Spatio-Temporal Variation of Groundwater Quality and Source Apportionment Using Multivariate Statistical Techniques for the Hutuo River Alluvial-Pluvial Fan, China
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Groundwater Sampling and Laboratory Analyses
2.3. Data Analysis
2.3.1. Principal Component Analysis (PCA)
2.3.2. Absolute Principal Component Score-Multiple Linear Regression (APCS-MLR)
2.3.3. Water Quality Index (WQI)
3. Results and Discussion
3.1. Groundwater Quality Characteristic of the Hutuo River Alluvial-Pluvial Fan
3.2. Water Quality Classification
3.3. Spatio-Temporal Variation in Groundwater Quality
3.4. Correlations between the Water Quality Variables
3.5. Identifying the Main Groundwater Pollution Sources via PCA
3.6. Source Apportionment Using APCS-MLR
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Qin, R.; Wu, Y.; Xu, Z.; Xie, D.; Zhang, C. Assessing the impact of natural and anthropogenic activities on groundwater quality in coastal alluvial aquifers of the lower Liaohe River Plain, NE China. Appl. Geochem. 2013, 31, 142–158. [Google Scholar] [CrossRef]
- Golchin, I.; Moghaddam, M.A. Hydro-geochemical characteristics and groundwater quality assessment in Iranshahr plain aquifer, Iran. Environ. Earth Sci. 2016, 75, 317. [Google Scholar] [CrossRef]
- Lapworth, D.J.; Krishan, G.; Macdonald, A.M.; Rao, M.S. Groundwater quality in the alluvial aquifer system of northwest India: New evidence of the extent of anthropogenic and geogenic contamination. Sci. Total Environ. 2017, 599–600, 1433–1444. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Wang, H.; Wang, Y.; Yang, M.; Zhu, L. Groundwater quality assessment and pollution source apportionment in an intensely exploited region of northern China. Environ. Sci. Pollut. Res. 2017, 24, 16639–16650. [Google Scholar] [CrossRef]
- Gu, H.; Chi, B.; Li, H.; Jiang, J.; Qin, W.; He, W. Assessment of groundwater quality and identification of contaminant sources of Liujiang basin in Qinhuangdao, North China. Environ. Earth Sci. 2015, 73, 6477–6493. [Google Scholar] [CrossRef]
- Huang, G.; Sun, J.; Zhang, Y.; Chen, Z.; Liu, F. Impact of anthropogenic and natural processes on the evolution of groundwater chemistry in a rapidly urbanized coastal area, South China. Sci. Total Environ. 2013, 463, 209–221. [Google Scholar] [CrossRef]
- Herojeet, R.; Rishi, M.S.; Lata, R.; Sharma, R. Application of environmetrics statistical models and water quality index for groundwater quality characterization of alluvial aquifer of Nalagarh Valley, Himachal Pradesh, India. Sustain. Water Resour. Manag. 2016, 2, 39–53. [Google Scholar] [CrossRef]
- Hakan, A. Application of multivariate statistical techniques in the assessment of groundwater quality in seawater intrusion area in Bafra Plain, Turkey. Environ. Monit. Assess. 2013, 185, 2439. [Google Scholar]
- Zhang, B.; Song, X.; Zhang, Y.; Han, D.; Tang, C.; Yu, Y.; Ma, Y. Hydrogeochemical characteristics and water quality assessment of surface water and groundwater in Songnen plain, Northeast China. Water Res. 2012, 46, 2737–2748. [Google Scholar] [CrossRef]
- Pereira, H.G.; Renca, S.; Sataiva, J. A case study on geochemical anomaly identification through principal component analysis supplementary projection. Appl. Geochem. 2003, 18, 37–44. [Google Scholar] [CrossRef]
- Gholizadeh, M.H.; Melesse, A.M.; Reddi, L. Water quality assessment and apportionment of pollution sources using APCS-MLR and PMF receptor modeling techniques in three major rivers of South Florida. Sci. Total Environ. 2016, 566–567, 1552–1567. [Google Scholar] [CrossRef]
- Busico, G.; Cuoco, E.; Kazakis, N.; Colombani, N.; Mastrocicco, M.; Tedesco, D.; Voudouris, K. Multivariate statistical analysis to characterize/discriminate between anthropogenic and geogenic trace elements occurrence in the Campania plain, Southern Italy. Environ. Pollut. 2018, 234, 260–269. [Google Scholar] [CrossRef] [PubMed]
- Kim, K.; Yun, S.; Choi, B.; Chae, G.; Joo, Y.; Kim, K.; Kim, H. Hydrochemical and multivariate statistical interpretations of spatial controls of nitrate concentrations in a shallow alluvial aquifer around oxbow lakes (Osong area, central Korea). J. Cont. Hydrol. 2009, 107, 114–127. [Google Scholar] [CrossRef] [PubMed]
- Boateng, T.K.; Opoku, F.; Acquaah, S.O.; Akoto, O. Groundwater quality assessment using statistical approach and water quality index in Ejisu-Juaben Municipality, Ghana. Environ. Earth Sci. 2016, 75, 489. [Google Scholar] [CrossRef]
- Rao, N.S. Spatial control of groundwater contamination, using principal component analysis. J. Earth Syst. Sci. 2014, 123, 715–728. [Google Scholar] [CrossRef]
- Zhang, Q.; Wang, H.; Wang, L. Tracing nitrate pollution sources and transformations in the over-exploited groundwater region of North China using stable isotopes. J. Contam. Hydrol. 2018, 218, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Zhang, Z.; Fei, Y.; Chen, H.; Qian, Y.; Yu, D. Investigation of quality and pollution characteristics of groundwater in the Hutuo River Alluvial Plain, North China. Plain. Environ. Earth Sci. 2016, 75, 1–10. [Google Scholar] [CrossRef]
- Foster, S.; Garduno, H.; Evans, R.; Olson, D.; Tian, Y.; Zhang, W.; Han, Z. Quaternary aquifer of the north china plain—assessing and achieving groundwater resource sustainability. Hydrogeol. J. 2004, 12, 81–93. [Google Scholar] [CrossRef]
- Zhang, Q.; Miao, L.; Wang, H.; Hou, J.; Li, Y. How Rapid Urbanization Drives Deteriorating Groundwater Quality in a Provincial Capital of China. Pol. J. Environ. Stud. 2020, 29, 441–450. [Google Scholar] [CrossRef]
- Ministry of Natural Resources of the People’s Republic of China. Standard for Groundwater Quality, (GB/T 14848-2017); General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China: Beijing, China, 2017. (In Chinese)
- Kai, Y.U.; Hao, A.; Duo, L.I.; Liu, Z. Distribution of groundwater salt pollution and pollution mechanism in Shijiazhuang. Earth Sci. Front. 2001, 8, 151–154. [Google Scholar]
- Helena, B.; Pardo, R.; Vega, M.; Barrado, E.; Fernandez, J.M.; Fernandez, L. Temporal evolution of groundwater composition in an alluvial aquifer (Pisuerga River, Spain) by principal component analysis. Water Res. 2000, 34, 807–816. [Google Scholar] [CrossRef]
- Kaiser, H.F. The varimax criterion for analytic rotation in factor analysis. Psychometrika 1958, 23, 187–200. [Google Scholar] [CrossRef]
- Su, S.; Zhi, J.; Lou, L.; Fang, H.; Xia, C.; Wu, J. Spatio-temporal patterns and source apportionment of pollution in Qiantang River (China) using neural-based modeling and multivariate statistical techniques. Phys. Chem. Earth 2011, 36, 379–386. [Google Scholar] [CrossRef]
- Avvannavar, S.M.; Shrihari, S. Evaluation of water quality index for drinking purposes for river Netravathi, Mangalore, South India. Environ. Monit. Assess. 2008, 143, 279–290. [Google Scholar] [CrossRef] [PubMed]
- Lumb, A.; Sharma, T.C.; Bibeault, J.F. A review of genesis and evolution of water quality index (WQI) and some future directions. Water Qual. Expo. Health 2011, 3, 11–24. [Google Scholar] [CrossRef]
- World Health Organization. Guidelines for Drinking-Water Quality, 4th ed.; World Health Organization: Geneva, Switzerland, 2011. [Google Scholar]
- Del Campo, M.M.; Esteller, M.V.; Expósito, J.L.; Hirata, R. Impacts of urbanization on groundwater hydrodynamics and hydrochemistry of the Toluca Valley aquifer (Mexico). Environ. Monit. Assess. 2014, 186, 2979–2999. [Google Scholar] [CrossRef] [PubMed]
- Juahir, H.; Zain, S.M.; Yusoff, M.K.; Hanidza, T.I.T.; Armi, A.S.M.; Toriman, M.E.; Mokhtar, M. Spatial water quality assessment of Langat River Basin (Malaysia) using environmetric techniques. Environ. Monit. Assess. 2011, 173, 625–641. [Google Scholar] [CrossRef]
- Bordeleau, G.; Savard, M.M.; Martel, R.; Ampleman, G.; Thiboutot, S. Determination of the origin of groundwater nitrate at an air weapons range using the dual isotope approach. J. Contam. Hydrol. 2008, 98, 97–105. [Google Scholar] [CrossRef]
- Xue, D.; Botte, J.; Baets, B.D.; Accoe, F.; Nestler, A.; Taylor, P. Present limitations and future prospects of stable isotope methods for nitrate source identification in surface- and groundwater. Water Res. 2009, 43, 1159–1170. [Google Scholar] [CrossRef]
- Jiang, Y.; Wu, Y.; Groves, C.; Yuan, D.; Kambesis, P. Natural and anthropogenic factors affecting the groundwater quality in the Nandong karst underground river system in Yunan, China. J. Contam. Hydrol. 2009, 109, 49–61. [Google Scholar] [CrossRef]
- Jin, Z.; Xue, Q.; Chen, L.; Jin, M.; Li, F. Using dual isotopes to evaluate sources and transformations of nitrate in the West Lake watershed, eastern China. J. Contam. Hydrol. 2015, 177–178, 64–75. [Google Scholar] [CrossRef] [PubMed]
- Bu, H.; Tan, X.; Li, S.; Zhang, Q. Temporal and spatial variations of water quality in the Jinshui River of the South Qinling Mts.; China. Ecotoxicol. Environ. Saf. 2010, 73, 907–913. [Google Scholar] [CrossRef] [PubMed]
- Young, L.J.; Hyoungjun, K.; Youngjin, K.; Han, M.Y. Characteristics of the event mean concentration (EMC) from rainfall runoff on an urban highway. Environ. Pollut. 2011, 159, 884–888. [Google Scholar]
- Zhang, Q.; Wang, X.; Hou, P.; Wan, W.; Ren, Y.; Ouyang, Z.; Yang, L. The temporal changes in road stormwater runoff quality and the implications to first flush control in Chongqing, China. Environ. Monit. Assess. 2013, 185, 9763–9775. [Google Scholar] [CrossRef]
- Su, S.; Li, D.; Zhang, Q.; Xiao, R.; Huang, F.; Wu, J. Temporal trend and source apportionment of water pollution in different functional zones of Qiantang River, China. Water Res. 2011, 45, 1781–1795. [Google Scholar] [CrossRef]
- Zhou, F.; Huang, G.H.; Guo, H.; Zhang, W.; Hao, Z. Spatio-temporal patterns and source apportionment of coastal water pollution in eastern Hong Kong. Water Res. 2007, 41, 3429–3439. [Google Scholar] [CrossRef]
Parameters | Mean | S.D. | Min | Max | Standard | Below Standards for All Sites (%) | Units |
---|---|---|---|---|---|---|---|
pH | 7.48 | 0.30 | 6.85 | 8.54 | 6.5–8.5 | 1.23 | |
EC | 1303.32 | 559.78 | 370.00 | 3530.00 | - | - | μs/cm |
Na+ | 46.40 | 43.59 | 8.88 | 262.40 | 200 | 1.23 | mg/L |
Ca2+ | 175.69 | 66.08 | 51.57 | 359.80 | - | - | mg/L |
Mg2+ | 39.25 | 18.53 | 10.23 | 108.40 | - | - | mg/L |
Cl− | 100.59 | 73.67 | 15.85 | 385.90 | 250 | 4.94 | mg/L |
SO42− | 181.82 | 93.17 | 21.77 | 530.80 | 250 | 18.52 | mg/L |
HCO3− | 320.69 | 71.09 | 153.30 | 462.10 | - | - | mg/L |
NO3− | 121.90 | 105.92 | 5.04 | 509.00 | 88.6 | 53.09 | mg/L |
NO2− | 0.019 | 0.103 | 0.002 | 0.920 | 3.29 | 0 | mg/L |
TH | 600.32 | 217.17 | 178.10 | 1345.00 | 450 | 83.95 | mg/L |
TDS | 848.97 | 381.21 | 239.10 | 2269.00 | 1000 | 22.22 | mg/L |
COD | 0.922 | 0.378 | 0.320 | 2.240 | 3.0 | 0 | mg/L |
Fe | 0.216 | 0.478 | 0.010 | 3.216 | 0.3 | 17.28 | mg/L |
Mn | 0.008 | 0.016 | 0.001 | 0.120 | 0.1 | 1.23 | mg/L |
WQI Range | Dry Season | Rainy Season | Transition Season | |||
---|---|---|---|---|---|---|
Number | Rate (%) | Number | Rate (%) | Number | Rate (%) | |
Excellent water | 2 | 7.41 | 2 | 7.41 | 3 | 11.11 |
Good water | 15 | 55.56 | 19 | 70.37 | 19 | 70.37 |
Poor water | 8 | 29.63 | 4 | 14.81 | 5 | 18.52 |
Very poor water | 2 | 7.41 | 2 | 7.41 | 0 | 0.00 |
Water unsuitable for drinking purposes | 0 | 0.00 | 0 | 0.00 | 0 | 0.00 |
Sum | 27 | 27 | 27 |
Parameters | Dry Season | Wet Season | Transition Season | ||||||
---|---|---|---|---|---|---|---|---|---|
PC1 | PC2 | PC3 | PC1 | PC2 | PC3 | PC1 | PC2 | PC3 | |
pH | 0.041 | −0.121 | −0.745 | −0.879 | −0.021 | −0.191 | −0.810 | 0.133 | −0.001 |
TDS | 0.952 | 0.221 | 0.185 | 0.623 | 0.703 | 0.296 | 0.799 | 0.576 | 0.057 |
K+ | 0.748 | 0.285 | −0.402 | 0.099 | 0.779 | 0.353 | 0.136 | 0.777 | 0.101 |
Na+ | 0.721 | 0.525 | −0.071 | 0.376 | 0.694 | 0.484 | 0.608 | 0.636 | 0.037 |
Ca2+ | 0.891 | 0.087 | 0.359 | 0.811 | 0.520 | 0.179 | 0.815 | 0.403 | 0.167 |
Mg2+ | 0.709 | 0.078 | 0.380 | 0.604 | 0.323 | 0.413 | 0.756 | 0.107 | −0.064 |
Cl− | 0.883 | 0.189 | −0.028 | 0.548 | 0.672 | 0.232 | 0.599 | 0.697 | 0.040 |
NO3− | 0.906 | 0.055 | −0.008 | 0.793 | 0.347 | 0.079 | 0.814 | 0.194 | 0.189 |
SO42− | 0.735 | 0.356 | 0.263 | 0.530 | 0.619 | 0.406 | 0.768 | 0.413 | −0.040 |
HCO3− | 0.402 | 0.107 | 0.798 | 0.638 | 0.352 | 0.490 | 0.902 | 0.030 | 0.098 |
TH | 0.923 | 0.093 | 0.330 | 0.789 | 0.505 | 0.316 | 0.903 | 0.356 | 0.111 |
COD | 0.694 | 0.423 | 0.054 | 0.259 | 0.888 | −0.049 | −0.021 | 0.866 | −0.096 |
Mn | 0.056 | 0.916 | 0.070 | 0.104 | 0.077 | 0.921 | −0.036 | 0.018 | 0.934 |
Fe | 0.297 | 0.820 | 0.210 | 0.251 | 0.246 | 0.834 | 0.180 | 0.012 | 0.932 |
Eigenvalue | 8.09 | 1.59 | 1.48 | 9.14 | 1.40 | 1.09 | 7.65 | 1.87 | 1.64 |
% Total variance | 57.80 | 11.33 | 10.56 | 65.31 | 10.00 | 7.80 | 54.64 | 13.32 | 11.72 |
Cumulative % variance | 57.80 | 69.13 | 79.69 | 65.31 | 75.31 | 83.12 | 54.64 | 67.96 | 79.68 |
Parameters | Potential Pollution Source in the Dry Season (a) | R2 | Potential Pollution Source in the Wet Season (b) | R2 | Potential Pollution Source in the Transition Season (c) | R2 | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
S1 | S2 | S3 | US d | S1 | S2 | S3 | US | S1 | S2 | S3 | US | ||||
pH | 0.00 | 0.00 | 31.08 | 68.92 | 0.550 | 26.72 | 0.00 | 0.00 | 73.28 | 0.407 | 61.11 | 0.00 | 0.00 | 38.89 | 0.681 |
TDS | 60.84 | 4.31 | 34.44 | 0.41 | 0.991 | 14.08 | 60.02 | 8.05 | 17.85 | 0.763 | 46.97 | 1.69 | 39.46 | 11.88 | 0.979 |
K+ | 34.33 | 3.26 | 21.81 | 40.60 | 0.830 | 16.00 | 53.31 | 0.00 | 30.69 | 0.600 | 18.41 | 32.60 | 0.00 | 48.99 | 0.532 |
Na+ | 57.98 | 15.39 | 0.00 | 26.62 | 0.857 | 20.24 | 57.36 | 0.00 | 22.40 | 0.765 | 24.01 | 55.00 | 0.00 | 20.99 | 0.693 |
Ca2+ | 50.62 | 0.00 | 38.85 | 10.53 | 0.865 | 68.15 | 12.05 | 10.33 | 9.47 | 0.634 | 63.19 | 2.22 | 0.00 | 34.59 | 0.841 |
Mg2+ | 41.66 | 0.00 | 33.21 | 25.13 | 0.651 | 79.73 | 0.00 | 0.00 | 20.27 | 0.482 | 64.54 | 0.00 | 0.00 | 35.46 | 0.537 |
Cl− | 54.09 | 4.06 | 0.00 | 41.85 | 0.833 | 32.74 | 44.50 | 0.00 | 22.76 | 0.590 | 21.99 | 45.62 | 1.43 | 30.96 | 0.815 |
NO3− | 55.20 | 0.00 | 0.00 | 44.80 | 0.827 | 59.72 | 9.63 | 0.00 | 30.65 | 0.598 | 55.57 | 0.00 | 0.00 | 44.43 | 0.654 |
SO42− | 41.32 | 4.57 | 28.27 | 25.84 | 0.732 | 24.16 | 42.92 | 10.04 | 22.88 | 0.810 | 62.51 | 0.00 | 0.00 | 37.49 | 0.679 |
HCO3− | 7.12 | 0.00 | 43.64 | 49.24 | 0.824 | 37.98 | 9.95 | 0.00 | 52.06 | 0.489 | 41.16 | 0.00 | 15.56 | 43.28 | 0.672 |
TH | 41.40 | 0.96 | 39.99 | 17.66 | 0.974 | 78.85 | 10.69 | 0.00 | 10.47 | 0.626 | 41.72 | 39.49 | 0.00 | 18.79 | 0.935 |
COD | 71.06 | 13.90 | 0.00 | 15.04 | 0.645 | 0.00 | 43.05 | 0.00 | 56.95 | 0.523 | 13.57 | 57.09 | 0.00 | 29.34 | 0.381 |
Mn | 0.00 | 36.12 | 13.54 | 50.34 | 0.800 | 0.00 | 0.00 | 53.73 | 46.27 | 0.411 | 0.00 | 0.00 | 38.71 | 61.29 | 0.556 |
Fe | 33.64 | 55.59 | 0.00 | 10.77 | 0.888 | 0.00 | 0.00 | 52.90 | 47.10 | 0.503 | 0.00 | 0.00 | 39.56 | 60.44 | 0.605 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Q.; Wang, L.; Wang, H.; Zhu, X.; Wang, L. Spatio-Temporal Variation of Groundwater Quality and Source Apportionment Using Multivariate Statistical Techniques for the Hutuo River Alluvial-Pluvial Fan, China. Int. J. Environ. Res. Public Health 2020, 17, 1055. https://doi.org/10.3390/ijerph17031055
Zhang Q, Wang L, Wang H, Zhu X, Wang L. Spatio-Temporal Variation of Groundwater Quality and Source Apportionment Using Multivariate Statistical Techniques for the Hutuo River Alluvial-Pluvial Fan, China. International Journal of Environmental Research and Public Health. 2020; 17(3):1055. https://doi.org/10.3390/ijerph17031055
Chicago/Turabian StyleZhang, Qianqian, Long Wang, Huiwei Wang, Xi Zhu, and Lijun Wang. 2020. "Spatio-Temporal Variation of Groundwater Quality and Source Apportionment Using Multivariate Statistical Techniques for the Hutuo River Alluvial-Pluvial Fan, China" International Journal of Environmental Research and Public Health 17, no. 3: 1055. https://doi.org/10.3390/ijerph17031055
APA StyleZhang, Q., Wang, L., Wang, H., Zhu, X., & Wang, L. (2020). Spatio-Temporal Variation of Groundwater Quality and Source Apportionment Using Multivariate Statistical Techniques for the Hutuo River Alluvial-Pluvial Fan, China. International Journal of Environmental Research and Public Health, 17(3), 1055. https://doi.org/10.3390/ijerph17031055