Performance of Exoelectrogenic Bacteria Used in Microbial Desalination Cell Technology
Abstract
:1. Introduction
2. Characterization of Exoelectrogenic Bacteria in MDC
2.1. Respiration of Exoelectrogens
2.2. Methods Electron Transports in METs
- (1)
- Direct contact of the exoelectrogens cells with the anode for electron transfer using C-Type Cytochromes (CTCs);
- (2)
- The use of soluble electron shuttles such as flavins;
- (3)
- By solid conductive components, such as nanowires or pili;
- (4)
2.3. Pure Cultures and Mixed Cultures in MDC
3. Performance Indicators of Exoelectrogens in MDCs
3.1. Substrates and COD Removal
3.2. Electricity Output
3.3. The Balance of pH
3.4. Desalination
3.5. Structural Integrity of Ion Exchange Membranes
4. Future Prospect
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Cao, X.; Huang, X.; Liang, P.; Xiao, K.; Zhou, Y.; Zhang, X.; Logan, B.E. A new method for water desalination using microbial desalination cells. Environ. Sci. Technol. 2009, 43, 7148–7152. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Xia, X.; Liang, P.; Cao, X.; Sun, H.; Huang, X. Stacked microbial desalination cells to enhance water desalination efficiency. Environ. Sci. Technol. 2011, 45, 2465–2470. [Google Scholar] [CrossRef] [PubMed]
- Gude, V.G.; Kokabian, B.; Gadhamshetty, V. Beneficial bioelectrochemical systems for energy, water, and biomass production. J. Microb. Biochem. Technol. 2013, 5. [Google Scholar] [CrossRef]
- Jingyu, H.; Ewusi-Mensah, D.; Norgbey, E. Microbial desalination cells technology: A review of the factors affecting the process, performance and efficiency. Desalin. Water Treat. 2017, 87, 140–159. [Google Scholar] [CrossRef]
- Kim, Y.; Logan, B.E. Microbial desalination cells for energy production and desalination. Desalination 2013, 308, 122–130. [Google Scholar] [CrossRef]
- Mehanna, M.; Saito, T.; Yan, J.; Hickner, M.; Cao, X.; Huang, X.; Logan, B.E. Using microbial desalination cells to reduce water salinity prior to reverse osmosis. Energy Environ. Sci. 2010, 3, 1114–1120. [Google Scholar] [CrossRef]
- Zhang, Y.; Angelidaki, I. A new method for in situ nitrate removal from groundwater using submerged microbial desalination-denitrification cell (SMDDC). Water Res. 2013, 47, 1827–1836. [Google Scholar] [CrossRef]
- Zuo, K.; Liu, F.; Ren, S.; Zhang, X.; Liang, P.; Huang, X. A novel multi-stage microbial desalination cell for simultaneous desalination and enhanced organics and nitrogen removal from domestic wastewater. Environ. Sci. Water Res. Technol. 2016, 2, 832–837. [Google Scholar] [CrossRef]
- Das, D. Microbial Fuel Cell: A Bioelectrochemical System That Converts Waste to Watts; Springer International Publishing: Berlin/Heidelberg, Germany, 2017; pp. 1–506. [Google Scholar]
- Luo, H.; Xu, P.; Ren, Z. Long-term performance and characterization of microbial desalination cells in treating domestic wastewater. Bioresour. Technol. 2012, 120, 187–193. [Google Scholar] [CrossRef]
- Saeed, H.M.; Husseini, G.A.; Yousef, S.; Saif, J.; Al-Asheh, S.; Abu Fara, A.; Azzam, S.; Khawaga, R.; Aidan, A. Microbial desalination cell technology: A review and a case study. Desalination 2015, 359, 1–13. [Google Scholar] [CrossRef]
- Luo, H.; Xu, P.; Roane, T.M.; Jenkins, P.E.; Ren, Z. Microbial desalination cells for improved performance in wastewater treatment, electricity production, and desalination. Bioresour. Technol. 2012, 105, 60–66. [Google Scholar] [CrossRef] [PubMed]
- Utami, T.S.; Arbianti, R.; Manaf, B.N. Sea water desalination using Debaryomyces hansenii with microbial desalination cell technology. Int. J. Technol. 2015, 6, 1094–1100. [Google Scholar] [CrossRef]
- Shinde, O.A.; Bansal, A.; Banerjee, A.; Sarkar, S. Bioremediation of steel plant wastewater and enhanced electricity generation in Microbial desalination cell. Water Sci. Technol. 2018, 77, 2101–2112. [Google Scholar] [CrossRef] [PubMed]
- Kalleary, S.; Mohammed Abbas, F.; Ganesan, A.; Meenatchisundaram, S.; Srinivasan, B.; Packirisamy, A.S.B.; Kesavan, R.K.; Muthusamy, S. Biodegradation and bioelectricity generation by Microbial Desalination Cell. Int. Biodeterior. Biodegrad. 2014, 92, 20–25. [Google Scholar] [CrossRef]
- Logan, B.E. Microbial Fuel Cells; John Wiley & Sons, Inc.: New York, NY, USA, 2008. [Google Scholar]
- Logan, B.E. Exoelectrogenic bacteria that power microbial fuel cells. Nat. Rev. Microbiol. 2009, 7, 375–381. [Google Scholar] [CrossRef]
- Rabaey, K.; Nico, B.; Steven, D.S.; Marc, V.; Marc, V.; Verstraete, W. Biofuel Cells Select for Microbial Consortia That Self-Mediate Electron Transfer Korneel. Appl. Environ. Microbiol. 2004, 70, 5373–5382. [Google Scholar]
- Zuo, Y.; Xing, D.; Regan, J.M.; Logan, B.E. Isolation of the exoelectrogenic bacterium Ochrobactrum anthropi YZ-1 by using a U-tube microbial fuel cell. Appl. Environ. Microbiol. 2008, 74, 3130–3137. [Google Scholar] [CrossRef] [Green Version]
- Bond, D.R.; Lovley, D.R. Electricity production by Geobacter sulfurreducens attached to electrodes. Appl Env. Microbiol. 2003, 1548–1555. [Google Scholar]
- Kim, H.J.; Park, H.S.; Hyun, M.S.; Chang, I.S.; Kim, M.; Kim, B.H. A mediator-less microbial fuel cell using a metal reducing bacterium, Shewanella putrefaciens. Enzyme Microb. Technol. 2002, 30, 145–152. [Google Scholar] [CrossRef]
- Holmes, D.E.; Nicoll, J.S.; Bond, D.R.; Lovley, D.R.; Al, H.E.T.; Icrobiol, A. Potential Role of a Novel Psychrotolerant Member of the Family Geobacteraceae. Appl. Environ. Microbiol. 2004, 70, 6023–6030. [Google Scholar] [CrossRef] [Green Version]
- Bond, D.R.; Lovley, D.R. Evidence for involvement of an electron shuttle in electricity generation by Geothrix fermentans. Appl. Environ. Microbiol. 2005, 71, 2186–2189. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bond, D.R.; Holmes, D.E.; Tender, L.M.; Lovley, D.R. Electrode-reducing microorganisms that harvest energy from marine sediments. Science 2002, 295, 483–485. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Holmes, D.E.; Bond, D.R.; Lovley, D.R. Electron Transfer by Desulfobulbus propionicus to Fe ( III ) and Graphite Electrodes Electron Transfer by Desulfobulbus propionicus to Fe ( III ) and Graphite Electrod. Appl. Environ. Microbiol. 2004, 70, 1234–1237. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Park, H.S.; Kim, B.H.; Kim, H.S.; Kim, H.J.; Kim, G.T.; Kim, M.; Chang, I.S.; Park, Y.K.; Chang, H.I. A novel electrochemically active and Fe(III)-reducing bacterium phylogenetically related to Clostridium butyricum isolated from a microbial fuel cell. Anaerobe 2001, 7, 297–306. [Google Scholar] [CrossRef]
- Zhang, T.; Cui, C.; Chen, S.; Ai, X.; Yang, H.; Shen, P.; Peng, Z. A novel mediatorless microbial fuel cell based on direct biocatalysis of Escherichia coli. Chem. Commun. 2006, 2257–2259. [Google Scholar] [CrossRef]
- Chaudhuri, S.K.; Lovley, D.R. Electricity generation by direct oxidation of glucose in mediatorless microbial fuel cells. Nat. Biotechnol. 2003, 21, 1229–1232. [Google Scholar] [CrossRef]
- Xing, D.; Zuo, Y.; Cheng, S.; Regan, J.M.; Logan, B.E. Electricity generation by Rhodopseudomonas palustris DX-1. Environ. Sci. Technol. 2008, 42, 4146–4151. [Google Scholar] [CrossRef]
- Haddock, B.A.; Jones, C.W. Bacterial Respiration. Bacteriol. Rev. 1977, 41, 47–99. [Google Scholar] [CrossRef]
- Zhu, X.; Yates, M.D.; Hatzell, M.C.; Ananda Rao, H.; Saikaly, P.E.; Logan, B.E. Microbial community composition is unaffected by anode potential. Environ. Sci. Technol. 2014, 48, 1352–1358. [Google Scholar] [CrossRef]
- Kumar, R.; Singh, L.; Zularisam, A.W. Exoelectrogens: Recent advances in molecular drivers involved in extracellular electron transfer and strategies used to improve it for microbial fuel cell applications. Renew. Sustain. Energy Rev. 2016, 56, 1322–1336. [Google Scholar] [CrossRef] [Green Version]
- Cao, Y.; Mu, H.; Liu, W.; Zhang, R.; Guo, J.; Xian, M.; Liu, H. Electricigens in the anode of microbial fuel cells: Pure cultures versus mixed communities 06 Biological Sciences 0605 Microbiology. Microb. Cell Fact. 2019, 18, 1–14. [Google Scholar]
- Yasri, N.; Roberts, E.P.L.; Gunasekaran, S. The electrochemical perspective of bioelectrocatalytic activities in microbial electrolysis and microbial fuel cells The electrochemical perspective of bioelectrocatalytic activities in microbial electrolysis and microbial fuel cells. Energy Rep. 2019, 5, 1116–1136. [Google Scholar] [CrossRef]
- Zhang, C.; Liu, G.; Zhang, R.; Luo, H. Electricity production from and biodegradation of quinoline in the microbial fuel cell. J. Environ. Sci. Heal. Part A Toxic/Hazardous Subst. Environ. Eng. 2010, 45, 250–256. [Google Scholar] [CrossRef] [PubMed]
- Kim, B.H.; Ikeda, T.; Park, H.S.; Kim, H.J.; Hyun, M.S.; Kano, K.; Takagi, K.; Tatsumi, H. Electrochemical activity of an Fe(III)-reducing bacterium, Shewanella putrefaciens IR-1, in the presence of alternative electron acceptors. Biotechnol. Tech. 1999, 13, 475–478. [Google Scholar] [CrossRef]
- Feng, C.; Li, J.; Qin, D.; Chen, L.; Zhao, F.; Chen, S.; Hu, H.; Yu, C.P. Characterization of exoelectrogenic bacteria enterobacter strains isolated from a microbial fuel cell exposed to copper shock load. PLoS ONE 2014, 9, 113379. [Google Scholar] [CrossRef] [PubMed]
- Juan, F.O.M. Analysis of Exoelectrogenic Bacterial Communities Present in Di erent Brine Pools of the Red Sea. Ph.D. Thesis, King Abdullah University of Science Technology, Thuwal, Kingdom Saudi Arab, 2014. [Google Scholar]
- Torres, C.I.; Marcus, A.K.; Lee, H.S.; Parameswaran, P.; Krajmalnik-Brown, R.; Rittmann, B.E. A kinetic perspective on extracellular electron transfer by anode-respiring bacteria. FEMS Microbiol. Rev. 2010, 34, 3–17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, Y.; Xu, M.; Guo, J.; Sun, G. Bacterial extracellular electron transfer in bioelectrochemical systems. Process Biochem. 2012, 47, 1707–1714. [Google Scholar] [CrossRef]
- Ishii, S.; Suzuki, S.; Norden-Krichmar, T.M.; Tenney, A.; Chain, P.S.G.; Scholz, M.B.; Nealson, K.H.; Bretschger, O. A novel metatranscriptomic approach to identify gene expression dynamics during extracellular electron transfer. Nat. Commun. 2013, 4, 1601. [Google Scholar] [CrossRef]
- Luo, H.; Xu, P.; Jenkins, P.E.; Ren, Z. Ionic composition and transport mechanisms in microbial desalination cells. J. Memb. Sci. 2012, 409–410, 16–23. [Google Scholar] [CrossRef]
- Ping, Q. Advancing Microbial Desalination Cell towards Practical Applications. Ph.D. Thesis, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA, 2016. [Google Scholar]
- El-Naggar, M.Y.; Gorby, Y.A.; Xia, W.; Nealson, K.H. The molecular density of states in bacterial nanowires. Biophys. J. 2008, 95, 10–12. [Google Scholar] [CrossRef] [Green Version]
- Gorby, Y.A.; Yanina, S.; McLean, J.S.; Rosso, K.M.; Moyles, D.; Dohnalkova, A.; Beveridge, T.J.; Chang, I.S.; Kim, B.H.; Kim, K.S.; et al. Electrically conductive bacterial nanowires produced by Shewanella oneidensis strain MR-1 and other microorganisms. Proc. Natl. Acad. Sci. USA 2006, 103, 11358–11363. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Catal, T.; Bermek, H.; Liu, H. Removal of selenite from wastewater using microbial fuel cells. Biotechnol. Lett. 2009, 31, 1211–1216. [Google Scholar] [CrossRef] [PubMed]
- Morris, J.M.; Jin, S. Enhanced biodegradation of hydrocarbon-contaminated sediments using microbial fuel cells. J. Hazard. Mater. 2012, 213–214, 474–477. [Google Scholar] [CrossRef] [PubMed]
- Rikame, S.S.; Mungray, A.A.; Mungray, A.K. Electricity generation from acidogenic food waste leachate using dual chamber mediator less microbial fuel cell. Int. Biodeterior. Biodegrad. 2012, 75, 131–137. [Google Scholar] [CrossRef]
- Fan, Y.; Hu, H.; Liu, H. Sustainable power generation in microbial fuel cells using bicarbonate buffer and proton transfer mechanisms. Environ. Sci. Technol. 2007, 41, 8154–8158. [Google Scholar] [CrossRef] [PubMed]
- Qu, Y.; Feng, Y.; Wang, X.; Liu, J.; Lv, J.; He, W.; Logan, B.E. Simultaneous water desalination and electricity generation in a microbial desalination cell with electrolyte recirculation for pH control. Bioresour. Technol. 2012, 106, 89–94. [Google Scholar] [CrossRef] [PubMed]
- Lefebvre, O.; Tan, Z.; Kharkwal, S.; Ng, H.Y. Effect of increasing anodic NaCl concentration on microbial fuel cell performance. Bioresour. Technol. 2012, 112, 336–340. [Google Scholar] [CrossRef]
- Oh, S.E.; Logan, B.E. Proton exchange membrane and electrode surface areas as factors that affect power generation in microbial fuel cells. Appl. Microbiol. Biotechnol. 2006, 70, 162–169. [Google Scholar] [CrossRef]
Pure Cultures | Mixed Cultures |
---|---|
Substrate specificity | Predominant species dependent on substrate |
Uses one or few of the electron transfer mechanism | Combines several electron transfer mechanism |
Very costly in isolating and preparation | Less costly in obtaining and preparation |
Less efficient in electricity generation | More efficient in electricity generation |
Known electron transfer mechanism which can be engineered for optimum performance | Unknown electron transfer mechanism being used. |
Exoelectrogens At Anode Chamber | Substrate | Mode of Operation | COD Removal at Anode Chamber | Desalination | pH of Anolyte | Temp. (°C) of Anolyte | Power Output | Configuration | References |
---|---|---|---|---|---|---|---|---|---|
Debaryomyces hansenii | Glucose | Batch | - | 55.03% | 6.5 | - | 488 mW/m3 | Conventional MDC | [13] |
Biofilm predominantly Proteobacteria | Domestic Waste Water | Fed-Batch | 55% | <66% | - | - | 3.6 W/m3 | Conventional MDC | [10] |
Biofilm predominantly Actinobacteria | Municipal Waste Water | Batch | 52% | 66% | 6.0 ± 0.1 | - | 8.01 W/m3 | Conventional MDC | [12] |
Pseudomonas putida with activated sludge | Steel Plant Waste Water | Batch | 70 ± 1.8% | - | 7.0 ± 0.2 | - | 10.2 mW/m2 | Multi-Chambered MDC | [14] |
Bacillus subtilis moh3 | 0.1% yeast extract with Malachite green dye | Fed-Batch | Complete de-colorization | 62.2 ± 0.4% | 4.0–8.0 | 30.0 | 0.15 ± 0.05 W/m3 | Conventional MDC | [15] |
Bacillus subtilis moh3 | 0.1% yeast extract with Sunset yellow dye | Fed-Batch | Complete de-colorization | 57.6 ± 0.2% | 4.0–8.0 | 30.0 | 0.14 ± 0.03 W/m3 | Conventional MDC | [15] |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guang, L.; Koomson, D.A.; Jingyu, H.; Ewusi-Mensah, D.; Miwornunyuie, N. Performance of Exoelectrogenic Bacteria Used in Microbial Desalination Cell Technology. Int. J. Environ. Res. Public Health 2020, 17, 1121. https://doi.org/10.3390/ijerph17031121
Guang L, Koomson DA, Jingyu H, Ewusi-Mensah D, Miwornunyuie N. Performance of Exoelectrogenic Bacteria Used in Microbial Desalination Cell Technology. International Journal of Environmental Research and Public Health. 2020; 17(3):1121. https://doi.org/10.3390/ijerph17031121
Chicago/Turabian StyleGuang, Li, Desmond Ato Koomson, Huang Jingyu, David Ewusi-Mensah, and Nicholas Miwornunyuie. 2020. "Performance of Exoelectrogenic Bacteria Used in Microbial Desalination Cell Technology" International Journal of Environmental Research and Public Health 17, no. 3: 1121. https://doi.org/10.3390/ijerph17031121
APA StyleGuang, L., Koomson, D. A., Jingyu, H., Ewusi-Mensah, D., & Miwornunyuie, N. (2020). Performance of Exoelectrogenic Bacteria Used in Microbial Desalination Cell Technology. International Journal of Environmental Research and Public Health, 17(3), 1121. https://doi.org/10.3390/ijerph17031121