Quality of Dietary Supplements Containing Plant-Derived Ingredients Reconsidered by Microbiological Approach
Abstract
:1. Introduction
2. Legal Aspects
3. Microbiological Quality of Dietary Supplements Containing Plant Materials
3.1. Microbiological Contamination Sources
3.2. Quantitative and Qualitative Bacterial Contamination of Dietary Supplements
3.3. Dietary Supplements Contamination with Fungi
4. Mycotoxins
5. Foodomics Technologies for Mycotoxins and Microorganisms Detection
6. Summary
Author Contributions
Funding
Conflicts of Interest
References
- Fibigr, J.; Satínský, D.; Solich, P. Current trends in the analysis and quality control of food supplements based on plant extracts. Anal. Chim. Acta 2018, 1036, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Dlugaszewska, J.; Ratajczak, M.; Kamińska, D.; Gajecka, M. Are dietary supplements containing plant-derived ingredients safe microbiologically? Saudi Pharm. J. 2019, 27, 240–245. [Google Scholar] [CrossRef]
- Petroczi, A.G.; Taylor, G.; Naughton, D.P. Mission impossible? Regulatory and enforcement issues to ensure safety of dietary supplements. Food Chem. Toxicol. 2011, 49, 393–402. [Google Scholar] [CrossRef] [PubMed]
- Sato, K.; Kodama, K.; Sengoku, S. Corporate Characteristics and Adoption of Good Manufacturing Practice for Dietary Supplements in Japan. Int. J. Environ. Res. Public Health 2020, 17, 4748. [Google Scholar] [CrossRef] [PubMed]
- Directive 2002/46/EC (2002). Directive 2002/46/EC of the European Parliament and of the Council of 10 June 2002 on the Approximation of the Laws of the Member States Relating to Food Supplements (Text with EEA Relevance). Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32002L0046&from=EN (accessed on 22 May 2020).
- de Sousa Lima, C.M.; Fujishima, M.A.T.; de Paula Lima, B.; Mastroianni, P.C.; de Sousa, F.F.O.; de Silva, J.O. Microbial contamination in herbal medicines: A serious health hazard to elderly consumers. BMC Complement. Med. Ther. 2020, 17. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Dou, X.; Zhang, C.; Antonio, F.; Logrieco, A.F.; Yang, M. A Review of Current Methods for Analysis of Mycotoxins in Herbal Medicines. Toxins 2018, 10, 65. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kosalec, I.; Cvek, J.; Tomić, S. Contaminants of medicinal herbs and herbal products. Arch. Hig. Rada Toksikol. 2009, 60, 485–501. [Google Scholar] [CrossRef] [Green Version]
- Carratù, B.; Federici, E.; Gallo, F.R.; Geraci, A.; Guidotti, M.; Multari, G.; Palazzino, G.; Sanzini, E. Plants and parts of plants used in food supplements: An approach to their safety assessments. Ann. Ist. Super. Sanita 2010, 46, 370–388. [Google Scholar] [CrossRef]
- Marcus, D.M. Dietary supplements: What’s in a name? What’s in the bottle? Drug Test. Anal. 2015, 8, 410–412. [Google Scholar] [CrossRef]
- Tucker, J.; Fischer, T.; Upjohn, L.; Mazzera, D.; Kumar, M. Unapproved Pharmaceutical Ingredients Included in Dietary Supplements associated with US Food and Drug Administration Warnings. JAMA Netw. Open 2018, 1, e183337. [Google Scholar] [CrossRef] [Green Version]
- US Food and Drug Administration. FDA Investigated Multistate Outbreak of Salmonella Infections Linked to Products Reported to Contain Kratom. 2018. Available online: https://www.fda.gov/food/outbreaks-foodborne-illness/fda-investigated-multistateoutbreak-salmonella-infections-linked-products-reportedcontain-kratom#time (accessed on 30 May 2020).
- Larsen, L. Two Dietary Supplements Recalled for Possible Salmonella Contamination. Available online: https://foodpoisoningbulletin.com/2018/two-dietary-supplementsrecalled-possible-salmonella-contamination/ (accessed on 20 May 2020).
- Benedict, K.; Tom, M.; Chiller, T.M.; Mody, R.K. Invasive Fungal Infections Acquired from Contaminated Food or Nutritional Supplements: A Review of the Literature. Foodborne Pathog. Dis. 2016, 13, 343–349. [Google Scholar] [CrossRef] [PubMed]
- Vallabhaneni, S.; Walker, T.A.; Lockhart, S.R.; Ng, D.; Branch, I.D.P.; Chiller, T.; Chiller, T.; Melchreit, R.; Brandt, M.E.; Smith, R.M. Fatal Gastrointestinal Mucormycosis in a Premature Infant Associated with a Contaminated Dietary Supplement—Connecticut. 2014 MMWR Morb. Mortal. Wkly. Rep. 2015, 64, 155–156. [Google Scholar] [PubMed]
- Oliver, M.R.; Van Voorhis, W.C.; Boeckh, M.; Mattson, D.; Bowden, R.A. Hepatic mucormycosis in a bone marrow transplant recipient who ingested naturopathic medicine. Clin. Infect. Dis. 1996, 22, 521–524. [Google Scholar] [CrossRef] [PubMed]
- Bellete, B.; Raberin, H.; Berger, C.; Flori, P.; Hafid, J.; Clemenson, A.; Guy, C.; Tran Manh Sung, R. Molecular confirmation of an absidiomycosis following treatment with a probiotic supplement in a child with leukemia. J. Mycol. Med. 2006, 16, 72–76. [Google Scholar] [CrossRef]
- Dwyer, J.T.; Coates, P.M. Why Americans Need Information on Dietary Supplements. J. Nutr. 2018, 148, 1401S–1405S. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kowalska, A.; Bieniek, M.; Manning, L. Food supplements’ non-conformity in Europe—Poland: A case study. Trends Food Sci. Technol. 2019, 93, 262–270. [Google Scholar] [CrossRef]
- Ghisleni, D.D.; de Souza Braga, M.; Kikuchi, I.S.; Braşoveanu, M.; Nemţanu, M.R.; Dua, K.; Tde, J.A. The Microbial Quality Aspects and Decontamination Approaches for the Herbal Medicinal Plants and Products: An in-Depth Review. Curr. Pharm. Des. 2016, 22, 4264–4287. [Google Scholar] [CrossRef]
- Ratajczak, M.; Jaworska, M.M.; Kamińska, D.; Dlugaszewska, J. Microbiological quality of food supplements. Acta Pol. Pharm. 2015, 72, 383–387. [Google Scholar]
- Tournas, V.H. Microbial contamination of select dietary supplements. J. Food Saf. 2009, 29, 430–442. [Google Scholar] [CrossRef]
- Kneifel, W.; Czech, E.; Kopp, B. Microbial contamination of medicinal plants—A review. Planta Med. 2002, 68, 5–15. [Google Scholar] [CrossRef] [Green Version]
- Brown, J.C.; Jiang, X. Prevalence of antibiotic-resistant bacteria in herbal products. J. Food Prot. 2008, 71, 1486–1490. [Google Scholar] [CrossRef] [PubMed]
- Cvetnić, Z.; Pepelnjak, S. Aflatoxin-producing po-tential of Aspergillus flavus and Aspergillus parasiticus iso-lated from samples of smoked-dried meat. Nahrung 1995, 39, 302–307. [Google Scholar] [CrossRef] [PubMed]
- Carraturo, F.; De Castro, O.; Troisi, J.; De Luca, A.; Masucci, A.; Cennamo, P.; Trifuoggi, M.; Aliberti, F.; Guida, M. Comparative assessment of the quality of commercial black and green tea using microbiology analyses. BMC Microbiol. 2018, 18, 4. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hawksworth, D.L. The magnitude of fungal diversity: The 1. 5 million species estimate revisited. Mycol. Res. 2001, 105, 1422–1432. [Google Scholar] [CrossRef] [Green Version]
- Iguera, R. Good Agricultural Practice and Good Wild-crafting Practice (Oral Presentation). In Proceedings of the 53rd Annual Congress of Society for Medicinal Plant Research, Florence, Italy, 21–25 August 2005; 2005. Available online: http://www.ga-online.org/files/Florence2005/WS4_2.pdf (accessed on 19 June 2020).
- Abba, D.; Inabo, H.; Yakubu, S.; Olonitola, O. Contamination of herbal medicinal products marketed in Kaduna metropolis with selected pathogenic bacteria. Afr. J. Trad. 2009, 6, 70–77. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Araújo, G.M.; Bauab, T.M. Microbial Quality of Medicinal Plant Materials. Chapters. In Latest Research into Quality Control; Akyar, I., Ed.; Intech Open: Rijeka, Croatia, 2012. [Google Scholar] [CrossRef]
- Bianco, M.I.; Lúquez, C.; de Jong, L.I.T.; Fernández, A.R. Presence of Clostridium botulinum spores in Matricaria chamomilla (chamomile) and its relationship with infant botulism. Int. J. Food Microbiol. 2008, 12, 1357–1360. [Google Scholar] [CrossRef] [PubMed]
- Martins, H.M.; Martins, L.M.; Dias, M.I.; Bernard, F. Evaluation of microbiological quality of medicinal plants used in natural infusions. Int. J. Food Microbiol. 2001, 68, 149–153. [Google Scholar] [CrossRef]
- Idu, M.D.; Omonigho, S.E.; Erhabor, J.O.; Efijuemue, H.M. Microbial Load of Some Medicinal Plants Sold in Some Local Markets in Abeokuta, Nigeria. Trop. J. Pharm. Res. 2010, 9, 251–256. [Google Scholar] [CrossRef] [Green Version]
- Alwakeel, S.S. Microbial and heavy metals contamination of herbal medicines. Res. J. Microbiol. 2008, 3, 683–691. [Google Scholar] [CrossRef]
- Kalkaslief-Souza, S.B.; Kikuchi, I.S.; Mansano, R.D.; Moreira, A.J.; Nemţanu, M.R.; Pinto, T.J.A. Microbial Decontamination Study of Some Medicinal Plants by Plasma Treatment. Acta Hortic. 2009, 826, 205–212. [Google Scholar] [CrossRef]
- Tournas, V.H.; Katsoudas, E.; Miracco, E.J. Moulds, yeasts and aerobic plate counts in ginseng supplements. Int. J. Food Microbiol. 2006, 108, 178–181. [Google Scholar] [CrossRef] [PubMed]
- Rangsipanuratn, W.; Kammarnjassadakul, P.; Janwithayanuchit, I.; Paungmoung, P.; Ngamurulert, S.; Sriprapun, M.; Yangen, S.; Soottitantawat, V.; Sandee, A. Detection of microbes, aflatoxin and toxic heavy metals in Chinese medicinal herbs commonly consumed in Thailand. Pharm. Sci. Asia 2017, 44, 162–171. [Google Scholar] [CrossRef]
- Tomsikova, A. Risk of fungal infection from foods, particularly in immunocompromised patients. Epidemiol. Mikrobiol. Imunol. 2002, 51, 78–81. [Google Scholar] [PubMed]
- Brenier-Pinchart, M.P.; Faure, O.; Garban, F.; Fricker-Hidalgo, H.; Mallaret, M.R.; Trens, A.; Lebeau, B.; Pelloux, H.; Grillot, R. Ten-year surveillance of fungal contamination of food within a protected haematological unit. Mycoses 2006, 49, 421–425. [Google Scholar] [CrossRef] [PubMed]
- Pitt, J.I.; Hocking, A.D. Fungi and Food Spoilage, 3rd ed.; Springer: New York, NY, USA, 2009. [Google Scholar]
- Kumar, B.; Sub Bose, S.K. Toxic Contaminants in Herbal Medicines. In Contaminants and Clean Technologies, 1st ed.; Chowdhary, P., Raj, A., Eds.; CRC Press: Boca Raton, FL, USA, 2020. [Google Scholar]
- Bugno, A.; Almodovar, A.A.B.; Pereira, T.C.; Pinto, T.D.J.A.; Sabino, M. Occurrence of toxigenic fungi in herbal drugs. Braz. J. Microbiol. 2006, 37, 47–51. [Google Scholar] [CrossRef] [Green Version]
- Halt, M.; Klapec, T. Microbial populations in medicinal and aromatic plants and herbal teas from Croatia. Ital. J. Food Sci. 2005, 17, 349–354. [Google Scholar]
- De Ruyck, K.; De Boevre, M.; Huybrechts, I.; De Saeger, S. Dietary mycotoxins, co-exposure, and carcinogenesis in humans: Short review. Mutat. Res. Rev. Mutat. Res. 2015, 766, 32–41. [Google Scholar] [CrossRef] [Green Version]
- Tournas, V.H.; Rivera Calo, J.; Sapp, C. Fungal profiles in various milk thistle botanicals from US retail. Int. J. Food Microbiol. 2013, 164, 87–91. [Google Scholar] [CrossRef]
- Rocha-Miranda, F.; Venâncio, A. Mycotoxigenic fungi in plant-based supplements and medicines. Curr. Opin. Food Sci. 2019, 30, 27–31. [Google Scholar] [CrossRef] [Green Version]
- Su, C.; Hu, Y.; Gao, D.; Luo, Y.I.; Chen, A.J.; Jiao, X.; Gao, W. Occurrence of Toxigenic Fungi and Mycotoxins on Root Herbs from Chinese Markets. J. Food Prot. 2018, 81, 754–761. [Google Scholar] [CrossRef]
- Rajeshwari, P.; Raveesha, K. Mycological analysis and aflatoxin B1 contaminant estimation of herbal drug raw materials. Afr. J. Tradit. Complement Altern. Med. 2016, 12, 13123–13131. [Google Scholar]
- Di Mavungu, D.; Monbaliu, S.; Scippo, M.L.; Maghuin-Rogister, G.; Schneider, Y.J.; Larondelle, Y.; Callebaut, A.; Robbens, J.; Van Peteghem, C.; De Saeger, S. LC-MS/MS multi-analyte method for mycotoxin determination in food supplements. Food Addit. Contam. Part A 2009, 26, 885–895. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Han, Z.; Ren, Y.P.; Zhu, J.F.; Cai, Z.X.; Chen, Y.; Luan, L.J.; Wu, Y.J. Multianalysis of mycotoxins in traditional Chinese medicines by ultra-high-performance liquid chromatography-tandem mass spectrometry coupled with accelerated solvent extraction. J. Agric. Food Chem. 2012, 60, 8233–8247. [Google Scholar] [CrossRef] [PubMed]
- Ediage, E.N.; Mavungu, J.D.; Monbaliu, S.; Peteghem, C.V.; Saeger, S.D. A validated multianalyte LC-MS/MS method for quantification of 25 mycotoxins in cassava flour, peanut cake and maize samples. J. Agric. Food Chem. 2011, 59, 5173–5180. [Google Scholar] [CrossRef]
- Benkerroum, N. Chronic and Acute Toxicities of Aflatoxins: Mechanisms of Action. Int. J. Environ. Res. Public Health 2020, 17, 423. [Google Scholar] [CrossRef] [Green Version]
- Piemontese, L. Plant food supplements with antioxidant properties for the treatment of chronic and neurodegenerative diseases: Benefits or risks? J. Diet Suppl. 2017, 14, 478–484. [Google Scholar] [CrossRef]
- Zain, M.E. Impact of mycotoxins on humans and animals. J. Saudi Chem. Soc. 2011, 15, 129–144. [Google Scholar] [CrossRef] [Green Version]
- Garrido, N.S.; Iha, M.H.; Santos Ortolani, M.R.; Duarte Fávaro, R.M. Occurrence of aflatoxins M(1) and M(2) in milk commercialized in RibeirãoPreto-SP, Brazil. Food Addit. Contam. 2003, 20, 70–73. [Google Scholar] [CrossRef]
- WHO; Internaional Agency for Research on Cancer. IARC Monographs on the Evaluation of Carcinogenic Risk to Humans; IARC (International Agency for Research on Cancer). List of Classifications; IARC Press: Lyon, France, 2018; Volume 1–123, pp. 20021–20601. Available online: https://monographs.iarc.fr/list-of-classifications-volumes/ (accessed on 23 June 2020).
- Bayman, P.; Baker, J.L. Ochratoxins: A global perspective. Mycopathologia 2006, 162, 215–223. [Google Scholar] [CrossRef]
- Ostry, V.; Malir, F.; Ruprich, J. Producers and Important Dietary Sources of Ochratoxin A and Citrinin. Toxins 2013, 17, 1574–1586. [Google Scholar] [CrossRef] [Green Version]
- Zepnik, H.; Pähler, A.; Schauer, U.; Dekant, W. Ochratoxin A-Induced Tumor Formation: Is There a Role of Reactive Ochratoxin A Metabolites? Toxicol. Sci. 2001, 59, 59–67. [Google Scholar] [CrossRef] [PubMed]
- Mahmoodi, M.; Alizadeh, A.M.; Sohanaki, H.; Rezaei, N.; Amini-Najafi, F.; Khosravi, A.R.; Hosseini, S.-K.; Safari, Z.; Hydarnasab, D.; Khori, V. Impact of Fumonisin B1 on the Production of Inflammatory Cytokines by Gastric and Colon Cell Lines. Iran. J. Allergy Asthma Immunol. 2012, 11, 165–173. [Google Scholar] [PubMed]
- Weidner, M.; Hüwel, S.; Ebert, F.; Schwerdtle, T.; Galla, H.-J.; Humpf, H.-U. Influence of T-2 and HT-2 Toxin on the Blood-Brain Barrier In Vitro: New Experimental Hints for Neurotoxic Effects. PLoS ONE 2013, 8, e60484. [Google Scholar] [CrossRef] [PubMed]
- Tournas, V.H.; Sapp, C.; Trucksess, M.W. Occurrence of aflatoxins in milk thistle herbal supplements. Food Addit. Contam. 2012, 29, 994–999. [Google Scholar] [CrossRef] [PubMed]
- Arroyo-Manzanares, N.; Garcia-Campana, A.M.; Gamiz-Gracia, L. Multiclass mycotoxin analysis in Silybummarianum by ultrahigh performance liquid chromatography-tandem mass spectrometry using a procedure based on QuEChERS and dispersive liquid-liquid microextraction. J. Chromatogr. A 2013, 1282, 11–19. [Google Scholar] [CrossRef]
- Veprikova, Z.; Zachariasova, M.; Dzuman, Z.; Zachariasova, A.; Fenclova, M.; Slavikova, P.; Vaclavikova, M.; Mastovska, K.; Hengs, D.; Hajslova, J. Mycotoxins in Plant-Based Dietary Supplements: Hidden Health Riskfor Consumers. J. Agric. Food Chem. 2015, 63, 6633–6643. [Google Scholar] [CrossRef]
- Costa, J.G.; Vidovic, B.; Saraiva, N.; Céu Costa, M.; Del Favero, G.; Marko, D.; Nuno, G.; Oliveira, N.G.; Fernandes, A.S. Contaminants: A dark side of food supplements? Free Radic. Res. 2019, 53, 1113–1135. [Google Scholar] [CrossRef]
- Vaclavik, L.; Vaclavikova, M.; Begley, T.H.; Krynitsky, A.J.; Rader, J.I. Determination of multiple mycotoxins in dietary supplements containing green coffee bean extracts using ultrahigh-performance liquid chromatography–tandem mass spectrometry (UHPLC-MS/MS). J. Agric. Food Chem. 2013, 61, 4822–4830. [Google Scholar] [CrossRef]
- Trucksess, M.W.; Scott, P.M. Mycotoxins in botanicals and dried fruits: A review. Food Addit. Contam. 2008, 25, 181–192. [Google Scholar] [CrossRef] [Green Version]
- Solfrizzo, M.; Piemontese, L.; Gambacorta, L.; Zivoli, R.; Longobardi, F. Food coloring agents and plant food supplements derived from Vitisvinifera: A new source of human exposure to ochratoxin A. J. Agric. Food Chem. 2015, 63, 3609–3614. [Google Scholar] [CrossRef]
- Gottschalk, C.; Biermaier, B.; Gross, M.; Schwaiger, K.; Gareis, M. Ochratoxin A in brewer’s yeast used as food supplement. Mycotoxin Res. 2016, 32, 1–5. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Wang, Z.; Gao, W.; Chen, J.; Yang, M.; Kuang, Y.; Huang, L.; Chen, S. Simultaneous determination of aflatoxin B1 and ochratoxin A in licorice roots and fritillary bulbs by solid-phase extraction coupled with high-performance liquid chromatography–tandem mass spectrometry. Food Chem. 2013, 138, 1048–1054. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, B.; Ashiq, S.; Hussain, A.; Bashir, S.; Hussain, M. Evaluation of mycotoxins, mycobiota, and toxigenic fungi in selected medicinal plants of Khyber Pakhtunkhwa. Fungal Biol. 2014, 118, 776–784. [Google Scholar] [CrossRef]
- Martínez-Domínguez, G.; Romero-González, R.; Frenich, A.G. Multi-class methodology to determine pesticides and mycotoxins in green tea and royal jelly supplements by liquid chromatography coupled to Orbitrap high resolution mass spectrometry. Food Chem. 2016, 197, 907–915. [Google Scholar] [CrossRef] [PubMed]
- Martinez-Dominguez, G.; Romero-Gonzalez, R.; Garrido Frenich, A. Determination of toxic substances, pesticides and mycotoxins, in ginkgo biloba nutraceutical products by liquid chromatography orbitrap-mass spectrometry. Microchem. J. 2015, 118, 124–130. [Google Scholar] [CrossRef]
- Santos, L.; Marin, S.; Sanchis, V.; Ramos, A.J. Screening of mycotoxin multicontamination in medicinal and aromatic herbs sampled in Spain. J. Sci. Food Agric. 2009, 89, 1802–1807. [Google Scholar] [CrossRef]
- Tosun, H.; Arslan, R. Determination of aflatoxin B1 levels in organic spices and herbs. Sci. World J. 2013, 2013, 874093. [Google Scholar] [CrossRef] [Green Version]
- Wen, J.; Kong, W.; Hu, Y.; Wang, J.; Yang, M. Multi-Mycotoxins analysis in ginger and related products by UHPLC—FLR detection and LC-MS/MS confirmation. Food Control. 2014, 43, 82–87. [Google Scholar] [CrossRef]
- Trucksess, M.; Weaver, C.; Oles, C.J.; Rump, L.V.; White, K.D.; Betz, J.M.; Rader, J.I. Use of multitoxin immunoaffinity columns for determination of aflatoxins and ochratoxin A in ginseng and ginger. J. AOAC Int. 2007, 90, 1042–1049. [Google Scholar] [CrossRef] [Green Version]
- D’Ovidio, K.; Trucksess, M.; Weaver, C.; Horn, E.; McIntosh, M.; Bean, G. Aflatoxins in ginseng roots. Food Addit. Contam. 2006, 23, 174–180. [Google Scholar] [CrossRef]
- Luo, J.; Zhou, W.; Dou, X.; Qin, J.; Zhao, M.; Yang, M. Occurrence of multi—Class mycotoxins in Menthae haplocalycis analyzed by ultra-fast liquid chromatography coupled with tandem mass spectrometry. J. Sep. Sci. 2018, 41, 3974–3984. [Google Scholar] [CrossRef] [PubMed]
- Koul, A.; Sumbali, G. Detection of zearalenone, zearalenol and deoxynivalenol from medicinally important dried rhizomes and root tubers. Afr. J. Biotechnol. 2008, 7, 4136–4139. [Google Scholar]
- Nigović, B.; Sertić, M.; Mornar, A. Simultaneous determination of lovastatin and citrinin in red yeast rice supplements by micellar electrokinetic capillary chromatography. Food Chem. 2013, 138, 531–538. [Google Scholar] [CrossRef]
- Liu, B.H.; Wu, T.S.; Su, M.C.; Chung, C.P.; Yu, F.Y. Evaluation of citrinin occurrence and cytotoxicity in Monascus fermentation products. J. Agric. Food Chem. 2005, 53, 170–175. [Google Scholar] [CrossRef] [PubMed]
- Cifuentes, A. Food analysis and foodomics. J. Chromatogr. A 2009, 1216, 7109. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rychlik, M.; Kanawati, B.; Schmitt-Kopplin, P. Foodomics as a promising tool to investigate the mycobolome. TrAC Trends Anal. Chem. 2017, 96, 22–30. [Google Scholar] [CrossRef] [Green Version]
- Pereira, V.L.; Fernandes, J.O.; Cunha, S.C. Comparative assessment of three cleanup procedures after QuEChERS extraction for determination of trichothecenes (type A and type B) in processed cereal-based baby foods by GCeMS. Food Chem. 2015, 182, 143–149. [Google Scholar] [CrossRef] [PubMed]
- Busko, M.; Kulik, T.; Ostrowska, A.; Goral, T.; Perkowski, J. Quantitative volatile compound profiles in fungal cultures of three different Fusarium graminearum chemotypes. FEMS Microbiol. 2014, 359, 85–93. [Google Scholar] [CrossRef] [Green Version]
- Senyuva, H.Z.; Gökmen, V.; Sarikaya, E.A. Future perspectives in Orbitrap™-high-resolution mass spectrometry in food analysis: A review. Food Addit. Contam. A 2015, 32, 1568–1606. [Google Scholar] [CrossRef]
- Righetti, L.; Paglia, G.; Galaverna, G.; Dall’Asta, C. Recent advances and future challenges in modified mycotoxin analysis: Why HRMS has become a key instrument in food contaminant research. Toxins 2016, 8, 361. [Google Scholar] [CrossRef]
- Malachova, A.; Sulyok, M.; Beltran, E.; Berthiller, F.; Krska, R. Optimization and validation of a quantitative liquid chromatographyetandem mass spectrometric method covering 295 bacterial and fungal metabolites including all regulated mycotoxins in four model food matrices. J. Chromatogr. A 2014, 1362, 145–156. [Google Scholar] [CrossRef] [Green Version]
- Lehner, S.M.; Neumann, N.K.N.; Sulyok, M.; Lemmens, M.; Krska, R.; Schuhmacher, R. Evaluation of LC-high-resolution FT-Orbitrap MS for the quantification of selected mycotoxins and the simultaneous screening of fungal metabolites in food. Food Addit. Contam. A 2011, 28, 1457–1468. [Google Scholar] [CrossRef] [PubMed]
- Bryła, M.; Waskiewicz, A.; Podolska, G.; Szymczyk, K.; Jędrzejczak, R.; Damaziak, K.; Sułek, A. Occurrence of 26 mycotoxins in the grain of cereals cultivated in Poland. Toxins 2016, 8, 160. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Uka, V.; Moore, G.G.; Arroyo-Manzanares, N.; Nebija, D.; De Saeger, S.; Diana Di Mavungu, J. Unravelling the diversity of the cyclopiazonic acid family of mycotoxins in Aspergillus flavus by UHPLC Triple-TOF HRMS. Toxins 2017, 9, 35. [Google Scholar] [CrossRef] [PubMed]
- De Dominicis, E.; Commissati, I.; Gritti, E.; Catellani, D.; Suman, M. Quantitative targeted and retrospective data analysis of relevant pesticides, antibiotics and mycotoxins in bakery products by liquid chromatography-single-stage Orbitrap mass spectrometry. Food Addit. Contam. Part A 2015, 32, 1617–1627. [Google Scholar] [CrossRef] [PubMed]
- Kluger, B.; Büschl, C.; Lemmens, M.; Berthiller, F.; Häubl, G.; Jaunecker, G.; Adam, G.; Krska, R.; Schuhmacher, R. Stable isotopic labelling-assisted untargeted metabolic profiling reveals novel conjugates of the mycotoxin deoxynivalenol in wheat. Anal. Bioanal. Chem. 2013, 405, 5031–5036. [Google Scholar] [CrossRef] [Green Version]
- Giacometti, J.; Josic, D. Foodomics in microbial safety. TrAC Trends Anal. Chem. 2013, 52, 16–22. [Google Scholar] [CrossRef]
- Josic, D.; Gaso-Sokac, D.; Gajdosik, M.S.; Clifton, J. Microbial omics for food safety. J. Hyg. Eng. Des. 2014, 6, 116–129. [Google Scholar]
- Bergholz, T.M.; Moreno Switt, A.I.; Wiedmann, M. Omics approaches in food safety: Fulfilling the promise? Trends Microbiol. 2014, 22, 275–281. [Google Scholar] [CrossRef] [Green Version]
- Severgnini, M.; Creminesi, P.; Consolandi, C.; De Bellis, G.; Castiglioni, B. Advances in DNA microarray technology for the detection of foodborne pathogens. Adv. Bioprocess. Technol. 2011, 4, 936–953. [Google Scholar] [CrossRef]
- Cevallos-Cevallos, J.M.; Danyluk, M.D.; Reyes-De-Corcuera, J.I. GC-MS based metabolomics for rapid simultaneous detection of Escherichia coli O157:H7, Salmonella typhimurium, Salmonella muenchen and Salmonella in ground beef and chicken. J. Food Sci. 2011, 76, 238–246. [Google Scholar] [CrossRef] [PubMed]
- Srajer Gajdosik, M.; Gaso-Sokac, D.; Pavlovic, H.; Clifton, J.; Breen, L.; Cao, L.; Giacometti, J.; Josic, D. Sample preparation and proteomic investigation of the inhibitory activity of pyridinium oximes to Gram-positive and Gram negative food pathogens. Food Res. Int. 2013, 51, 46–52. [Google Scholar] [CrossRef]
- Tanca, A.; Biosa, G.; Pagnozzi, D.; Addis, M.F.; Uzzau, S. Comparison of Detergent-Based Sample Preparation Workflows for LTQ-Orbitrap Analysis of the Escherichia Coli Proteome. Proteomics 2013, 13, 2597–2607. [Google Scholar] [CrossRef] [PubMed]
- Giacometti, J.; Josic, D.J. Microbial proteomics for food safety. In Proteomics in Foods Principles and Applications; Toldra, F., Nollet, L.M.L., Eds.; Springer: New York, NY, USA, 2013; pp. 515–545. [Google Scholar]
- Giacometti, A.; Tomljenovic, B.; Josic, D. Application of proteomics and metabolomics for investigation of food toxins. Food Res. Int. 2013, 54, 1042–1051. [Google Scholar] [CrossRef]
- Xanthopoulos, V.; Tzanetakis, N.; Litopoulou-Tzanetaki, E. Occurence and characterization of Aeromonas hydrophila and Yersinia enterocolitica in minimally processed fresh vegetable salads. Food Control. 2010, 21, 393–398. [Google Scholar] [CrossRef]
Plant Component | Bacterial Contamination | Fungal Pollution | Ref. | ||
---|---|---|---|---|---|
Quantitative TAMC (CFU/g) | Qualitative | Quantitative TYMC (CFU/g) | Qualitative | ||
Lucerne (alfalfa) leaves | 5.2 × 106–3.8 × 107 | Aerobic plate counts | 4.4 × 105–5.6 × 106 | Cladosporium spp., Fusarum spp., Aspergillus flavus, Aspergillus niger, Penicillium spp., Yeasts | [22] |
Ginger root | <102–1.0 × 102 | Aerobic plate counts | 1.5 × 102–5.4 × 105 | Aspergillus niger | [22] |
Ginkgo | <102–3.2 × 103 | Aerobic plate counts | <102–3.8 × 105 | Aspergillus spp., Eurotium chevalieri, Yeasts | [22] |
Echinacea herb | <102–2.4 × 103 | Aerobic plate counts | <102–4.6 × 105 | Alternaria alternate, Fusarum spp., Aspergillus spp., Aspergillus niger, Yeasts | [22] |
1.9 × 106 | 8.2 × 103 | [18,23] | |||
European blueberry fruit | <1.0 × 101–2.0 × 105 | Bacillus spp., Micrococcus spp., Staphylococcus spp., Enterobacteriaceae | 1.0 × 101–7.0 × 104 | Alternaria spp., Fusarum spp., Aspergillus spp., Cladosporium spp., Penicillium spp. | [2] |
Raspberry fruit | <1.0 × 101–3.0 × 102 | Bacillus spp., Micrococcus spp., Staphylococcus spp. | 1.0 × 101–4.0 × 104 | Alternaria spp., Fusarum spp., Aspergillus spp., Penicillium spp. | [2] |
Jerusalem artichoke root | 5.0 × 101–7.0 × 105 | Bacillus spp., Micrococcus spp., Staphylococcus spp., Enterobacteriaceae | <1.0 × 101–7.0 × 102 | Alternaria spp., Fusarum spp., Aspergillus spp. | [2] |
Aristolochia repens | 5.4 × 105 | Citrobacter spp., Klebsiella aerogenes, Bacillus subtilis | 3.1 × 106 | Aspergillus fumigatus, Absidia spp. | [33] |
Angylocalyx oligophyllus | 3.5 × 106 | Bacillus subtilis, Citrobacter spp., Staphylococcus epidermidis | 7.5 × 105 ± 0.03 | Mucor spp. | [33] |
Zingiber officinale | 2.0 × 106 | Acinetobacter spp., Pseudomonas aeruginosa, Bacillus subtilis | Nil | - | [33] |
1.0 × 103 | Bacillus spp., Staphylococcus spp. | 2.3 × 102 | Aspergillus spp. | [34] | |
Securinega virosa | 4.3 × 105 | Bacillus subtilis, E. coli | 7.1 × 105 | Mucor spp., Penicillium spp. | [33] |
Nesogordonia papaverifera | 6.3 × 106 | Pseudomonas aeruginosa, Citrobacter spp. | 7.1 × 106 | Aspergillus niger, Mucor spp. | [33] |
Bacillus spp., Staphylococcus epidermidis | |||||
Astralagus savcocolla | 1.2 × 106 | Bacillus spp., Staphylococcus spp. | 2.1 × 104 | Aspergillus fumigatus, Aspergillus flavus | [34] |
Matricavia chamomiia | 1.0 × 105 | Enterobacter cloace, Bacillus spp. | 1.7 × 103 | Aspergillus flavus | [34] |
Calligonum comosum | 3.7 × 102 | Bacillus cereus | 1.0 × 105 | Aspergillus flavus | [34] |
Matricaria chamomilia | 4.0 × 105 | Clostridium botulinum | 1.7 × 103 | Aspergillus flavus | [34] |
1.7 × 106 | 2.5 × 103 | Yeasts | [23] | ||
3.5 × 105 | E. coli, Bacillus spp., Micrococcus spp. | - | - | [35] | |
American ginseng root | <102–4.5 × 104 | Bacillus spp. | <102–4.3 × 105 | Penicillium spp., Rhizopus spp., Aspergillus flavus, Aspergillus niger, Fusarum spp., Chaetomium spp. | [36] |
Chinese ginseng | <1.0 × 102–1.2 × 106 | Bacillus spp. | <1.0 × 102–6.0 × 104 | Alternaria alternata, Aspergillus niger, Aspergillus spp., Cladosporium spp., E. chevalieri, Penicillium spp., Rhizopus spp. | [36] |
Goji berry (Lycium barbarum) | 3.5 × 102–7.6 × 103 | Clostridium spp. | <1.0 × 101–5.0 × 102 | - | [37] |
Milkvetch root (Astragalus membranaceus) | 2.0 × 102–9.0 × 103 | Clostridium perfringens, Clostridium spp. | <1.0 × 101–1.0 × 102 | - | [37] |
Artichoke (C. scolymus L.) | 1.3 × 106 | Micrococcus spp., Staphylococcus spp. | - | - | [35] |
1.0 × 101–3.0 × 105 | Bacillus spp., Micrococcus spp. | 1.0 × 101–2.0 × 102 | Alternaria spp., Aspergillus spp., Cladosporium spp. | [2] |
Type of Mycotoxin | Toxic Effects and Diseases | Example of Food Supplements | Ref. |
---|---|---|---|
Aflatoxin (AF) | carcinogenic, hepatotoxic, immunotoxic, (decreasing immune systems, affecting the structure of DNA, hepatitis, bleeding, kidney lesions) | Liquorice root | [70,71] |
Green tea | [72] | ||
Ginkgo biloba | [73] | ||
Milk thistle | [62,74] | ||
[Aspergillus] | Ginger | [75,76] | |
Ginseng | [77] | ||
Ginseng root | [47,78] | ||
Mint | [74,75,79] | ||
Chamomile flower | [74] | ||
Ochratoxins (OTA, OTB, OTC) | carcinogenic, cepatotoxic, immunotoxic, nephrotoxic, (kidney and liver damage, loss of appetite, nausea, vomiting, suppression of immune system, carcinogenic) | Green coffee | [62] |
Grape | [68] | ||
Brewer’s yeast | [69] | ||
Ginger | [76] | ||
[Aspergillus, Penicillium] | |||
Ginseng | [77] | ||
Mint | [74,79] | ||
Chamomile flower | [74] | ||
Liquorice root | [70,71] | ||
Trichothecenes (type A trichothecenes, type B trichothecenes) [Fusarium, Myrothecium, Stachybotrys, Trichoderma] | immunotoxic, neurotoxic, (skin necrosis, hemorrhage, anemia, granulocytopenia, oral epithelial lesions, GIS lesions, hematopoietic, alimentary toxic aleukia (ATA), hypotension, coagulopathy) | Ginkgo biloba | [73] |
Different plant | [64] | ||
Milk thistle | [64,74] | ||
Mint | [74] | ||
Chamomile flower | [74] | ||
Zearalenones (ZEN, α-ZOL, β-ZOL, ZAN) [Fusarium] | immunotoxic, oestrogenic, teratogenic, (hormonal imbalance estrogenic effect, reproductive problems) | Different plants | [64] |
Ginger | [80] | ||
Milk thistle | [63,74] | ||
Mint | [74,79] | ||
Chamomile flower | [74] | ||
Fumonisins (FB1, FB2, FB3) [Fusarium] | carcinogenic, hepatotoxic, immunotoxic, nephrotoxic, neurotoxic (encephalomalacia, pulmonary edema, carcinogenic, neurotoxicity, liver damage, heart failure, esophageal cancer in humans) | Green coffee | [66] |
Milk thistle | [74] | ||
Mint | [79] | ||
Chamomile flower | [74] | ||
Liquorice | [74] | ||
Deoxynivalenol (DON) [Fusarium] | inadequate evidence of carcinogenicity | Different plants | [64] |
(interfere with mammalian cellular processes including DNA replication and protein synthesis) | Ginger | [80] | |
Milk thistle | [64] | ||
Mint | [74] | ||
Chamomile flower | [74] | ||
Citrinin (CIT) [Aspergillus, Penicillium] | nephrotoxic, reproductive toxicity, teratogenic and embryotoxic effects | Different (plant-based and Red yeast rice) | [81] |
Red yeast rice | [82] | ||
Mint | [74] | ||
Chamomile flower | [74] |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ratajczak, M.; Kaminska, D.; Światły-Błaszkiewicz, A.; Matysiak, J. Quality of Dietary Supplements Containing Plant-Derived Ingredients Reconsidered by Microbiological Approach. Int. J. Environ. Res. Public Health 2020, 17, 6837. https://doi.org/10.3390/ijerph17186837
Ratajczak M, Kaminska D, Światły-Błaszkiewicz A, Matysiak J. Quality of Dietary Supplements Containing Plant-Derived Ingredients Reconsidered by Microbiological Approach. International Journal of Environmental Research and Public Health. 2020; 17(18):6837. https://doi.org/10.3390/ijerph17186837
Chicago/Turabian StyleRatajczak, Magdalena, Dorota Kaminska, Agata Światły-Błaszkiewicz, and Jan Matysiak. 2020. "Quality of Dietary Supplements Containing Plant-Derived Ingredients Reconsidered by Microbiological Approach" International Journal of Environmental Research and Public Health 17, no. 18: 6837. https://doi.org/10.3390/ijerph17186837