Combined Toxicity of Cannabidiol Oil with Three Bio-Pesticides against Adults of Sitophilus Zeamais, Rhyzopertha Dominica, Prostephanus Truncatus and Trogoderma Granarium
Abstract
1. Introduction
2. Materials and Methods
2.1. Insect Rearing
2.2. Bioassay
2.3. Mathematical Estimation
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Becker-Ritt, A.B.; Carlini, C.R. Fungitoxic and insecticidal plant polypeptides. Biopolymers 2012, 98, 367–384. [Google Scholar] [CrossRef] [PubMed]
- Diaz, J.H. Chemical and plant-based insect repellents: Efficacy, safety, and toxicity. Wilderness Environ. Med. 2016, 27, 153–163. [Google Scholar] [CrossRef] [PubMed]
- Jiang, W.; Hernandez, B.; Richmond, D.; Yanga, N. Harvesters in strawberry fields: A literature review of pesticide exposure, an observation of their work activities, and a model for exposure prediction. J. Expo. Sci. Environ. Epidemiol. 2017, 27, 391–397. [Google Scholar] [CrossRef] [PubMed]
- Collins, P.J.; Schlipalius, D.I. Insecticide resistance. In Recent Advances in Stored Product Protection; Athanassiou, C.G., Arthur, F.H., Eds.; Springer: Berlin/Heidelberg, Germany, 2018; pp. 169–182. [Google Scholar]
- Benelli, G.; Pavela, R.; Petrelli, R.; Cappellaci, L.; Santini, G.; Fiorini, D.; Sut, S.; Dall’Acqua, S.; Canale, A.; Maggi, F. The essential oil from industrial hemp (Cannabis sativa L.) by-products as an effective tool for insect pest management in organic crops. Ind. Crop. Prod. 2018, 122, 308–315. [Google Scholar] [CrossRef]
- Pavela, R.; Benelli, G. Essential oils as eco-friendly biopesticides? Challenges and consraints. Trends Plant Sci. 2016, 21, 1000–1007. [Google Scholar] [CrossRef] [PubMed]
- Said, P.; Pashte, V. Botanicals: The protectants of stored grains pests. Biosci. Trends 2015, 8, 3750–3755. [Google Scholar]
- Spochacz, M.; Chowański, S.; Walkowiak-Nowicka, K.; Szymczak, M.; Adamski, Z. Plant-derived substances used against beetles–pests of stored crops and food–and their mode of action: A review. Compr. Rev. Food Sci. Food Saf. 2018, 17, 1339–1366. [Google Scholar] [CrossRef]
- Kumar, K.K.; Sridhar, J.; Murali-Baskaran, R.K.; Senthil-Nathan, S.; Kaushal, P.; Dara, S.K.; Arthurs, S. Microbial biopesticides for insect pest management in India: Current status and future prospects. J. Invertebr. Pathol. 2019, 165, 74–81. [Google Scholar] [CrossRef]
- Hatting, J.L.; Moore, S.D.; Malan, A.P. Microbial control of phytophagous invertebrate pests in South Africa: Current status and future prospects. J. Invertebr. Pathol. 2019, 165, 54–66. [Google Scholar] [CrossRef]
- Lovett, B.; St. Leger, R.J. Genetically engineering better fungal biopesticides. Pest Manag. Sci. 2018, 74, 781–789. [Google Scholar] [CrossRef]
- Beck, J.J.; Vannette, R.L. Harnessing insect-microbe chemical communications to control insect pests of agricultural systems. J. Agric. Food Chem. 2017, 65, 23–28. [Google Scholar] [CrossRef] [PubMed]
- Carpio, C.; Dangles, O.; Dupas, S.; Léry, X.; López-Ferber, M.; Orbe, K.; Páez, D.; Rebaudo, F.; Santillán, A.; Yangari, B.; et al. Development of a viral biopesticide for the control of the Guatemala potato tuber moth Tecia solanivora. J. Invertebr. Pathol. 2013, 112, 184–191. [Google Scholar] [CrossRef] [PubMed]
- Arthurs, S.; Dara, S.K. Microbial biopesticides for invertebrate pests and their markets in the United States. J. Invertebr. Pathol. 2019, 165, 13–21. [Google Scholar] [CrossRef] [PubMed]
- Raymond, B.; Sayyed, A.H.; Wright, D.J. The compatibility of a nucleopolyhedrosis virus control with resistance management for Bacillus thuringiensis: Co-infection and cross-resistance studies with the diamondback moth, Plutella xylostella. J. Invertebr. Pathol. 2006, 93, 114–120. [Google Scholar] [CrossRef] [PubMed]
- Jaques, R.P.; Hardman, J.M.; Laing, J.E.; Smith, R.E.; Bent, E. Orchard trials in Canada on control of Cydia Pomonella (Lep: Tortricidae) by granulosis Virus. Entomophaga 1994, 39, 281–292. [Google Scholar] [CrossRef]
- Sun, X. History and current status of development and use of viral insecticides in China. Viruses 2015, 7, 306–319. [Google Scholar] [CrossRef]
- Rajashekar, Y.; Bakthavatsalam, N.; Shivanandappa, T. Botanicals as grain protectants. Psyche 2012, 2012, 646740. [Google Scholar] [CrossRef]
- Omar, K.; Faraj, N.M.; Malik, S.A.A.; Al-Farhani, I.M. Effect of some medicinal plants extracts and cypermthrin against Khapra Beetle (Trogoderma granarium Everts). Emir. J. Food Agric. 2012, 24, 120–127. [Google Scholar]
- Maia, M.F.; Moore, S.J. Plant-based insect repellents: A review of their efficacy, development, and testing. Malar. J. 2011, 10 (Suppl. 1), S11. [Google Scholar] [CrossRef]
- Athanassiou, C.G.; Kavallieratos, N.G.; Evergetis, E.; Katsoula, A.-M.; Haroutounian, S.A. Insecticidal Efficacy of Silica Gel with Juniperus oxycedrus ssp. oxycedrus (Pinales: Cupressaceae) Essential Oil Against Sitophilus oryzae (Coleoptera: Curculionidae) and Tribolium confusum (Coleoptera: Tenebrionidae). J. Econ. Entomol. 2013, 106, 1902–1910. [Google Scholar] [CrossRef]
- Gupta, S.C.; Prasad, S.; Tyagi, A.K.; Kunnumakkara, A.B.; Aggarwal, B.B. Neem (Azadirachta indica): An indian traditional panacea with modern molecular basis. Phytomedicine 2017, 34, 14–20. [Google Scholar] [CrossRef] [PubMed]
- Benelli, G.; Canale, A.; Toniolo, C.; Higuchi, A.; Murugan, K.; Pavela, R.; Nicoletti, M. Neem (Azadirachta indica): Towards the ideal insecticide? Nat. Prod. Res. 2017, 31, 369–386. [Google Scholar] [CrossRef] [PubMed]
- Pascoli, M.; Jacques, M.T.; Agarrayua, D.A.; Avila, D.S.; Lima, R.; Fraceto, L.F. Neem oil based nanopesticide as an environmentally-friendly formulation for applications in sustainable agriculture: An ecotoxicological perspective. Sci. Total Environ. 2019, 677, 57–67. [Google Scholar] [CrossRef] [PubMed]
- McPartland, J.M.; Sheikh, Z. A Review of Cannabis sativa-Based Insecticides, Miticides, and Repellents. J. Entomol. Zool. Stud. 2018, 6, 1288–1299. Available online: https://www.cabdirect.org (accessed on 6 July 2020).
- Mascarin, G.M.; Delalibera, I. Insecticidal activity of the granulosis virus in combination with neem products and talc powder against the potato tuberworm Phthorimaea operculella (Zeller) (Lepidoptera: Gelechiidae). Neotrop. Entomol. 2012, 41, 223–231. [Google Scholar] [CrossRef]
- Awan, D.A.; Ahmad, F.; Saleem, M.A.; Shakoori, A.R. Synergistic effect of piperonyl butoxide and emamectin benzoate on enzymatic activities in resistant populations of red flour beetle, Tribolium castaneum Herbst (Coleoptera: Tenebrionidae). Environ. Sci. Pollut. Res. 2019, 26, 14200–14213. [Google Scholar] [CrossRef]
- Mwila, K.; Burton, M.H.; Van Dyk, J.S.; Pletschke, B.I. The effect of mixtures of organophosphate and carbamate pesticides on acetylcholinesterase and application of chemometrics to identify pesticides in mixtures. Environ. Monit. Assess. 2013, 185, 2315–2327. [Google Scholar] [CrossRef]
- Campolo, O.; Giunti, G.; Russo, A.; Palmeri, V.; Zappalà, L. Essential oils in stored product insect pest control. J. Food Qual. 2018, 2018, 6906105. [Google Scholar] [CrossRef]
- Chebet, F.; Deng, A.; Ogendo, J.O.; Kamau, A.; Bett, P. Bioactivity of selected plant powders against Prostephanus truncatus (Coleoptera: Bostrichidae) in stored maize grains. Plant Prot. Sci. 2013, 49, 34–43. [Google Scholar] [CrossRef]
- Faraone, N.; Hillier, N.K.; Cutler, G.C. Plant essential oils synergize and antagonize toxicity of diferent conventional insecticides against Myzus persicae (Hemiptera: Aphididae). PLoS ONE 2015, 10, e0127774. [Google Scholar] [CrossRef]
- Benelli, G.; Pavela, R.; Iannarelli, R.; Petrelli, R.; Cappellacci, L.; Cianfaglione, K.; Afshar, F.H.; Nicoletti, M.; Canale, A.; Maggi, F. Synergized mixtures of Apiaceae essential oils and related plant-borne compounds: Larvicidal effectiveness on the flariasis vector Culex quinquefasciatus Say. Ind. Crop. Prod. 2017, 96, 186–195. [Google Scholar] [CrossRef]
- Mantzoukas, S.; Milonas, P.; Kontodimas, D.; Angelopoulos, K. Interaction between the entomopathogenic bacterium Bacillus thuringiensis subsp. kurstaki and two entomopathogenic fungi in bio-control of Sesamia nonagrioides (Lefebvre) (Lepidoptera: Noctuidae). Ann. Microbiol. 2013, 63, 1083–1091. [Google Scholar] [CrossRef]
- Mantzoukas, S.; Zikou, A.; Triantafillou, V.; Lagogiannis, I.; Eliopoulos, P.A. Ιnteractions between Beauveria bassiana and Isaria fumosorosea and their hosts Sitophilus granarius (L.) and Sitophilus oryzae (L.) (Coleoptera: Curculionidae). Insects 2019, 10, 362. [Google Scholar] [CrossRef] [PubMed]
- Mantzoukas, S. The effect of Metarhizium robertsii and Bacillus thuringiensis against Helicoverpa armigera (Hübner) (Lepidoptera: Noctuidae). Adv. Ecol. Environ. Res. 2019, 136–146. Available online: https://www.ss-pub.org/aeer/the-effect-of-metarhizium-robertsii-and-bacillus-thuringiensis-against-helicoverpa-armigera-hubner-lepidoptera-noctuidae/ (accessed on 12 September 2020).
- Shapiro-Ilan, D.I.; Cottrell, T.E.; Bock, C.; Mai, K.; Boykin, D.; Wells, L.; Hudson, W.G.; Mizell, R.F., 3rd. Control of pecan weevil with microbial biopesticides. Environ. Entomol. 2017, 46, 1299–1304. [Google Scholar] [CrossRef]
- Peng, D.; Luo, K.; Jiang, H.; Deng, Y.; Bai1, L.; Zhou, X. Combined use of Bacillus subtilis strain B-001 and bactericide for the control of tomato bacterial wilt. Pest Manag. Sci. 2017, 73, 1253–1257. [Google Scholar] [CrossRef] [PubMed]
- Dakhel, W.H.; Latchininsky, A.V.; Jaronski, S.T. Efficacy of two entomopathogenic fungi, Metarhizium brunneum, strain F52 alone and combined with Paranosema locustae against the migratory grasshopper, Melanoplus sanguinipes, under laboratory and greenhouse conditions. Insects 2019, 10, 94. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.M.; Jeffries, P.; Pautasso, M.; Jeger, M.J. Combined use of biocontrol agents to manage plant diseases in theory and practice. Phytopathology 2011, 101, 1024–1031. [Google Scholar] [CrossRef]
- Xu, X.M.; Jeger, M.J. Theoretical modeling suggests that synergy may result from combined use of two biocontrol agents for controlling foliar pathogens under spatial heterogeneous conditions. Phytopathology 2013, 103, 768–775. [Google Scholar] [CrossRef][Green Version]
- Portman, S.L.; Krishnankutty, S.M.; Reddy, G.V.P. Entomopathogenic nematodes combined with adjuvants presents a new potential biological control method for managing the wheat stem sawfly, cephus cinctus (Hymenoptera: Cephidae). PLoS ONE 2016, 11, e0169022. [Google Scholar] [CrossRef]
- Nathan, S.S.; Kalaivani, K.; Murugan, K. Effect of biopesticides on the lactate dehydrogenase (LDH) of the rice leaffolder, Cnaphalocrocis medinalis (Guenée) (Insecta: Lepidoptera: Pyralidae). Ecotoxicol. Environ. Saf. 2006, 65, 102–107. [Google Scholar] [CrossRef] [PubMed]
- Hancock, P.A. Combining fungal biopesticides and insecticide-treated bednets to enhance malaria control. PLoS Comput. Biol. 2009, 5, e1000525. [Google Scholar] [CrossRef] [PubMed]
- Köhl, J.; Kolnaar, R.; Ravensberg, W.J. Mode of action of microbial biological control agents against plant diseases: Relevance beyond efficacy. Front. Plant Sci. 2019, 10, 1–19. [Google Scholar] [CrossRef] [PubMed]
- Ikbal, C.; Pavela, R. Essential oils as active ingredients of botanical insecticides against aphids. J. Pest Sci. 2019, 92, 971–986. [Google Scholar] [CrossRef]
- Lacey, L.A.; Grzywacz, D.; Shapiro-Ilan, D.I.; Frutos, R.; Brownbridge, M.; Goettel, M.S. Insect pathogens as biological control agents: Back to the future. J. Invertebr. Pathol. 2015, 132, 1–41. [Google Scholar] [CrossRef] [PubMed]
- Rahim, M. Biological activity of azadirachtin-enriched neem kernel extracts against Rhyzopertha dominica (F.) (Coleoptera: Bostrichidae) in stored wheat. J. Stored Prod. Res. 1998, 34, 123–128. [Google Scholar] [CrossRef]
- Tofel, H.K.; Nukenine, E.N.; Stahler, M.; Adler, C. Degradation of azadirachtin A on treated maize and cowpea and the persistence of Azadirachta indica seed oil on Callosobruchus maculatus and Sitophilus zeamais. J. Stored Prod. Res. 2016, 69, 207–212. [Google Scholar] [CrossRef]
- Kavallieratos, N.G.; Athanassiou, C.G.; Saitanis, C.J.; Kontodimas, D.C.; Roussos, A.N.; Tsoutsa, M.S.; Anastassopoulou, U. Effect of two azadirachtin formulations against adults of Sitophilus oryzae and tribolium confusum on different grain commodities. J. Food Prot. 2007, 70, 1627–1632. [Google Scholar] [CrossRef]
- Robertson, J.L.; Preisler, H.K. Pesticide Bioassays with Arthropods; CRC: Boca Raton, FL, USA, 1992. [Google Scholar]
- Xie, Y.S.; Fields, P.G.; Isman, M.B. Repellency and toxicity of azadirachtin and neem concentrates to three stored-product beetles. J. Econ. Entomol. 1995, 88, 1024–1031. [Google Scholar] [CrossRef]
- Liu, X.; Zhang, Q.; Xu, B.; Li, J. Effects of Cry1Ac toxin of Bacillus thuringiensis and nuclear polyhedrosis virus of Helicoverpa armigera (Hübner) (Lepidoptera: Noctuidae) on larval mortality and pupation. Pest Manag. Sci. 2006, 62, 729–737. [Google Scholar] [CrossRef]
- Moscardi, F. Assessment if the application of baculoviruses for the control of Lepidoptera. Annu. Rev. Entomol. 1999, 44, 257–289. [Google Scholar] [CrossRef] [PubMed]
- Hernández, A.F.; Gil, F.; Lacasaña, M. Toxicological interactions of pesticide mixtures: An update. Arch. Toxicol. 2017, 91, 3211–3223. [Google Scholar] [CrossRef] [PubMed]
- Espinel-Correal, C.; López-Ferber, M.; Zeddam, J.-L.; Villamizar, L.; Gómez, J.; Cotes, A.M.; Léry, X. Experimental mixtures of Phthorimaea operculella granulovirus isolates provide high biological efficacy on both Phthorimaea operculella and Tecia solanivora (Lepidoptera: Gelechiidae). J. Invertebr. Pathol. 2012, 110, 375–381. [Google Scholar] [CrossRef] [PubMed]
- Bhuiyan, K.R.; Hassan, E.; Isman, M.B. Growth inhibitory and lethal effects of some botanical insecticides and potential synergy by dillapiole in Spodoptera litura (Fab.) (Lepidoptera: Noctuidae). J. Plant Dis. Prot. 2000, 108, 82–88. [Google Scholar]
- Khorrami, F.; Valizadegan, O.; Forouzan, M.; Soleymanzade, A. The antagonistic/synergistic effects of some medicinal plant essential oils, extracts and powders combined with Diatomaceous earth on the flour beetle, Tribolium castaneum Herbst (Coleoptera: Tnenebrionidae). Arch. Phytopathol. Plant Prot. 2018, 51, 13–14. [Google Scholar] [CrossRef]
Insect | Concentration (ppm) | Mortality | Median Survival Time (Days) * | |||||||
---|---|---|---|---|---|---|---|---|---|---|
CBD Oil | Azatin | Helicovex | Madex | (%) | Sd | Estimate | Sd | 95% Confidence Interval | ||
Lower Bound | Upper Bound | |||||||||
S. zeamais | 0 | 0 | 0 | 0 | 6 | 2.00 | 27.160a | 0.510 | 26.160 | 28.160 |
500 | 0 | 0 | 0 | 38bA | 3.90 | 22.260b | 1.251 | 19.809 | 24.711 | |
1500 | 0 | 0 | 0 | 54dA | 1.40 | 21.140b | 1.184 | 18.819 | 23.461 | |
3000 | 0 | 0 | 0 | 70eA | 10.0 | 17.920c | 1.274 | 15.424 | 20.416 | |
0 | 1500 | 0 | 0 | 46cA | 1.40 | 23.800b | 0.950 | 21.939 | 25.661 | |
0 | 0 | 1500 | 0 | 16aA | 3.90 | 26.180a | 0.787 | 24.638 | 27.722 | |
0 | 0 | 0 | 1500 | 18aA | 3.40 | 26.180a | 0.690 | 24.827 | 27.533 | |
R. dominica | 0 | 0 | 0 | 0 | 6 | 2.00 | 27.300a | 0.4 | 26.500 | 28.100 |
500 | 0 | 0 | 0 | 44bA | 5.20 | 21.280b | 1.266 | 18.798 | 23.762 | |
1500 | 0 | 0 | 0 | 60cA | 2.20 | 20.720b | 1.155 | 18.455 | 22.985 | |
3000 | 0 | 0 | 0 | 84dA | 5.50 | 15.380c | 1.228 | 13.272 | 18.088 | |
0 | 1500 | 0 | 0 | 44bA | 1.40 | 23.240b | 1.062 | 21.159 | 25.321 | |
0 | 0 | 1500 | 0 | 20aA | 5.10 | 25.480b | 0.904 | 23.708 | 27.252 | |
0 | 0 | 0 | 1500 | 22aA | 4.50 | 25.620b | 0.794 | 24.064 | 27.176 | |
P. truncatus | 0 | 0 | 0 | 0 | 6 | 3.00 | 27.020a | 0.560 | 25.922 | 28.118 |
500 | 0 | 0 | 0 | 48bA | 3.50 | 21.140b | 1.183 | 18.821 | 23.459 | |
1500 | 0 | 0 | 0 | 58bA | 4.80 | 20.720b | 1.262 | 18.246 | 23.194 | |
3000 | 0 | 0 | 0 | 80cA | 10.0 | 15.920c | 1.229 | 13.871 | 18.689 | |
0 | 1500 | 0 | 0 | 50bA | 4.20 | 22.960b | 1.093 | 20.817 | 25.103 | |
0 | 0 | 1500 | 0 | 20aA | 7.10 | 25.200a | 0.979 | 23.281 | 27.119 | |
0 | 0 | 0 | 1500 | 20aA | 7.10 | 26.180a | 0.722 | 24.766 | 27.594 | |
T. granarium | 0 | 0 | 0 | 0 | 8 | 2.00 | 27.020a | 0.626 | 25.792 | 28.248 |
500 | 0 | 0 | 0 | 44aA | 5.20 | 21.700b | 1.253 | 19.244 | 24.156 | |
1500 | 0 | 0 | 0 | 54bA | 2.20 | 20.700b | 1.163 | 18.420 | 22.980 | |
3000 | 0 | 0 | 0 | 62cA | 2.30 | 19.600c | 1.224 | 17.201 | 21.999 | |
0 | 1500 | 0 | 0 | 38aA | 4.50 | 23.800b | 0.953 | 21.933 | 25.667 | |
0 | 0 | 1500 | 0 | 20aA | 7.10 | 25.620a | 0.876 | 23.903 | 27.337 | |
0 | 0 | 0 | 1500 | 24aA | 5.50 | 26.740a | 0.537 | 25.687 | 27.793 |
Insect | Combined Concentration (ppm) | Mortality | Median Survival Time (Days) * | |||||||
---|---|---|---|---|---|---|---|---|---|---|
CBD Oil | Azatin | Helicovex | Madex | (%) | Sd | Estimate | Sd | 95% Confidence Interval | ||
Lower Bound | Upper Bound | |||||||||
S. zeamais | 500 | 1500 | 0 | 0 | 36aA | 4.90 | 25.060a | 0.793 | 23.506 | 26.614 |
1500 | 1500 | 0 | 0 | 68cA | 1.98 | 20.440b | 1.041 | 18.399 | 22.481 | |
3000 | 1500 | 0 | 0 | 84dA | 3.48 | 15.400c | 1.235 | 12.979 | 17.821 | |
500 | 0 | 1500 | 0 | 30aA | 5.00 | 24.360a | 1.009 | 22.382 | 26.338 | |
1500 | 0 | 1500 | 0 | 46bA | 5.48 | 23.080a | 0.953 | 21.212 | 24.948 | |
3000 | 0 | 1500 | 0 | 62cA | 1.37 | 21.000b | 1.156 | 18.734 | 23.266 | |
500 | 0 | 0 | 1500 | 18aA | 4.37 | 25.900a | 0.727 | 24.475 | 27.325 | |
1500 | 0 | 0 | 1500 | 22aA | 3.04 | 25.060a | 0.954 | 23.191 | 26.929 | |
3000 | 0 | 0 | 1500 | 40aA | 1.07 | 22.960b | 1.095 | 20.814 | 25.106 | |
R dominica | 500 | 1500 | 0 | 0 | 50bA | 10.0 | 22.680a | 1.020 | 20.681 | 24.679 |
1500 | 1500 | 0 | 0 | 80dA | 5.80 | 18.060a | 1.081 | 15.941 | 20.179 | |
3000 | 1500 | 0 | 0 | 90eB | 1.07 | 14.140b | 1.176 | 11.835 | 16.445 | |
500 | 0 | 1500 | 0 | 40bA | 5.80 | 23.380a | 1.087 | 21.250 | 25.510 | |
1500 | 0 | 1500 | 0 | 60cA | 2.25 | 22.260a | 1.079 | 20.145 | 24.375 | |
3000 | 0 | 1500 | 0 | 70cA | 1.07 | 19.880a | 1.195 | 17.539 | 22.221 | |
500 | 0 | 0 | 1500 | 32aB | 4.40 | 23.520a | 1.072 | 21.419 | 25.621 | |
1500 | 0 | 0 | 1500 | 42bB | 2.30 | 22.820a | 1.089 | 20.686 | 24.954 | |
3000 | 0 | 0 | 1500 | 60cB | 4.14 | 21.000a | 1.174 | 18.699 | 23.301 | |
P. truncatus | 500 | 1500 | 0 | 0 | 44dA | 2.37 | 23.520a | 1.008 | 21.544 | 25.496 |
1500 | 1500 | 0 | 0 | 74fA | 5.17 | 19.320a | 1.072 | 17.218 | 21.422 | |
3000 | 1500 | 0 | 0 | 94gB | 5.40 | 13.300b | 1.119 | 11.107 | 15.493 | |
500 | 0 | 1500 | 0 | 38cA | 2.37 | 23.520a | 1.072 | 21.419 | 25.621 | |
1500 | 0 | 1500 | 0 | 54eB | 1.40 | 22.960a | 1.049 | 20.904 | 25.016 | |
3000 | 0 | 1500 | 0 | 70fA | 3.07 | 26.765a | 1.198 | 24.416 | 29.114 | |
500 | 0 | 0 | 1500 | 26aB | 1.40 | 24.220a | 1.055 | 22.152 | 26.288 | |
1500 | 0 | 0 | 1500 | 30bC | 2.25 | 24.220a | 1.029 | 22.203 | 26.237 | |
3000 | 0 | 0 | 1500 | 52eC | 3.04 | 21.000a | 1.177 | 18.692 | 23.308 | |
T. granarium | 500 | 1500 | 0 | 0 | 50bA | 1.07 | 22.680a | 1.061 | 20.601 | 24.759 |
1500 | 1500 | 0 | 0 | 56bB | 2.94 | 21.420a | 1.183 | 19.102 | 23.738 | |
3000 | 1500 | 0 | 0 | 62cC | 2.37 | 20.580a | 1.213 | 18.203 | 22.957 | |
500 | 0 | 1500 | 0 | 46aA | 3.48 | 22.820a | 1.105 | 20.654 | 24.986 | |
1500 | 0 | 1500 | 0 | 54bA | 3.40 | 22.260a | 1.136 | 20.034 | 24.486 | |
3000 | 0 | 1500 | 0 | 68cA | 2.37 | 20.440a | 1.220 | 18.049 | 22.831 | |
500 | 0 | 0 | 1500 | 38aB | 5.95 | 23.660a | 1.074 | 21.554 | 25.766 | |
1500 | 0 | 0 | 1500 | 48aD | 3.37 | 23.52a0 | 1.006 | 21.548 | 25.492 | |
3000 | 0 | 0 | 1500 | 54bC | 3.48 | 22.680a | 1.059 | 20.604 | 24.756 |
Combined Concentration (ppm) | Mortality (%) | χ2 (1 df; p = 0.05) | Interaction | ||||
---|---|---|---|---|---|---|---|
CBD Oil | Azatin | Helicovex | Madex | Observed | Expected * | ||
S. zeamais | |||||||
500 | 1500 | 0 | 0 | 36 | 68 | 24.53 | C |
1500 | 1500 | 0 | 0 | 68 | 76 | 14.33 | C |
3000 | 1500 | 0 | 0 | 84 | 84 | 0.023 | A |
500 | 0 | 1500 | 0 | 30 | 51 | 8.864 | C |
1500 | 0 | 1500 | 0 | 46 | 64 | 7.512 | C |
3000 | 0 | 1500 | 0 | 62 | 76 | 6.224 | C |
500 | 0 | 0 | 1500 | 18 | 52 | 23.452 | C |
1500 | 0 | 0 | 1500 | 22 | 64 | 39.543 | C |
3000 | 0 | 0 | 1500 | 40 | 76 | 38.247 | C |
R dominica | |||||||
500 | 1500 | 0 | 0 | 50 | 70 | 10.129 | C |
1500 | 1500 | 0 | 0 | 80 | 78 | 0.033 | A |
3000 | 1500 | 0 | 0 | 90 | 91 | 0.161 | A |
500 | 0 | 1500 | 0 | 40 | 57 | 6.562 | C |
1500 | 0 | 1500 | 0 | 60 | 69 | 2.339 | A |
3000 | 0 | 1500 | 0 | 70 | 87 | 15.251 | C |
500 | 0 | 0 | 1500 | 32 | 58 | 14.995 | C |
1500 | 0 | 0 | 1500 | 42 | 70 | 19.831 | C |
3000 | 0 | 0 | 1500 | 60 | 88 | 38.586 | C |
P. truncatus | |||||||
500 | 1500 | 0 | 0 | 44 | 75 | 26.968 | C |
1500 | 1500 | 0 | 0 | 74 | 80 | 1.236 | A |
3000 | 1500 | 0 | 0 | 94 | 90 | 0.678 | A |
500 | 0 | 1500 | 0 | 38 | 60 | 11.007 | C |
1500 | 0 | 1500 | 0 | 54 | 68 | 4.808 | C |
3000 | 0 | 1500 | 0 | 70 | 84 | 8.757 | C |
500 | 0 | 0 | 1500 | 26 | 60 | 25.568 | C |
1500 | 0 | 0 | 1500 | 30 | 68 | 34.148 | C |
3000 | 0 | 0 | 1500 | 52 | 85 | 42.509 | C |
T. granarium | |||||||
500 | 1500 | 0 | 0 | 50 | 68 | 7.499 | C |
1500 | 1500 | 0 | 0 | 56 | 73 | 8.150 | C |
3000 | 1500 | 0 | 0 | 62 | 78 | 3.139 | A |
500 | 0 | 1500 | 0 | 46 | 58 | 3.372 | A |
1500 | 0 | 1500 | 0 | 54 | 66 | 3.292 | A |
3000 | 0 | 1500 | 0 | 68 | 72 | 0.403 | A |
500 | 0 | 0 | 1500 | 38 | 60 | 10.952 | C |
1500 | 0 | 0 | 1500 | 48 | 67 | 9.017 | C |
3000 | 0 | 0 | 1500 | 54 | 73 | 9.675 | C |
Variables in the Equation | ||||||
---|---|---|---|---|---|---|
Combined Concentration (ppm) | B † | Sd | Sig. | Exp (B) †† | 95.0% CI for Exp (B) | |
Lower | Upper | |||||
CBD 500–Madex 1500 | −0.354 | 0.167 | 0.034 | 0.702 | 0.506 | 0.973 |
CBD 1500–Madex 1500 | −0.217 | 0.160 | 0.176 | 0.805 | 0.588 | 1.102 |
CBD 3000–Madex 1500 | 0.254 | 0.146 | 0.082 | 1.289 | 0.968 | 1.716 |
CBD 500–Helicovex 1500 | −0.113 | 0.157 | 0.471 | 0.893 | 0.657 | 1.215 |
CBD 1500–Helicovex 1500 | 0.235 | 0.145 | 0.106 | 1.265 | 0.951 | 1.681 |
CBD 3000–Helicovex 1500 | 0.593 | 0.138 | 0.000 | 1.810 | 1.381 | 2.373 |
CBD 500–Azatin 1500 | 0.055 | 0.150 | 0.713 | 1.057 | 0.787 | 1.419 |
CBD 1500–Azatin 1500 | 0.670 | 0.137 | 0.000 | 1.955 | 1.495 | 2.556 |
CBD 3000–Azatin 1500 | 1.088 | 0.133 | 0.000 | 2.969 | 2.288 | 3.853 |
Separately Concentration (ppm) | ||||||
CBD 500 | 0.082 | 0.153 | 0.007 | 1.085 | 0.804 | 1.465 |
CBD 1500 | 0.396 | 0.143 | 0.000 | 1.485 | 1.123 | 1.964 |
CBD 3000 | 0.858 | 0.136 | 0.000 | 2.359 | 1.807 | 3.080 |
Control | −1.964 | 0.288 | 0.830 | 0.140 | 0.080 | 0.247 |
Helicovex 1500 | −0.906 | 0.195 | 0.410 | 0.404 | 0.276 | 0.592 |
Madex 1500 | −0.928 | 0.215 | 0.592 | 0.396 | 0.259 | 0.603 |
Azatin 1500 | −0.879 | 0.191 | 0.315 | 0.415 | 0.285 | 0.604 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mantzoukas, S.; Kalyvas, N.; Ntoukas, A.; Lagogiannis, I.; Farsalinos, K.; Eliopoulos, P.A.; Poulas, K. Combined Toxicity of Cannabidiol Oil with Three Bio-Pesticides against Adults of Sitophilus Zeamais, Rhyzopertha Dominica, Prostephanus Truncatus and Trogoderma Granarium. Int. J. Environ. Res. Public Health 2020, 17, 6664. https://doi.org/10.3390/ijerph17186664
Mantzoukas S, Kalyvas N, Ntoukas A, Lagogiannis I, Farsalinos K, Eliopoulos PA, Poulas K. Combined Toxicity of Cannabidiol Oil with Three Bio-Pesticides against Adults of Sitophilus Zeamais, Rhyzopertha Dominica, Prostephanus Truncatus and Trogoderma Granarium. International Journal of Environmental Research and Public Health. 2020; 17(18):6664. https://doi.org/10.3390/ijerph17186664
Chicago/Turabian StyleMantzoukas, Spiridon, Nikolaos Kalyvas, Aristeidis Ntoukas, Ioannis Lagogiannis, Konstantinos Farsalinos, Panagiotis A. Eliopoulos, and Konstantinos Poulas. 2020. "Combined Toxicity of Cannabidiol Oil with Three Bio-Pesticides against Adults of Sitophilus Zeamais, Rhyzopertha Dominica, Prostephanus Truncatus and Trogoderma Granarium" International Journal of Environmental Research and Public Health 17, no. 18: 6664. https://doi.org/10.3390/ijerph17186664
APA StyleMantzoukas, S., Kalyvas, N., Ntoukas, A., Lagogiannis, I., Farsalinos, K., Eliopoulos, P. A., & Poulas, K. (2020). Combined Toxicity of Cannabidiol Oil with Three Bio-Pesticides against Adults of Sitophilus Zeamais, Rhyzopertha Dominica, Prostephanus Truncatus and Trogoderma Granarium. International Journal of Environmental Research and Public Health, 17(18), 6664. https://doi.org/10.3390/ijerph17186664