Examining the Impact of COVID-19 Lockdown in Wuhan and Lombardy: A Psycholinguistic Analysis on Weibo and Twitter
Abstract
:1. Introduction
2. Materials and Methods
- A native Italian speaker who is fluent in English translated the names of Italian LIWC word categories into English.
- We translated the Chinese names of SCLIWC word categories into English.
- We selected the common names between two translation versions. As for the names sharing similar meanings, such as “tentative” from SCLIWC and “possibility” from Italian LIWC, we checked the meaning of words belonging to this word category in Italian LIWC and SCLIWC to determine whether the two names represented the same kind of word category.
2.1. Dictionary Processing
2.2. Weibo Data
- Published at least one original post on average each day from 9 January 2020 to 5 February 2020 (i.e., two weeks before and after the lockdown);
- Individual users only, excluding any organizations;
- Locate at “Wuhan, Hubei” by the geo-location in the user profile.
2.3. Twitter Data
- Published at least one original tweet (not retweet) from 23 February 2020 to 21 March 2020 (that is, two weeks before and after the lockdown);
- All tweets in Italian only.
3. Results
3.1. Wuhan Weibo Users
3.2. Lombardy Twitter Users
3.3. Comparison between Wuhan and Lombardy
4. Discussion
4.1. Similarities between Wuhan and Lombardy
4.2. Differences between Wuhan and Lombardy
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Holmes, E.A.; O’Connor, R.C.; Perry, V.H.; Tracey, I.; Wessely, S.; Arseneault, L.; Ballard, C.; Christensen, H.; Cohen Silver, R.; Everall, I.; et al. Multidisciplinary research priorities for the COVID-19 pandemic: A call for action for mental health science. Lancet Psychiatry 2020, 7, 547–560. [Google Scholar] [CrossRef]
- Xiang, Y.-T.; Yang, Y.; Li, W.; Zhang, L.; Zhang, Q.; Cheung, T.; Ng, C.H. Timely mental health care for the 2019 novel coronavirus outbreak is urgently needed. Lancet Psychiatry 2020, 7, 228–229. [Google Scholar] [CrossRef] [Green Version]
- Mental Health and Psychosocial Considerations during the COVID-19 Outbreak. Available online: https://www.who.int/publications-detail/mental-health-and-psychosocial-considerations-during-the-covid-19-outbreak (accessed on 9 May 2020).
- Tian, H.; Liu, Y.; Li, Y.; Wu, C.-H.; Chen, B.; Kraemer, M.U.G.; Li, B.; Cai, J.; Xu, B.; Yang, Q.; et al. An investigation of transmission control measures during the first 50 days of the COVID-19 epidemic in China. Science 2020. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, N.; Wang, Y.; Li, S.; Liu, X.; Wu, P.; Zhu, T. Psychological and Behavioral Impact of Wuhan Lockdown and Suggestions. Bull. Chin. Acad. Sci. 2020, 35, 264–272. [Google Scholar]
- Barari, S.; Caria, S.; Davola, A.; Falco, P.; Fetzer, T.; Fiorin, S.; Hensel, L.; Ivchenko, A.; Jachimowicz, J.; King, G.; et al. Evaluating COVID-19 Public Health Messaging in Italy: Self-Reported Compliance and Growing Mental Health Concerns. medRxiv 2020. [Google Scholar] [CrossRef]
- Shultz, J.M.; Cooper, J.L.; Baingana, F.; Oquendo, M.A.; Espinel, Z.; Althouse, B.M.; Marcelin, L.H.; Towers, S.; Espinola, M.; McCoy, C.B.; et al. The role of fear-related behaviors in the 2013–2016 West Africa Ebola virus disease outbreak. Curr. Psychiatry Rep. 2016, 18, 104. [Google Scholar] [CrossRef]
- Person, B.; Sy, F.; Holton, K.; Govert, B.; Liang, A. Fear and stigma: The epidemic within the SARS outbreak. Emerg. Infect. Dis. 2004, 10, 358. [Google Scholar] [CrossRef]
- Brooks, S.K.; Webster, R.K.; Smith, L.E.; Woodland, L.; Wessely, S.; Greenberg, N.; Rubin, G.J. The psychological impact of quarantine and how to reduce it: Rapid review of the evidence. Lancet 2020. [Google Scholar] [CrossRef] [Green Version]
- Huang, C.L.; Wang, Y.M.; Li, X.W.; Ren, L.L.; Zhao, J.P.; Hu, Y.; Zhang, L.; Fan, G.; Xu, G.; Gu, X.; et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 2020, 395, 497–506. [Google Scholar] [CrossRef] [Green Version]
- COVID-19 Pandemic Lockdown in Hubei. Available online: https://en.wikipedia.org/wiki/COVID-19_pandemic_lockdown_in_Hubei (accessed on 29 May 2020).
- Rossi, R.; Socci, V.; Talevi, D.; Mensi, S.; Niolu, C.; Pacitti, F.; Di Marco, A.; Rossi, A.; Siracusano, A.; Di Lorenzo, V. COVID-19 pandemic and lockdown measures impact on mental health among the general population in Italy. An N = 18147 web-based survey. medRxiv 2020. [Google Scholar] [CrossRef] [Green Version]
- Xue, J.; Chen, J.; Chen, C.; Zheng, C.; Zhu, T. Machine learning on Big Data from Twitter to understand public reactions to COVID-19. arXiv 2020, arXiv:2005.08817. [Google Scholar]
- Chintalapudi, N.; Battineni, G.; Amenta, F. COVID-19 disease outbreak forecasting of registered and recovered cases after sixty day lockdown in Italy: A data driven model approach. J. Microbiol. Immunol. Infect. 2020, 53, 396–403. [Google Scholar] [CrossRef] [PubMed]
- COVID-19 Pandemic in Italy. Available online: https://en.wikipedia.org/wiki/COVID-19_pandemic_in_Italy (accessed on 29 May 2020).
- Singhal, D.; Vijayaraghavan, P. A Descriptive Study of Indian General Public’s Psychological responses during COVID- 19 Pandemic Lockdown Period in India. PsyArXiv 2020. [Google Scholar] [CrossRef]
- Wang, C.; Pan, R.; Wan, X.; Tan, Y.; Xu, L.; Ho, C.S.; Ho, R.C. Immediate psychological responses and associated factors during the initial stage of the 2019 coronavirus disease (COVID-19) epidemic among the general population in China. Int. J. Environ. Res. Public Health 2020, 17, 1729. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, M.; Xue, J.; Zhao, N.; Wang, X.; Jiao, D.; Zhu, T. Using Social Media to Explore the Consequences of Domestic Violence on Mental Health. J. Interpers. Violence 2018. [Google Scholar] [CrossRef]
- Lima, A.C.E.S.; De Castro, L.N. A multi-label, semi-supervised classification approach applied to personality prediction in social media. Neural Netw. 2014, 58, 122–130. [Google Scholar] [CrossRef]
- Lei, Z.; Huang, X.; Liu, T.; Chen, Z.; Zhu, T. Using Linguistic Features to Estimate Suicide Probability of Chinese Microblog Users. In Proceedings of the International Conference on Human Centered Computing, Phnom Penh, Cambodia, 27–29 November 2014; Springer: Cham, Switzerland, 2014; pp. 549–559. [Google Scholar]
- De Choudhury, M.; Kiciman, E.; Dredze, M.; Coppersmith, G.; Kumar, M. Discovering Shifts to Suicidal Ideation from Mental Health Content in Social Media. In Proceedings of the 2016 CHI Conference on Human Factors in Computing Systems, San Jose, CA, USA, 7–12 May 2016; pp. 2098–2110. [Google Scholar]
- Tausczik, Y.R.; Pennebaker, J.W. The psychological meaning of words: LIWC and computerized text analysis methods. J. Lang. Soc. Psychol. 2010, 29, 24–54. [Google Scholar] [CrossRef]
- Pennebaker, J.W.; Chung, C.K.; Ireland, M.; Gonzales, A.; Booth, R.J. The Development and Psychometric Properties of LIWC2007; LIWC.net: Austin, TX, USA, 2007. [Google Scholar]
- Piolat, A.; Booth, R.J.; Chung, C.K.; Davids, M.; Pennebaker, J.W. La version française du dictionnaire pour le LIWC: Modalités de construction et exemples d’utilisation. Psychol. Française 2011, 56, 145–159. [Google Scholar] [CrossRef]
- Agosti, A.; Rellini, A. The Italian Liwc Dictionary; Technical Report; LIWC.net: Austin, TX, USA, 2007. [Google Scholar]
- Zijlstra, H.; Van Meerveld, T.; Van Middendorp, H.; Pennebaker, J.W.; De Geenen, R. De Nederlandse versie van de ‘linguistic inquiry and word count’(LIWC). Gedrag Gezond 2004, 32, 271–281. [Google Scholar]
- Gao, R.; Hao, B.; Li, H.; Gao, Y.; Zhu, T. Developing simplified Chinese psychological linguistic analysis dictionary for microblog. In Proceedings of the International Conference on Brain and Health Informatics, Maebashi, Japan, 29–31 October 2013; Springer: Cham, Switzerland, 2013; pp. 359–368. [Google Scholar]
- Li, L.; Li, A.; Hao, B.; Guan, Z.; Zhu, T. Predicting active users’ personality based on micro-blogging behaviors. PLoS ONE 2014, 9, e98489. [Google Scholar] [CrossRef]
- Gao, R.; Hao, B.; Bai, S.; Li, L.; Li, A.; Zhu, T. Improving user profile with personality traits predicted from social media content. In Proceedings of the 7th ACM Conference on Recommender Systems, Hong Kong, China, 12–16 October 2013; pp. 355–358. [Google Scholar]
- Pepe, E.; Bajardi, P.; Gauvin, L.; Privitera, F.; Lake, B.; Cattuto, C.; Tizzoni, M. COVID-19 outbreak response: A first assessment of mobility changes in Italy following national lockdown. medRxiv 2020. [Google Scholar] [CrossRef] [Green Version]
- COVID-19 Community Mobility Reports. Available online: https://www.google.com/covid19/mobility/ (accessed on 26 April 2020).
- Miller, A. Analyzing Songs Used for Lyric Analysis with Mental Health Consumers Using Linguistic Inquiry and Word Count (LIWC) Software. Theses Diss. Music 2017. [Google Scholar] [CrossRef]
- Coronavirus Italy: Italians Are Singing Songs during Lockdown. Available online: https://www.cnbc.com/2020/03/14/coronavirus-lockdown-italians-are-singing-songs-from-balconies.html (accessed on 9 May 2020).
- Tov, W.; Ng, K.L.; Lin, H.; Qiu, L. Detecting well-being via computerized content analysis of brief diary entries. Psychol. Assess. 2013, 25, 1069–1078. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ahmed, M.Z.; Ahmed, O.; Zhou, A.; Sang, H.; Liu, S.; Ahmad, A. Epidemic of COVID-19 in China and associated Psychological Problems. Asian J. Psychiatry 2020, 51, 102092. [Google Scholar] [CrossRef] [PubMed]
- Chung, C.; Pennebaker, J.W. The psychological functions of function words. Soc. Commun. 2007, 1, 343–359. [Google Scholar]
- Simmons, R.A.; Gordon, P.C.; Chambless, D.L. Pronouns in marital interaction: What do “you” and “I” say about marital health? Psychol. Sci. 2005, 16, 932–936. [Google Scholar] [CrossRef]
- Li, J.-B.; Delvecchio, E.; Di Riso, D.; Salcuni, S.; Mazzeschi, C. Self-esteem and its association with depression among Chinese, Italian, and Costa Rican adolescents: A cross-cultural study. Pers. Individ. Dif. 2015, 82, 20–25. [Google Scholar] [CrossRef]
- Fernández, I.; Páez, D.; Pennebaker, J.W. Comparison of expressive writing after the terrorist attacks of September 11th and March 11th. Int. J. Clin. Health Psychol. 2009, 9, 89–103. [Google Scholar]
- Holmes, D.; Alpers, G.W.; Ismailji, T.; Classen, C.; Wales, T.; Cheasty, V.; Miller, A.; Koopman, C. Cognitive and emotional processing in narratives of women abused by intimate partners. Violence Against Women 2007, 13, 1192–1205. [Google Scholar] [CrossRef]
- Fang, H.; Wang, L.; Yang, Y. Human Mobility Restrictions and the Spread of the Novel Coronavirus (2019-ncov) in China; National Bureau of Economic Research: Cambridge, MA, USA, 2020. [Google Scholar] [CrossRef]
- Yasin, A.S.; Dzulkifli, M.A. The relationship between social support and psychological problems among students. Int. J. Bus. Soc. Sci. 2010, 1, 110–116. [Google Scholar]
- Carone, J.D.A.; Barone, D.F. A social cognitive perspective on religious beliefs: Their functions and impact on coping and psychotherapy. Clin. Psychol. Rev. 2001, 21, 989–1003. [Google Scholar] [CrossRef]
- Hartley, J.; Pennebaker, J.W.; Fox, C. Abstracts, introductions and discussions: How far do they differ in style? Scientometrics 2003, 57, 389–398. [Google Scholar] [CrossRef]
- Li, S.; Wang, Y.; Xue, J.; Zhao, N.; Zhu, T. The impact of COVID-19 epidemic declaration on psychological consequences: A study on active Weibo users. Int. J. Environ. Res. Public Health 2020, 17, 2032. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gao, Q.; Abel, F.; Houben, G.J.; Yu, Y. A comparative study of users’ microblogging behavior on Sina Weibo and Twitter. In Proceedings of the International Conference on User Modeling, Adaptation, and Personalization, Montreal, QC, Canada, 16–20 July 2012; Springer: Berlin/Heidelberg, Germany, 2012; pp. 88–101. [Google Scholar]
SCLIWC | Category Name | Before Lockdown | After Lockdown | p | Effect Size d | ||
---|---|---|---|---|---|---|---|
M1 | SD1 | M2 | SD2 | ||||
We | First-person plural Pronoun | 0.00116752 | 0.001512455 | 0.002442816 | 0.002243907 | 0.000 *** | 0.674 |
Motion | Motion | 0.025831994 | 0.019530379 | 0.018399454 | 0.009675841 | 0.000 *** | 0.455 |
Religion | Religion | 0.002540956 | 0.002514763 | 0.003610935 | 0.002649443 | 0.000 *** | 0.401 |
I | First-person singular pronoun | 0.012875111 | 0.007807225 | 0.010321953 | 0.006449756 | 0.000 *** | 0.391 |
Social | Social | 0.029713574 | 0.012688112 | 0.034711722 | 0.012327484 | 0.000 *** | 0.375 |
Youpl | Second-person plural pronoun | 0.000306648 | 0.000688167 | 0.000724517 | 0.001041388 | 0.000 *** | 0.364 |
Negemo | Negative emotion | 0.007779827 | 0.005568892 | 0.009515898 | 0.004745883 | 0.009 | 0.334 |
Time | Time | 0.027584026 | 0.011749097 | 0.02408661 | 0.009783141 | 0.000 *** | 0.325 |
Certain | Certain | 0.006946484 | 0.004624027 | 0.00833264 | 0.003605291 | 0.000 *** | 0.308 |
Home | Home | 0.002152596 | 0.002465285 | 0.002935781 | 0.002730609 | 0.000 *** | 0.306 |
Humans | Humans | 0.008192476 | 0.005123264 | 0.010069752 | 0.004594877 | 0.000 *** | 0.306 |
Money | Money | 0.007305661 | 0.007514546 | 0.005138734 | 0.004664296 | 0.000 *** | 0.278 |
Preps | Preposition | 0.015862793 | 0.008304327 | 0.017603575 | 0.006868765 | 0.000 *** | 0.247 |
Discrep | Discrepancy | 0.011271717 | 0.005658052 | 0.012859929 | 0.005581719 | 0.000 *** | 0.235 |
Inhibition | Inhibition | 0.002031626 | 0.002027422 | 0.002571519 | 0.001937226 | 0.000 *** | 0.234 |
Affect | Affect | 0.03540768 | 0.012714117 | 0.039041458 | 0.013830077 | 0.000 *** | 0.230 |
Italian LIWC Category (in Italy) | English Translation | Before Lockdown | After Lockdown | p | Effect Size d | ||
---|---|---|---|---|---|---|---|
M1 | SD1 | M2 | SD2 | ||||
Discrep (Discrepanza) | Discrepancy | 0.009287369 | 0.012033078 | 0.013716728 | 0.017095823 | 0.001 | 0.271 |
Ansia | Anxiety | 0.002470567 | 0.005926371 | 0.000921978 | 0.002132726 | 0.002 | 0.245 |
Casa | Home | 0.002778005 | 0.005026976 | 0.005169261 | 0.008826728 | 0.001 | 0.233 |
Possib (Possibilità) | Possibility (tentative) | 0.008970828 | 0.010353838 | 0.012373076 | 0.017164373 | 0.009 | 0.210 |
Svago | Leisure | 0.004710796 | 0.006753619 | 0.007065489 | 0.009775871 | 0.017 | 0.207 |
Wuhan | Lombardy | ||||||
---|---|---|---|---|---|---|---|
SWLIWC | English Name | p | Effect Size d | Italian LIWC | English Name | p | Effect Size d |
Discrep | Discrepancy | 0.000 *** | 0.235 | Discrep | Discrepancy | 0.001 | 0.271 |
Home | Home | 0.000 *** | 0.306 | Casa | Home | 0.001 | 0.233 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Su, Y.; Xue, J.; Liu, X.; Wu, P.; Chen, J.; Chen, C.; Liu, T.; Gong, W.; Zhu, T. Examining the Impact of COVID-19 Lockdown in Wuhan and Lombardy: A Psycholinguistic Analysis on Weibo and Twitter. Int. J. Environ. Res. Public Health 2020, 17, 4552. https://doi.org/10.3390/ijerph17124552
Su Y, Xue J, Liu X, Wu P, Chen J, Chen C, Liu T, Gong W, Zhu T. Examining the Impact of COVID-19 Lockdown in Wuhan and Lombardy: A Psycholinguistic Analysis on Weibo and Twitter. International Journal of Environmental Research and Public Health. 2020; 17(12):4552. https://doi.org/10.3390/ijerph17124552
Chicago/Turabian StyleSu, Yue, Jia Xue, Xiaoqian Liu, Peijing Wu, Junxiang Chen, Chen Chen, Tianli Liu, Weigang Gong, and Tingshao Zhu. 2020. "Examining the Impact of COVID-19 Lockdown in Wuhan and Lombardy: A Psycholinguistic Analysis on Weibo and Twitter" International Journal of Environmental Research and Public Health 17, no. 12: 4552. https://doi.org/10.3390/ijerph17124552