewska, A.H.; Brągoszewska, P.; Podlasek, A.; Osiński, P. Impact of the Municipal Solid Waste Łubna Landfill on Environmental Pollution by Heavy Metals. Water 2016, 8, 470. [Google Scholar] [CrossRef]
- Salminen, R.; Gregorauskien, V. Considerations regarding the definition of a geochemical baseline of elements in the surficial materials in areas differing in basic geology. Appl. Geochem. 2000, 15, 647–653. [Google Scholar] [CrossRef]
- Margui, E.; Queralt, I.; Hidalgo, M. Application of X-ray fluorescence spectrometry to determination and quantitation of metals in vegetal material. Trac Trends Anal. Chem. 2009, 28, 362–372. [Google Scholar] [CrossRef]
- Krishna, A.K.; Govil, P.K. Assessment of heavy metal contamination in soils around Manali industrial area, Chennai, Southern India. Environ. Earth Sci. 2007, 54, 1465–1472. [Google Scholar] [CrossRef]
- Bradl, H. Heavy Metals in the Environment: Origin, Interaction and Remediation; Academic: London, UK, 2002; p. 282. [Google Scholar]
- Kirpichtchikova, T.A.; Manceau, A.; Spadini, L.; Panfili, F.; Marcus, M.A.; Jacquet, T. Speciation and solubility of heavy metals in contaminated soil using X-ray microfluorescence, EXAFS spectroscopy, chemical extraction, and thermodynamic modeling. Geochim. Et Cosmochim. Acta 2006, 70, 2163–2190. [Google Scholar] [CrossRef]
- Voegelin, A.; Kretzschmar, R. Formation and Dissolution of Single and Mixed Zn and Ni Precipitates in Soil: Evidence from Column Experiments and Extended X-ray Absorption Fine Structure Spectroscopy. Environ. Sci. Technol. 2005, 39, 5311–5318. [Google Scholar] [CrossRef]
- O’Day, P.A.; Newville, M.; Neuhoff, P.S.; Sahai, N.; Carroll, S. X-Ray Absorption Spectroscopy of Strontium(II) Coordination. J. Colloid Interface Sci. 2000, 222, 184–197. [Google Scholar] [CrossRef]
- Sarret, G.; Balesdent, J.; Bouziri, L.; Garnier, J.-M.; Marcus, M.A.; Geoffroy, N.; Panfili, F.; Manceau, A. Zn Speciation in the Organic Horizon of a Contaminated Soil by Micro-X-ray Fluorescence, Micro- and Powder-EXAFS Spectroscopy, and Isotopic Dilution. Envron. Sci. Technol. 2004, 38, 2792–2801. [Google Scholar] [CrossRef]
- Manceau, A.; Marcus, M.A.; Tamura, N.; Proux, O.; Geoffroy, N.; Lanson, B. Natural speciation of Zn at the micrometer in a clayey soil using X-ray fluorescence, adsorption, and diffraction. Geochim. Et Cosmochim. Acta 2004, 68, 2467–2483. [Google Scholar] [CrossRef]
- Manceau, A.; Tommaseo, C.; Rihs, S.; Geoffroy, N.; Chateigner, D.; Schlegel, M.; Tisserand, D.; Marcus, M.A.; Tamura, N.; Chen, Z.-S. Natural speciation of Mn, Ni, and Zn at the micrometer scale in a clayey paddy soil using X-ray fluorescence, absorption, and diffraction. Geochim. Et Cosmochim. Acta 2005, 69, 4007–4034. [Google Scholar] [CrossRef]
- Vodyanitskii, Y.N. Standards for the contents of heavy metals in soils of some states. Ann. Agrar. Sci. 2016, 14, 257–263. [Google Scholar] [CrossRef]
- Lithuanian hygienic norm HN 60:2004 Maximum permitted concentrations of hazardous substances in soil (in Lithuanian). Valstyb. Žinios 2004, 41–1357.
- Rodic, L.; Wilson, D.C. Resolving governance issues to achieve priority SDGs related to solid waste management. Sustainability 2017, 9, 404. [Google Scholar] [CrossRef]
- Rimkus, E.; Kažys, J.; Bukantis, A. Predictions of heavy precipitation in the 21st century in Lithuania, based on the CCLM model. Geografija 2009, 45, 122–130. [Google Scholar]
- Lietuvos hidrometeorologinės tarnybos prie Aplinkos ministerijos skyriaus 2017 metų ataskaita. In 2017 Report of Lithuania Hydrometeorological Service by Ministry of Environment; Meteorological observations tables of Vilnius city station; LHMT: Vilnius, Lithuani, 2018; pp. 15–16.
- Lietuvos hidrometeorologinės tarnybos prie Aplinkos ministerijos skyriaus 2018 metų ataskaita. In 2018 Report of Lithuania Hydrometeorological Service by Ministry of Environment; Meteorological observations tables of Vilnius city station; LHMT: Vilnius, Lithuani, 2019; pp. 9–11.
- Wang, J.; Cheng, Q.; Xue, S.; Rajendran, M.; Wu, C.; Liao, J. Pollution characteristics of surface runoff under different restoration types in manganese tailing wasteland. Environ. Sci. Pollut. Res. 2018, 25, 9998–10005. [Google Scholar] [CrossRef] [PubMed]
- Sriuttha, M.; Tengjaroenkul, B.; Intamat, S.; Phoonaploy, U.; Thanomsangad, P.; Neeratanaphan, L. Cadmium, chromium, and lead accumulation in aquatic plants and animals near a municipal landfill. Hum. Ecol. Risk Assess. Int. J. 2017, 23, 350–363. [Google Scholar] [CrossRef]
- Abu-Daabes, M.A.; Abu Qdais, H.; Alsyouri, H. Assessment of Heavy Metals and Organics in Municipal Solid Waste Leachates from Landfills with Different Ages in Jordan. J. Environ. Prot. 2013, 4, 344–352. [Google Scholar] [CrossRef]
Soil Contamination Category | Zd |
Safe | Zd < 1 |
Average hazard | 1 < Zd < 3 |
Hazard | 3 < Zd < 10 |
Very hazard | Zd > 10 |
2017 | 2018 | d | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Soil Samples | Unit, Part of MLC | As | Cr | Cu | Pb | Ni | As | Cr | Cu | Pb | Ni |
Samples from 0–15 cm deep | |||||||||||
S1 | % | 20 | 38 | 26 | 20 | 16 | 25 | 38 | 37 | 28 | 24 |
S2 | % | 24 | 38 | 24 | 88 | 15 | 26 | 40 | 46 | 36 | 21 |
S3 | % | 31 | 42 | 46 | 92 | 27 | 29 | 45 | 37 | 37 | 37 |
S4 | % | 48 | 60 | 59 | 89 | 43 | 39 | 55 | 59 | 41 | 25 |
S5 | % | 39 | 55 | 41 | 48 | 28 | 39 | 45 | 44 | 26 | 28 |
S6 | % | 25 | 48 | 80 | 87 | 21 | 35 | 58 | 56 | 37 | 23 |
S7 | % | 32 | 58 | 67 | 59 | 27 | 38 | 56 | 39 | 23 | 29 |
Samples from 15–30 cm deep | |||||||||||
S1 | % | 20 | 39 | 38 | 28 | 32 | 33 | 56 | 48 | 36 | 37 |
S2 | % | 29 | 38 | 32 | 40 | 45 | 25 | 46 | 49 | 45 | 35 |
S3 | % | 28 | 44 | 44 | 58 | 43 | 32 | 67 | 46 | 37 | 40 |
S4 | % | 56 | 60 | 47 | 65 | 57 | 42 | 67 | 52 | 45 | 34 |
S5 | % | 46 | 46 | 39 | 45 | 38 | 41 | 69 | 43 | 38 | 28 |
S6 | % | 37 | 48 | 50 | 67 | 47 | 37 | 59 | 55 | 49 | 38 |
S7 | % | 35 | 56 | 59 | 67 | 60 | 32 | 67 | 58 | 33 | 27 |
Samples from 30–45 cm deep | |||||||||||
S1 | % | 30 | 35 | 55 | 40 | 16 | 35 | 56 | 68 | 47 | 32 |
S2 | % | 32 | 55 | 42 | 76 | 32 | 36 | 67 | 43 | 53 | 36 |
S3 | % | 46 | 56 | 64 | 77 | 27 | 31 | 62 | 49 | 47 | 40 |
S4 | % | 56 | 63 | 79 | 67 | 31 | 47 | 60 | 58 | 57 | 31 |
S5 | % | 52 | 54 | 56 | 46 | 45 | 39 | 69 | 64 | 48 | 36 |
S6 | % | 45 | 67 | 87 | 78 | 32 | 35 | 68 | 73 | 38 | 42 |
S7 | % | 52 | 67 | 69 | 57 | 60 | 46 | 59 | 69 | 52 | 35 |
Samples from 45–60 cm deep | |||||||||||
S1 | % | 64 | 45 | 59 | 40 | 89 | 45 | 69 | 79 | 68 | 36 |
S2 | % | 44 | 83 | 48 | 88 | 87 | 55 | 65 | 86 | 87 | 61 |
S3 | % | 54 | 42 | 78 | 92 | 65 | 47 | 59 | 98 | 67 | 51 |
S4 | % | 48 | 82 | 67 | 98 | 92 | 48 | 69 | 68 | 59 | 64 |
S5 | % | 64 | 79 | 98 | 78 | 97 | 49 | 70 | 83 | 68 | 76 |
S6 | % | 79 | 88 | 77 | 98 | 92 | 54 | 69 | 87 | 87 | 66 |
S7 | % | 97 | 89 | 87 | 78 | 77 | 65 | 71 | 78 | 68 | 83 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Baziene, K.; Tetsman, I.; Albrektiene, R. Level of Pollution on Surrounding Environment from Landfill Aftercare. Int. J. Environ. Res. Public Health 2020, 17, 2007. https://doi.org/10.3390/ijerph17062007
Baziene K, Tetsman I, Albrektiene R. Level of Pollution on Surrounding Environment from Landfill Aftercare. International Journal of Environmental Research and Public Health. 2020; 17(6):2007. https://doi.org/10.3390/ijerph17062007
Chicago/Turabian StyleBaziene, Kristina, Ina Tetsman, and Ramune Albrektiene. 2020. "Level of Pollution on Surrounding Environment from Landfill Aftercare" International Journal of Environmental Research and Public Health 17, no. 6: 2007. https://doi.org/10.3390/ijerph17062007
APA StyleBaziene, K., Tetsman, I., & Albrektiene, R. (2020). Level of Pollution on Surrounding Environment from Landfill Aftercare. International Journal of Environmental Research and Public Health, 17(6), 2007. https://doi.org/10.3390/ijerph17062007