Impact of Aurora Kinase A Polymorphism and Epithelial Growth Factor Receptor Mutations on the Clinicopathological Characteristics of Lung Adenocarcinoma
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Subjects and Ethics Statement
2.2. Genomic DNA Extraction and EGFR Sequencing
2.3. Genotyping of AURKA SNPs from Real-Time Polymerase Chain Reactions
2.4. Statistical Analyses
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
List of abbreviations
References
- Barta, J.A.; Powell, C.A.; Wisnivesky, J.P. Global epidemiology of lung cancer. Ann. Glob. Health 2019, 85, 8. [Google Scholar] [CrossRef] [PubMed]
- Cheng, T.Y.; Cramb, S.M.; Baade, P.D.; Youlden, D.R.; Nwogu, C.; Reid, M.E. The international epidemiology of lung cancer: Latest trends, disparities, and tumor characteristics. J. Thorac. Oncol. 2016, 11, 1653–1671. [Google Scholar] [CrossRef] [PubMed]
- Youlden, D.R.; Cramb, S.M.; Baade, P.D. The international epidemiology of lung cancer: Geographical distribution and secular trends. J. Thorac. Oncol. 2008, 3, 819–831. [Google Scholar] [CrossRef] [PubMed]
- Molina, J.R.; Yang, P.; Cassivi, S.D.; Schild, S.E.; Adjei, A.A. Non-small cell lung cancer: Epidemiology, risk factors, treatment, and survivorship. Mayo Clin. Proc. 2008, 83, 584–594. [Google Scholar] [CrossRef]
- Mohammad, N.; Singh, S.V.; Malvi, P.; Chaube, B.; Athavale, D.; Vanuopadath, M.; Nair, S.S.; Nair, B.; Bhat, M.K. Strategy to enhance efficacy of doxorubicin in solid tumor cells by methyl-β-cyclodextrin: Involvement of p53 and fas receptor ligand complex. Sci. Rep. 2015, 5, 11853. [Google Scholar] [CrossRef] [PubMed]
- Muhammad, N.; Bhattacharya, S.; Steele, R.; Phillips, N.; Ray, R.B. Involvement of c-fos in the promotion of cancer stem-like cell properties in head and neck squamous cell carcinoma. Clin. Cancer Res. 2017, 23, 3120–3128. [Google Scholar] [CrossRef] [PubMed]
- Kumar, B.; Chand, V.; Ram, A.; Usmani, D.; Muhammad, N. Oncogenic mutations in tumorigenesis and targeted therapy in breast cancer. Curr. Mol. Biol. Rep. 2020, 6, 116–125. [Google Scholar] [CrossRef]
- Siegelin, M.D.; Borczuk, A.C. Epidermal growth factor receptor mutations in lung adenocarcinoma. Lab. Investig. 2014, 94, 129–137. [Google Scholar] [CrossRef]
- Saito, M.; Shiraishi, K.; Kunitoh, H.; Takenoshita, S.; Yokota, J.; Kohno, T. Gene aberrations for precision medicine against lung adenocarcinoma. Cancer Sci. 2016, 107, 713–720. [Google Scholar] [CrossRef]
- Calvayrac, O.; Pradines, A.; Pons, E.; Mazières, J.; Guibert, N. Molecular biomarkers for lung adenocarcinoma. Eur. Respir. J. 2017, 49, 1601734. [Google Scholar] [CrossRef]
- Inoue, T.; Matsumura, Y.; Araki, O.; Karube, Y.; Maeda, S.; Kobayashi, S.; Chida, M. Epidermal growth factor receptor gene mutation in pleural lavage cytology findings of primary lung adenocarcinoma cases. Ann. Thorac. Cardiovasc. Surg. 2018, 24, 1–5. [Google Scholar] [CrossRef] [PubMed]
- Han, L.; Lee, C.K.; Pang, H.; Chan, H.T.; Lo, I.L.; Lam, S.K.; Cheong, T.H.; Ho, J.C. Genetic predisposition to lung adenocarcinoma among never-smoking chinese with different epidermal growth factor receptor mutation status. Lung Cancer 2017, 114, 79–89. [Google Scholar] [CrossRef] [PubMed]
- Huang, C.Y.; Hsieh, M.J.; Wu, W.J.; Chiang, W.L.; Liu, T.C.; Yang, S.F.; Tsao, T.C. Association of endothelial nitric oxide synthase (enos) polymorphisms with egfr-mutated lung adenocarcinoma in taiwan. J. Cancer 2018, 9, 2518–2524. [Google Scholar] [CrossRef] [PubMed]
- Yu, Y.Y.; Chiou, H.L.; Tsao, S.M.; Huang, C.C.; Lin, C.Y.; Lee, C.Y.; Tsao, T.C.; Yang, S.F.; Huang, Y.W. Association of carbonic anhydrase 9 polymorphism and the epithelial growth factor receptor mutations in lung adenocarcinoma patients. Diagnostics 2020, 10, 266. [Google Scholar] [CrossRef] [PubMed]
- Yan, M.; Wang, C.; He, B.; Yang, M.; Tong, M.; Long, Z.; Liu, B.; Peng, F.; Xu, L.; Zhang, Y.; et al. Aurora-a kinase: A potent oncogene and target for cancer therapy. Med. Res. Rev. 2016, 36, 1036–1079. [Google Scholar] [CrossRef]
- Chou, C.H.; Chou, Y.E.; Chuang, C.Y.; Yang, S.F.; Lin, C.W. Combined effect of genetic polymorphisms of aurka and environmental factors on oral cancer development in taiwan. PLoS ONE 2017, 12, e0171583. [Google Scholar] [CrossRef]
- Huang, C.H.; Chen, C.J.; Chen, P.N.; Wang, S.S.; Chou, Y.E.; Hung, S.C.; Yang, S.F. Impacts of aurka genetic polymorphism on urothelial cell carcinoma development. J. Cancer 2019, 10, 1370–1374. [Google Scholar] [CrossRef]
- Wang, B.; Hsu, C.J.; Chou, C.H.; Lee, H.L.; Chiang, W.L.; Su, C.M.; Tsai, H.C.; Yang, S.F.; Tang, C.H. Variations in the aurka gene: Biomarkers for the development and progression of hepatocellular carcinoma. Int. J. Med. Sci. 2018, 15, 170–175. [Google Scholar] [CrossRef]
- Shah, K.N.; Bhatt, R.; Rotow, J.; Rohrberg, J.; Olivas, V.; Wang, V.E.; Hemmati, G.; Martins, M.M.; Maynard, A.; Kuhn, J.; et al. Aurora kinase a drives the evolution of resistance to third-generation egfr inhibitors in lung cancer. Nat. Med. 2019, 25, 111–118. [Google Scholar] [CrossRef]
- Otto, T.; Sicinski, P. Cell cycle proteins as promising targets in cancer therapy. Nat. Rev. Cancer 2017, 17, 93–115. [Google Scholar] [CrossRef]
- Zhang, J.; Li, B.; Yang, Q.; Zhang, P.; Wang, H. Prognostic value of aurora kinase a (aurka) expression among solid tumor patients: A systematic review and meta-analysis. Jpn. J. Clin. Oncol. 2015, 45, 629–636. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Gao, K.; Chu, L.; Zheng, J.; Yang, J. The role of aurora-a in cancer stem cells. Int. J. Biochem. Cell Biol. 2018, 98, 89–92. [Google Scholar] [CrossRef] [PubMed]
- Levinson, N.M. The multifaceted allosteric regulation of aurora kinase a. Biochem. J. 2018, 475, 2025–2042. [Google Scholar] [CrossRef] [PubMed]
- Magnaghi-Jaulin, L.; Eot-Houllier, G.; Gallaud, E.; Giet, R. Aurora a protein kinase: To the centrosome and beyond. Biomolecules 2019, 9, 28. [Google Scholar] [CrossRef]
- Otto, T.; Horn, S.; Brockmann, M.; Eilers, U.; Schüttrumpf, L.; Popov, N.; Kenney, A.M.; Schulte, J.H.; Beijersbergen, R.; Christiansen, H.; et al. Stabilization of n-myc is a critical function of aurora a in human neuroblastoma. Cancer Cell 2009, 15, 67–78. [Google Scholar] [CrossRef]
- Blas-Rus, N.; Bustos-Morán, E.; Martín-Cófreces, N.B.; Sánchez-Madrid, F. Aurora-a shines on t cell activation through the regulation of lck. Bioessays 2017, 39. [Google Scholar] [CrossRef]
- Ping, Y.; Liu, C.; Zhang, Y. T-cell receptor-engineered t cells for cancer treatment: Current status and future directions. Protein Cell 2018, 9, 254–266. [Google Scholar] [CrossRef]
- Kimura, M.T.; Mori, T.; Conroy, J.; Nowak, N.J.; Satomi, S.; Tamai, K.; Nagase, H. Two functional coding single nucleotide polymorphisms in stk15 (aurora-a) coordinately increase esophageal cancer risk. Cancer Res. 2005, 65, 3548–3554. [Google Scholar] [CrossRef][Green Version]
- Ewart-Toland, A.; Briassouli, P.; de Koning, J.P.; Mao, J.H.; Yuan, J.; Chan, F.; MacCarthy-Morrogh, L.; Ponder, B.A.; Nagase, H.; Burn, J.; et al. Identification of stk6/stk15 as a candidate low-penetrance tumor-susceptibility gene in mouse and human. Nat. Genet. 2003, 34, 403–412. [Google Scholar] [CrossRef]
- Ruan, Y.; Song, A.P.; Wang, H.; Xie, Y.T.; Han, J.Y.; Sajdik, C.; Tian, X.X.; Fang, W.G. Genetic polymorphisms in aurka and brca1 are associated with breast cancer susceptibility in a chinese han population. J. Pathol. 2011, 225, 535–543. [Google Scholar] [CrossRef]
- Zhou, X.; Wang, P.; Zhao, H. The association between aurka gene rs2273535 polymorphism and gastric cancer risk in a chinese population. Front. Physiol. 2018, 9, 1124. [Google Scholar] [CrossRef] [PubMed]
- Necchi, A.; Pintarelli, G.; Raggi, D.; Giannatempo, P.; Colombo, F. Association of an aurora kinase a (aurka) gene polymorphism with progression-free survival in patients with advanced urothelial carcinoma treated with the selective aurora kinase a inhibitor alisertib. Invest. New Drugs 2017, 35, 524–528. [Google Scholar] [CrossRef] [PubMed]
- Niu, H.; Shin, H.; Gao, F.; Zhang, J.; Bahamon, B.; Danaee, H.; Melichar, B.; Schilder, R.J.; Coleman, R.L.; Falchook, G.; et al. Aurora a functional single nucleotide polymorphism (snp) correlates with clinical outcome in patients with advanced solid tumors treated with alisertib, an investigational aurora a kinase inhibitor. EBioMedicine 2017, 25, 50–57. [Google Scholar] [CrossRef] [PubMed]
- Lykkesfeldt, A.E.; Iversen, B.R.; Jensen, M.B.; Ejlertsen, B.; Giobbie-Hurder, A.; Reiter, B.E.; Kirkegaard, T.; Rasmussen, B.B. Aurora kinase a as a possible marker for endocrine resistance in early estrogen receptor positive breast cancer. Acta Oncol. 2018, 57, 67–73. [Google Scholar] [CrossRef] [PubMed]
- Kurup, S.; McAllister, B.; Liskova, P.; Mistry, T.; Fanizza, A.; Stanford, D.; Slawska, J.; Keller, U.; Hoellein, A. Design, synthesis and biological activity of n(4)-phenylsubstituted-7h-pyrrolo[2,3-d]pyrimidin-4-amines as dual inhibitors of aurora kinase a and epidermal growth factor receptor kinase. J. Enzym. Inhib. Med. Chem. 2018, 33, 74–84. [Google Scholar] [CrossRef] [PubMed]
- Erdem-Eraslan, L.; Gao, Y.; Kloosterhof, N.K.; Atlasi, Y.; Demmers, J.; Sacchetti, A.; Kros, J.M.; Sillevis Smitt, P.; Aerts, J.; French, P.J. Mutation specific functions of egfr result in a mutation-specific downstream pathway activation. Eur. J. Cancer 2015, 51, 893–903. [Google Scholar] [CrossRef] [PubMed]
- Furuyama, K.; Harada, T.; Iwama, E.; Shiraishi, Y.; Okamura, K.; Ijichi, K.; Fujii, A.; Ota, K.; Wang, S.; Li, H.; et al. Sensitivity and kinase activity of epidermal growth factor receptor (egfr) exon 19 and others to egfr-tyrosine kinase inhibitors. Cancer Sci. 2013, 104, 584–589. [Google Scholar] [CrossRef]
- Isaka, T.; Nakayama, H.; Ito, H.; Yokose, T.; Yamada, K.; Masuda, M. Impact of the epidermal growth factor receptor mutation status on the prognosis of recurrent adenocarcinoma of the lung after curative surgery. BMC Cancer 2018, 18, 959. [Google Scholar] [CrossRef]
- Hayasaka, K.; Shiono, S.; Matsumura, Y.; Yanagawa, N.; Suzuki, H.; Abe, J.; Sagawa, M.; Sakurada, A.; Katahira, M.; Takahashi, S.; et al. Epidermal growth factor receptor mutation as a risk factor for recurrence in lung adenocarcinoma. Ann. Thorac. Surg. 2018, 105, 1648–1654. [Google Scholar] [CrossRef]
- Pallis, A.G.; Syrigos, K.N. Lung cancer in never smokers: Disease characteristics and risk factors. Crit. Rev. Oncol. Hematol. 2013, 88, 494–503. [Google Scholar] [CrossRef]
- Rivera, G.A.; Wakelee, H. Lung cancer in never smokers. Adv. Exp. Med. Biol. 2016, 893, 43–57. [Google Scholar] [PubMed]
- De Groot, P.; Munden, R.F. Lung cancer epidemiology, risk factors, and prevention. Radiol. Clin. N. Am. 2012, 50, 863–876. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Deng, W.; Zhang, Y.; Sun, S.; Zhao, S.; Chen, Y.; Zhao, X.; Liu, L.; Du, J. Mical2 promotes breast cancer cell migration by maintaining epidermal growth factor receptor (egfr) stability and egfr/p38 signalling activation. Acta Physiol. 2018, 222. [Google Scholar] [CrossRef] [PubMed]
Subject Characteristics | EGFR Wild Type (n = 105) | EGFR Mutation Type (n = 167) | p Value |
---|---|---|---|
Age, n (%) | |||
Mean ± SD (years) | 65.52 ⩲ 13.47 | 65.74 ⩲ 13.61 | 0.897 |
Gender, n (%) | |||
Male | 61 (58.1%) | 60 (35.9%) | <0.001 |
Female | 44 (41.9%) | 107 (64.1%) | |
Cigarette smoking, n (%) | |||
Nonsmoker | 48 (45.7%) | 129 (77.2%) | <0.001 |
Ever-smoker | 57 (54.3%) | 38 (22.8%) | |
Stage, n (%) | |||
I + II | 24 (22.9%) | 47 (28.1%) | 0.334 |
III + IV | 81 (77.1%) | 120 (71.9%) | |
Tumor T status, n (%) | |||
T1 + T2 | 59 (56.2%) | 106 (63.5%) | 0.231 |
T3 + T4 | 46 (43.8%) | 61 (36.5%) | |
Lymph node status, n (%) | |||
Negative | 27 (25.7%) | 52 (31.1%) | 0.337 |
Positive | 78 (74.3%) | 115 (68.9%) | |
Distant Metastasis, n (%) | |||
Negative | 52 (49.5%) | 80 (47.9%) | 0.795 |
Positive | 53 (50.5%) | 87 (52.1%) | |
Cell differentiation, n (%) | |||
Well | 8 (7.6%) | 20 (12.0%) | 0.005 |
Moderately | 78 (74.3%) | 137 (82.0%) | |
Poorly | 19 (18.1%) | 10 (6.0%) |
Genotype SNP | EGFR Wild Type (n = 105) | EGFR Mutation Type (n = 167) | AOR (95% CI) | p Value |
---|---|---|---|---|
rs1047972 | ||||
CC | 76 (72.4%) | 137 (82.0%) | 1.00 | |
CT | 29 (27.6%) | 29 (17.4%) | 0.458 (0.243–0.862) | 0.015 |
TT | 0 (0.0%) | 1 (0.6%) | - | - |
CT + TT | 29 (27.6%) | 30 (18.0%) | 0.471 (0.251–0.884) | 0.019 |
rs2273535 | ||||
TT | 46 (43.8%) | 78 (46.7%) | 1.00 | |
TA | 49 (46.7%) | 76 (45.5%) | 0.782 (0.450–1.360) | 0.383 |
AA | 10 (9.5%) | 13 (7.8%) | 0.688 (0.258–1.837) | 0.455 |
TA + AA | 59 (56.2%) | 89 (53.3%) | 0.766 (0.451–1.302) | 0.325 |
rs6024836 | ||||
AA | 49 (46.7%) | 70 (41.9%) | 1.00 | |
AG | 41 (39.0%) | 74 (44.3%) | 1.060 (0.602–1.868) | 0.839 |
GG | 15 (14.3%) | 23 (13.8%) | 0.903 (0.405–2.012) | 0.803 |
AG + GG | 56 (53.3%) | 97 (58.1%) | 1.018 (0.601–1.726) | 0.946 |
rs2064863 | ||||
TT | 72 (68.6%) | 113 (67.7%) | 1.00 | |
TG | 28 (26.7%) | 47 (28.1%) | 1.069 (0.590–1.935) | 0.826 |
GG | 5 (4.7%) | 7 (4.2%) | 0.893 (0.246–3.245) | 0.863 |
TG + GG | 33 (31.4%) | 54 (32.3%) | 1.043 (0.593–1.834) | 0.883 |
Genotype SNP | Male (n = 121) | Female (n = 151) | ||||
---|---|---|---|---|---|---|
EGFR Wild Type (n = 61) | EGFR Mutation Type (n = 60) | p Value | EGFR Wild Type (n = 44) | EGFR Mutation Type (n = 107) | p Value | |
rs1047972 | ||||||
CC | 48 (78.7%) | 50 (83.3%) | 28 (63.6%) | 87 (81.3%) | ||
CT | 13 (21.3%) | 9 (15.0%) | 0.240 | 16 (36.4%) | 20 (18.7%) | 0.008 a |
TT | 0 (0.0%) | 1 (1.7%) | - | 0 (0.0%) | 0 (0.0%) | - |
CT + TT | 13 (21.3%) | 10 (16.7%) | 0.298 | 16 (36.4%) | 20 (18.7%) | 0.008 b |
rs2273535 | ||||||
TT | 30 (49.2%) | 30 (50.0%) | 16 (36.4%) | 48 (44.9%) | ||
TA | 25 (41.0%) | 22 (36.7%) | 0.608 | 24 (54.5%) | 54 (50.5%) | 0.167 |
AA | 6 (9.8%) | 8 (13.3%) | 0.723 | 4 (9.1%) | 5 (4.7%) | 0.145 |
TA + AA | 31 (50.8%) | 30 (50.0%) | 0.765 | 28 (63.6%) | 59 (55.1%) | 0.116 |
rs6024836 | ||||||
AA | 32 (52.5%) | 22 (36.7%) | 17 (38.6%) | 48 (44.9%) | ||
AG | 23 (37.7%) | 28 (46.7%) | 0.559 | 18 (40.9%) | 46 (43.0%) | 0.495 |
GG | 6 (9.8%) | 10 (16.6%) | 0.173 | 9 (20.5%) | 13 (12.1%) | 0.157 |
AG + GG | 29 (47.5%) | 38 (63.3%) | 0.308 | 27 (61.4%) | 59 (55.1%) | 0.278 |
rs2064863 | ||||||
TT | 41 (67.2%) | 40 (66.7%) | 31 (70.5%) | 73 (68.2%) | ||
TG | 18 (29.5%) | 15 (25.0%) | 0.811 | 10 (22.7%) | 32 (29.9%) | 0.687 |
GG | 2 (3.3%) | 5 (8.3%) | 0.222 | 3 (6.8%) | 2 (1.9%) | 0.357 |
TG + GG | 20 (32.8%) | 20 (33.3%) | 0.816 | 13 (29.5%) | 34 (31.8%) | 0.127 |
Genotype SNP | Non-Smoking (n = 177) | Smoking (n = 95) | ||||
---|---|---|---|---|---|---|
EGFR Wild Type (n = 48) | EGFR Mutation Type (n = 129) | p Value | EGFR Wild Type (n = 57) | EGFR Mutation Type (n = 38) | p Value | |
rs1047972 | ||||||
CC | 29 (60.4%) | 105 (81.4%) | 47 (82.5%) | 32 (84.2%) | ||
CT | 19 (39.6%) | 23 (17.8%) | 0.004 a | 10 (17.5%) | 6 (15.8%) | 0.694 |
TT | 0 (0.0%) | 1 (0.8%) | - | 0 (0.0%) | 0 (0.0%) | - |
CT + TT | 19 (39.6%) | 24 (18.6%) | 0.006 b | 10 (17.5%) | 6 (15.8%) | 0.694 |
rs2273535 | ||||||
TT | 17 (35.4%) | 60 (46.5%) | 29 (50.9%) | 18 (47.4%) | ||
TA | 25 (52.1%) | 60 (46.5%) | 0.167 | 24 (42.1%) | 16 (42.1%) | 0.697 |
AA | 6 (12.5%) | 9 (7.0%) | 0.181 | 4 (7.0%) | 4 (10.5%) | 0.512 |
TA + AA | 31 (64.6%) | 69 (53.5%) | 0.110 | 28 (49.1%) | 20 (52.6%) | 0.905 |
rs6024836 | ||||||
AA | 17 (35.4%) | 54 (41.9%) | 32 (56.1%) | 16 (42.1%) | ||
AG | 22 (45.8%) | 59 (45.7%) | 0.400 | 19 (33.3%) | 15 (39.5%) | 0.673 |
GG | 9 (18.8%) | 16 (12.4%) | 0.171 | 6 (10.5%) | 7 (18.4%) | 0.171 |
AG + GG | 31 (64.6%) | 75 (58.1%) | 0.242 | 25 (43.9%) | 22 (57.9%) | 0.351 |
rs2064863 | ||||||
TT | 34 (70.8%) | 88 (68.2%) | 38 (66.7%) | 25 (65.8%) | ||
TG | 11 (22.9%) | 37 (28.7%) | 0.547 | 17 (29.8%) | 10 (26.3%) | 0.732 |
GG | 3 (6.3%) | 4 (3.1%) | 0.286 | 2 (3.5%) | 3 (7.9%) | 0.357 |
TG + GG | 14 (29.2%) | 41 (31.8%) | 0.820 | 19 (33.3%) | 13 (34.2%) | 0.986 |
Variable | ALL (n = 272) | |||
AA (n = 119) | AG + GG (n = 153) | OR (95% CI) | p Value | |
Stages | ||||
I + II | 25 (21.0%) | 46 (30.1%) | 1.00 | p = 0.092 |
III + IV | 94 (79.0%) | 107 (69.9%) | 0.619 (0.353–1.083) | |
Tumor T status | ||||
T1 + T2 | 70 (58.8%) | 95 (62.1%) | 1.00 | P = 0.584 |
T3 + T4 | 49 (41.2%) | 58 (37.9%) | 0.872 (0.534–1.423) | |
Lymph node status | ||||
Negative | 30 (25.2%) | 49 (32.0%) | 1.00 | p = 0.219 |
Positive | 89 (74.8%) | 104 (68.0%) | 0.715 (0.419–1.222) | |
Distant metastasis | ||||
Negative | 56 (47.1%) | 76 (49.7%) | 1.00 | p = 0.669 |
Positive | 63 (52.9%) | 77 (50.3%) | 0.901 (0.557–1.455) | |
Cell differentiation | ||||
Well/Moderately | 104 (87.4%) | 139 (90.8%) | 1.00 | p = 0.360 |
Poorly | 15 (12.6%) | 14 (9.2%) | 0.698 (0.323–1.510) | |
EGFR Wild Type (n = 105) | ||||
AA (n = 49) | AG + GG (n = 56) | OR (95% CI) | p Value | |
Stages | ||||
I + II | 12 (24.5%) | 12 (21.4%) | 1.00 | p = 0.709 |
III + IV | 37 (75.5%) | 44 (78.6%) | 1.189 (0.478–2.960) | |
Tumor T status | ||||
T1 + T2 | 30 (61.2%) | 29 (51.8%) | 1.00 | p = 0.331 |
T3 + T4 | 19 (38.8%) | 27 (48.2%) | 1.470 (0.675–3.200) | |
Lymph node status | ||||
Negative | 12 (24.5%) | 15 (26.8%) | 1.00 | p = 0.788 |
Positive | 37 (75.5%) | 41 (73.2%) | 0.886 (0.368–2.136) | |
Distant metastasis | ||||
Negative | 28 (57.1%) | 24 (42.9%) | 1.00 | p = 0.144 |
Positive | 21 (42.9%) | 32 (57.1%) | 1.778 (0.819–3.858) | |
Cell differentiation | ||||
Well/Moderately | 37 (75.5%) | 49 (87.5%) | 1.00 | p = 0.111 |
Poorly | 12 (24.5%) | 7 (12.5%) | 0.440 (0.158–1.228) | |
EGFR Mutation (n = 167) | ||||
AA (n = 70) | AG + GG (n = 97) | OR (95% CI) | p Value | |
Stages | ||||
I + II | 13 (18.6%) | 34 (35.1%) | 1.00 | p = 0.019 |
III + IV | 57 (81.4%) | 63 (64.9%) | 0.423 (0.203–0.879) | |
Tumor T status | ||||
T1 + T2 | 40 (57.1%) | 66 (68.0%) | 1.00 | p = 0.149 |
T3 + T4 | 30 (42.9%) | 31 (32.0%) | 0.626 (0.331–1.185) | |
Lymph node status | ||||
Negative | 18 (25.7%) | 34 (35.1%) | 1.00 | p = 0.199 |
Positive | 52 (74.3%) | 63 (64.9%) | 0.641 (0.325–1.265) | |
Distant metastasis | ||||
Negative | 28 (40.0%) | 52 (53.6%) | 1.00 | p = 0.082 |
Positive | 42 (60.0%) | 45 (46.4%) | 0.577 (0.309–1.075) | |
Cell differentiation | ||||
Well/Moderately | 67 (95.7%) | 90 (92.8%) | 1.00 | p = 0.431 |
Poorly | 3 (4.3%) | 7 (7.2%) | 1.737 (0.433–6.967) |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, P.-J.; Hsieh, M.-J.; Lee, C.-I.; Yen, C.-H.; Wang, H.-L.; Chiang, W.-L.; Liu, T.-C.; Tsao, T.C.-Y.; Lee, C.-Y.; Yang, S.-F. Impact of Aurora Kinase A Polymorphism and Epithelial Growth Factor Receptor Mutations on the Clinicopathological Characteristics of Lung Adenocarcinoma. Int. J. Environ. Res. Public Health 2020, 17, 7350. https://doi.org/10.3390/ijerph17197350
Yang P-J, Hsieh M-J, Lee C-I, Yen C-H, Wang H-L, Chiang W-L, Liu T-C, Tsao TC-Y, Lee C-Y, Yang S-F. Impact of Aurora Kinase A Polymorphism and Epithelial Growth Factor Receptor Mutations on the Clinicopathological Characteristics of Lung Adenocarcinoma. International Journal of Environmental Research and Public Health. 2020; 17(19):7350. https://doi.org/10.3390/ijerph17197350
Chicago/Turabian StyleYang, Po-Jen, Ming-Ju Hsieh, Chun-I Lee, Chi-Hua Yen, Hsiang-Ling Wang, Whei-Ling Chiang, Tu-Chen Liu, Thomas Chang-Yao Tsao, Chia-Yi Lee, and Shun-Fa Yang. 2020. "Impact of Aurora Kinase A Polymorphism and Epithelial Growth Factor Receptor Mutations on the Clinicopathological Characteristics of Lung Adenocarcinoma" International Journal of Environmental Research and Public Health 17, no. 19: 7350. https://doi.org/10.3390/ijerph17197350
APA StyleYang, P.-J., Hsieh, M.-J., Lee, C.-I., Yen, C.-H., Wang, H.-L., Chiang, W.-L., Liu, T.-C., Tsao, T. C.-Y., Lee, C.-Y., & Yang, S.-F. (2020). Impact of Aurora Kinase A Polymorphism and Epithelial Growth Factor Receptor Mutations on the Clinicopathological Characteristics of Lung Adenocarcinoma. International Journal of Environmental Research and Public Health, 17(19), 7350. https://doi.org/10.3390/ijerph17197350