Influence of Prenatal Exposure to Mercury, Perceived Stress, and Depression on Birth Outcomes in Suriname: Results from the MeKiTamara Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Study Population
2.3. Data Collection
2.4. Exposures and Covariates
2.4.1. Demographic Data
2.4.2. Hair Mercury
2.4.3. Perceived Stress
2.4.4. Depression
2.4.5. Birth Outcomes
2.5. Data Analysis
2.6. Ethical Considerations
3. Results
3.1. Population Demographics
3.2. Mercury
3.3. Association between Mercury, Perceived Stress, Depression and Birth Outcomes
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Vejrup, K.; Brantsaeter, A.; Knutsen, H.; Magnus, P.; Alexander, J.; Kvalem, H.; Meltzer, H.; Haugen, M. Prenatal mercury exposure and infant birth weight in the Norwegian Mother and child cohort study. Public Health Nutr. 2014, 17, 2071–2080. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Al-Saleh, I.; Shinwari, N.; Mashhour, A.; Rabah, A. Birth outcome measures and maternal exposure to heavy metals (lead, cadmium and mercury) in Saudi Arabian population. Int. J. Hyg. Environ. Health 2014, 217, 205–218. [Google Scholar] [CrossRef] [PubMed]
- Debes, F.; Weihe, P.; Grandjean, P. Cognitive deficits at age 22 years associated with prenatal exposure to methyl mercury. Cortex 2016, 74, 358–369. [Google Scholar] [CrossRef] [Green Version]
- Loomans, E.M.; van Dijk, A.; Vrijkotte, T.; van Eijsden, M.; Stronks, K.; Gemke, R.; van den Bergh, B. Psychosocial stress during pregnancy is related to adverse birth outcomes: Results from a large multi-ethnic community-based birth cohort. Eur. J. Public Health 2013, 23, 485–491. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Accortt, E.E.; Cheadle, A.C.D.; Dunkel Schetter, C. Prenatal depression and adverse birth outcomes: An updated systematic review. Matern. Child Health J. 2015, 19, 1306–1337. [Google Scholar] [CrossRef]
- Seravalli, L.; Patterson, F.; Nelson, D.B. Role of perceived stress in the occurrence of preterm labor and preterm birth among urban women. J. Midwifery Womens Health 2014, 59, 374–379. [Google Scholar] [CrossRef] [Green Version]
- Kumari Shilpa, J.S. Neonatal outcomes following maternal stress. Delhi Psychiatry J. 2013, 16, 304–311. [Google Scholar]
- Woods, S.M.; Melville, J.L.; Guo, Y.; Fan, M.Y.; Gavin, A. Psychosocial stress during pregnancy. Am. J. Obstet. Gynecol. 2010, 202, 61.e1–61.e7. [Google Scholar] [CrossRef] [Green Version]
- Qobadi, M.; Collier, C.; Zhang, L. The effect of stressful life events on postpartum depression: Findings from the 2009–2011 Mississippi pregnancy risk assessment monitoring system. Matern. Child Health J. 2016, 20, 164–172. [Google Scholar] [CrossRef] [Green Version]
- Schreier, H.M.; Hsu, H.; Amarasiriwardena, C.; Coull, B.A.; Schnaas, L.; Téllez-Rojo, M.M.; Ortiz, M.T.Y.; Wright, R.J.; Wright, R.O. Mercury and psychosocial stress exposure interact to predict maternal diurnal cortisol during pregnancy. Environ. Health 2015, 14, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Obeng-Gyasi, E.; Obeng-Gyasi, B. Chronic stress and cardiovascular disease among individuals exposed to lead: A pilot study. Diseases 2020, 8, 7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Padula, A.M.; Rivera-Núñez, Z.; Barrett, E.S. Combined impacts of prenatal environmental exposures and psychosocial stress on offspring health: Air pollution and metals. Curr. Environ. Health 2020, 7, 89–100. [Google Scholar] [CrossRef]
- Anonymous. Perinatal and neonatal mortality. Br. Med. J. 2006, 281, 1567. [Google Scholar]
- World Health Organization, Preterm Birth. Available online: https://www.who.int/news-room/fact-sheets/detail/preterm-birth (accessed on 12 April 2020).
- General Bureau of Statistics (GBS). Environment Statistics; GBS: Paramaribo, Suriname, 2014. [Google Scholar]
- Zijlmans, W.; Hindori-Mohangoo, A. Determinants of neonatal mortality in Suriname: Preliminary findings from a perinatal and infant mortality survey. Ann. Glob. Health 2015, 81, 121. [Google Scholar] [CrossRef] [Green Version]
- Ouboter, P.E.; Landburg, G.A.; Quik, J.H.M.; Mol, J.H.A.; van Der Lugt, F. Mercury levels in pristine and gold mining impacted aquatic ecosystems of Suriname, South America. Ambio 2012, 41, 873–882. [Google Scholar] [CrossRef]
- Ouboter, P.E.; Landburg, G.; Satnarain, G.; Starke, S.; Nanden, I.; Simon-Friedt, B.; Hawkins, W.; Taylor, R.; Lichtveld, M.; Harville, E.; et al. Mercury levels in women and children from interior villages in Suriname, South America. Int. J. Environ. Res. Public Health 2018, 15, 1007. [Google Scholar] [CrossRef] [Green Version]
- Mohan, S.; Tiller, M.; van der Voet, G.; Kanhai, H. Mercury exposure of mothers and newborns in Surinam: A pilot study. J. Toxicol. 2005, 43, 101–104. [Google Scholar]
- Gokoel, A.R.; Abdoel Wahid, F.; Zijlmans, C.W.R.; Shankar, A.; Hindori-Mohangoo, A.D.; Covert, H.H.; MacDonald-Ottevanger, M.S.; Lichtveld, M.Y.; Harville, E. Influence of perceived stress on prenatal depression in Surinamese women. Reprod. Health. under review.
- Harris, P.A.; Taylor, R.; Thielke, R.; Payne, J.; Gonzalez, N.; Conde, J.G. Research electronic data capture (REDCap)-A metadata-driven methodology and workflow process for providing translational research informatics support. J. Biomed. Inform. 2009, 42, 377–381. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wickliffe, J.K.; Lichtveld, M.Y.; Zijlmans, C.W.; MacDonald Ottevanger, S.; Shafer, M.; Dahman, C.; Harville, E.W.; Drury, S.; Landburg, G.; Ouboter, P.E. Exposure to total and methyl mercury among pregnant women in Suriname: Sources and public health implications. J. Expo. Sci. Environ. Epidemiol. 2020, in press. [Google Scholar] [CrossRef]
- United Nations Environment Program (UNEP). Global Mercury Assessment 2018; UNEP, Chemicals and Health Branch: Geneva, Switzerland, 2019. [Google Scholar]
- Basu, N.; Horvat, M.; Evers, D.C.; Zastenskaya, I.; Weihe, P.; Tempowski, J. A State-of-the-Science review of mercury biomarkers in human populations worldwide between 2000 and 2018. Environ. Health Perspect. 2018, 126, 106001. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ahmed, A.E.; Albalawi, A.; Alshehri, A.; AlBlaihed, R.; Alsalamah, M.A. Stress and its predictors in pregnant women: A study in Saudi Arabia. Psychol. Res. Behav. Manag. 2017, 10, 97–102. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cox, J.L.; Chapman, G.; Murray, D.; Jones, P. Validation of the Edinburgh postnatal depression scale (EPDS) in non-postnatal women. J. Affect. Disord. 1996, 39, 185–189. [Google Scholar] [CrossRef]
- Rashid, A.; Mohd, R. Poor social support as a risk factor for antenatal depressive symptoms among women attending public antennal clinics in Penang, Malaysia. Reprod. Health 2017, 14, 1–8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xue, F.; Holzman, C.; Rahbar, M.H.; Trosko, K.; Fischer, L. Maternal fish consumption, mercury levels, and risk of preterm delivery. Environ. Health Perspect. 2007, 115, 42–47. [Google Scholar] [CrossRef] [Green Version]
- Taylor, C.M.; Golding, J.; Emond, A.M. Blood mercury levels and fish consumption in pregnancy: Risks and benefits for birth outcomes in a prospective observational birth cohort. Int. J. Hyg. Environ. Health 2016, 219, 513–520. [Google Scholar] [CrossRef] [Green Version]
- Bashore, C.J.; Geer, L.; He, X.; Puett, R.; Parsons, P.; Palmer, C.; Steuerwald, A.; Abulafia, O.; Dalloul, M.; Sapkota, A. Maternal mercury exposure, season of conception and adverse birth outcomes in an urban immigrant community in Brooklyn, New York, U.S.A. Int. J. Environ. Res. Public Health 2014, 11, 8414–8442. [Google Scholar] [CrossRef] [Green Version]
- Wijngaarden, P.D.E.; Harrington, D.; Kobrosly, R.; Thurston, S.W.; O’Hara, T.; McSorley, E.M.; Myers, G.J.; Watson, G.E.; Shamlaye, C.F.; Strain, J.J. Prenatal exposure to methylmercury and LCPUFA in relation to birth weight. Ann. Epidemiol. 2014, 23, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Rice, K.M.; Walker, E.M.; Wu, M.; Gillette, C.; Blough, E.R. Environmental mercury and its toxic effects. J. Prev. Med. Public Health 2014, 47, 74–83. [Google Scholar] [CrossRef]
- Hasanjanzadeh, P.; Faramarzi, M. Relationship between maternal general and specific-pregnancy stress, anxiety, and depression symptoms and pregnancy outcome. J. Clin. Diagnostic Res. 2017, 11, VC04–VC07. [Google Scholar] [CrossRef]
- Shah, P.S. Knowledge synthesis group on determinants of LBW/PT births. Parity and low birth weight and preterm birth: A systematic review and meta-analyses. Acta Obstet. Gynecol. Scand. 2010, 89, 862–875. [Google Scholar] [CrossRef] [PubMed]
- Dickute, J.; Padaiga, Z.; Grabauskas, V.; Nadisauskiene, R.J.; Basys, V.; Gaizauskiene, A. Maternal socio-economic factors and the risk of low birth weight in Lithuania. Medicina 2004, 40, 475–482. [Google Scholar] [PubMed]
- Widiyanto, J.; Lismawati, G. Maternal age and anemia are risk factors of low birthweight of newborn. Enferm. Clin. 2019, 29, 94–97. [Google Scholar] [CrossRef]
- Nkansah-Amankra, S.; Luchok, K.J.; Hussey, J.R.; Watkins, K.; Liu, X. Effects of maternal stress on low birth weight and preterm birth outcomes across neighborhoods of South Carolina, 2000–2003. Matern. Child Health J. 2010, 14, 215–226. [Google Scholar] [CrossRef] [PubMed]
Characteristic | Total n (%) |
---|---|
Total | 1143 (100) |
Age (years) | |
Mean (SD) | 28 (6.43) |
16–19 | 144 (12.6) |
20–34 | 819 (71.7) |
35+ | 179 (15.7) |
Missing | 1 (0.1) |
Ethnicity | |
African descent | 520 (45.5) |
Asian descent | 334 (29.2) |
Other | 285 (24.9) |
Missing | 4 (0.3) |
Income (SRD) | |
<3000 | 763 (66.8) |
≥3000 | 333 (29.1) |
Missing | 47 (4.1) |
Educational Level | |
None, primary, lower secondary/vocational | 658 (57.6) |
Upper secondary/vocational or tertiary | 485 (42.4) |
Missing | 47 (4.1) |
Marital Status | |
Not married/not living together | 141 (12.3) |
Married/cohabitating | 1000 (87.5) |
Missing | 2 (0.2) |
Parity (previous live births) | |
0 (primiparity) | 384 (33.6) |
1 | 312 (27.3) |
≥2 | 445 (38.9) |
Missing | 2 (0.2) |
Region | |
Urban | 656 (57.4) |
Rural | 276 (24.1) |
Interior | 211 (18.5) |
Missing | 0 (0) |
Characteristics | Hg Level ≥ 1.1 μg/g n (%) | Hg Level < 1.1 μg/g n (%) | OR [95% CI] | p-Value |
---|---|---|---|---|
Total n (%) | 310 (37.5) | 517 (62.5) | ||
Perceived stress | 0.097 | |||
Low perceived stress | 231 (39.1) | 360 (60.9) | 1 | |
High perceived stress | 72 (32.7) | 148 (67.3) | 0.76 [0.55–1.05] | |
Depression | 0.355 | |||
No depression | 235 (36.8) | 404 (63.2) | 1 | |
Probable depression | 73 (40.6) | 107 (59.4) | 1.17 [0.84–1.65] | |
Age (Years) | 0.002 | |||
16–19 | 52 (49.5) | 53 (50.5) | 1.93 [1.27–2.93] | |
20–34 | 201 (33.7) | 395 (66.3) | 1 | |
35+ | 56 (44.8) | 69 (55.2) | 1.60 [1.08–2.36] | |
Ethnicity | 0.001 | |||
African descent | 122 (36.3) | 214 (63.7) | 1.43 [1.01–2.02] | |
Asian descent | 75 (28.5) | 188 (71.5) | 1 | |
Other | 113 (50.0) | 113 (50.0) | 2.51 [1.73–3.64] | |
Income (SRD) | 0.001 | |||
<3000 | 246 (43.7) | 317 (56.3) | 2.67 [1.88–3.78] | |
≥3000 | 53 (22.6) | 182 (77.4) | 1 | |
Educational level | 0.001 | |||
None, primary or lower secondary | 240 (50.2) | 238 (49.8) | 4.02 [2.93–5.52] | |
Upper secondary or tertiary | 70 (20.1) | 279 (79.9) | 1 | |
Marital status | 0.002 | |||
Married/cohabitating | 291 (39.4) | 448 (60.6) | 2.29 [1.35–3.89] | |
Not married/not living together | 19 (22.1) | 67 (77.9) | 1 | |
Parity (previous live births) | 0.003 | |||
0 (primiparity) | 100 (34.5) | 190 (65.5) | 1 | |
1 | 71 (31.3) | 156 (68.7) | 0.87 [0.60–1.25] | |
≥2 | 138 (44.7) | 171 (55.3) | 1.53 [1.10–2.13] | |
Region | 0.001 | |||
Urban | 96 (22.3) | 334 (77.7) | 1.27 [0.88–1.84] | |
Rural | 63 (26.8) | 172 (73.2) | 1 | |
Interior | 151 (93.2) | 11 (6.8) | 47.76 [24.86–91.74] |
Characteristic | LBW | LBW | OR (95%CI) | p-Value |
---|---|---|---|---|
Yes | No | |||
n (%) | n (%) | |||
Total | 127 (13.2) | 835 (86.8) | ||
Mercury | 0.902 | |||
<1.1 μg/g | 58 (13.3) | 377 (86.7) | 1 | |
≥1.1 μg/g | 35 (13.0) | 234 (87.0) | 0.97 [0.62–1.53] | |
Perceived stress | 0.415 | |||
Low perceived stress | 89 (12.9) | 603 (87.1) | 1 | |
High perceived stress | 37 (14.9) | 211 (85.1) | 1.19 [0.79–1.80] | |
Depression | 0.733 | |||
No depression | 97 (13.1) | 641 (86.9) | 1 | |
Probable depression | 28 (14.1) | 171 (85.9) | 1.08 [0.69–1.70] | |
PTB | PTB | |||
Yes | No | |||
n (%) | n (%) | |||
Total | 146 (15.2) | 817 (84.8) | ||
Mercury | 0.808 | |||
<1.1 μg/g | 63 (14.5) | 371 (85.5) | 1 | |
≥1.1 μg/g | 41 (15.2) | 229 (84.8) | 1.05 [0.69–1.62] | |
Perceived stress | 0.230 | |||
Low perceived stress | 99 (14.3) | 591 (85.7) | 1 | |
High perceived stress | 44 (17.5) | 207 (82.5) | 1.27 [0.86–1.87] | |
Depression | 0.953 | |||
No depression | 114 (15.5) | 623 (84.5) | 1 | |
Probable depression | 30 (14.9) | 172 (85.1) | 0.95 [.62–1.47] | |
Low Apgar | Low Apgar | |||
Yes | No | |||
n (%) | n (%) | |||
Total | 31 (3.3) | 918 (96.7) | ||
Mercury | 0.242 | |||
<1.1 μg/g | 17 (3.9) | 416 (96.1) | 0.57 [0.22–1.46] | |
≥1.1 μg/g | 6 (2.3) | 258 (97.7) | ||
Perceived stress | 0.053 | |||
Low perceived stress | 18 (2.6) | 665 (97.4) | 1 | |
High perceived stress | 13 (5.3) | 234 (94.7) | 2.05 [0.99–4.25] | |
Depression | 0.550 | |||
No depression | 25 (3.4) | 706 (96.6) | 1 | |
Probable depression | 5 (2.6) | 190 (97.4) | 0.74 [0.28–1.97] |
Variables | AOR (95% CI) | p-Value |
---|---|---|
Mercury | 0.079 | |
Low (1st quartile) | 1 | |
High (4th quartile) | 0.51 [0.24–1.08] | |
Perceived stress | 0.389 | |
High perceived stress | 1.41 [0.64–3.10] | |
Low perceived stress | 1 | |
Depression | 0.777 | |
No depression | 1 | |
Probable depression | 1.13 [0.47–2.71] | |
Age (Years) | 0.008 | |
16–19 | 0.44 [0.14–1.37] | |
20–34 | 1 | |
35+ | 3.15 [1.37–7.24] | |
Educational level | 0.020 | |
None, primary, lower secondary/vocational | 2.62 [1.11–6.18] | |
Upper secondary/vocational or tertiary | 1 | |
Parity | 0.019 | |
0 (nulliparous) | 3.16 [1.29–7.73] | |
1 | 1.06 [0.39–2.87] | |
≥2 | 1 | |
Mercury × perceived stress * | 0.65 [0.12–3.51] | 0.612 |
Mercury × depression * | 0.67 [0.12–3.90] | 0.655 |
Variables | AOR (95% CI) | p-Value |
---|---|---|
Mercury | 0.039 | |
Low (1st quartile) | 1 | |
High (4th quartile) | 2.47 [1.05–5.83] | |
Perceived stress | 0.443 | |
High perceived stress | 1.36 [0.62–2.96] | |
Low perceived stress | 1 | |
Depression | 0.164 | |
No depression | 1 | |
Probable depression | 0.49 [0.18–1.33] | |
Age (Years) | 0.733 | |
16–19 | 1.36 [0.58–3.23] | |
20–34 | 1 | |
35+ | 1.19 [0.49–2.90] | |
Ethnicity | 0.268 | |
African descent | 1.32 [0.52–3.37] | |
Asian descent | 1 | |
Other | 2.11 [0.79–5.63] | |
Parity | 0.525 | |
0 (nulliparous) | 1.53 [0.66–3.54] | |
1 | 1.56 [0.67–3.60] | |
≥2 | 1 | |
Region | 0.197 | |
Urban | 0.75 [0.31–1.80] | |
Rural | 1 | |
Interior | 0.38 [0.13–1.09] | |
Mercury × perceived stress * | 0.33 [0.06–1.76] | 0.195 |
Mercury × depression * | 5.90 [0.52–66.70] | 0.152 |
Variables | AOR (95% CI) | p-Value |
---|---|---|
Mercury | 0.339 | |
Low (1st quartile) | 1 | |
High (4th quartile) | 2.49 [0.38–16.20] | |
Perceived stress | 0.004 | |
High perceived stress | 9.73 [2.03–46.70] | |
Low perceived stress | 1 | |
Depression | 0.434 | |
No depression | 1 | |
Probable depression | 0.47 [0.07–3.09] | |
Ethnicity | 0.183 | |
African descent | 6.05 [0.65–56.43] | |
Asian descent | 1 | |
Other | 1.53 [0.09–27.03] | |
Parity | 0.720 | |
0 (nulliparous) | 1.53 [0.66–3.54] | |
1 | 1.56 [0.67–3.60] | |
≥2 | 1 | |
Region | 0.728 | |
Urban | 2.48 [0.27–23.26] | |
Rural | 1 | |
Interior | 0.00 [0.00–0.00] | |
Mercury × perceived stress * | 0.61 [0.01–45.64] | 0.823 |
Mercury × depression * | 2.56 [0.03–244.22] | 0.686 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gokoel, A.R.; Zijlmans, W.C.W.R.; Covert, H.H.; Abdoel Wahid, F.; Shankar, A.; MacDonald-Ottevanger, M.S.; Hindori-Mohangoo, A.D.; Wickliffe, J.K.; Lichtveld, M.Y.; Harville, E.W. Influence of Prenatal Exposure to Mercury, Perceived Stress, and Depression on Birth Outcomes in Suriname: Results from the MeKiTamara Study. Int. J. Environ. Res. Public Health 2020, 17, 4444. https://doi.org/10.3390/ijerph17124444
Gokoel AR, Zijlmans WCWR, Covert HH, Abdoel Wahid F, Shankar A, MacDonald-Ottevanger MS, Hindori-Mohangoo AD, Wickliffe JK, Lichtveld MY, Harville EW. Influence of Prenatal Exposure to Mercury, Perceived Stress, and Depression on Birth Outcomes in Suriname: Results from the MeKiTamara Study. International Journal of Environmental Research and Public Health. 2020; 17(12):4444. https://doi.org/10.3390/ijerph17124444
Chicago/Turabian StyleGokoel, Anisma R., Wilco C. W. R. Zijlmans, Hannah H. Covert, Firoz Abdoel Wahid, Arti Shankar, M. Sigrid MacDonald-Ottevanger, Ashna D. Hindori-Mohangoo, Jeffrey K. Wickliffe, Maureen Y. Lichtveld, and Emily W. Harville. 2020. "Influence of Prenatal Exposure to Mercury, Perceived Stress, and Depression on Birth Outcomes in Suriname: Results from the MeKiTamara Study" International Journal of Environmental Research and Public Health 17, no. 12: 4444. https://doi.org/10.3390/ijerph17124444
APA StyleGokoel, A. R., Zijlmans, W. C. W. R., Covert, H. H., Abdoel Wahid, F., Shankar, A., MacDonald-Ottevanger, M. S., Hindori-Mohangoo, A. D., Wickliffe, J. K., Lichtveld, M. Y., & Harville, E. W. (2020). Influence of Prenatal Exposure to Mercury, Perceived Stress, and Depression on Birth Outcomes in Suriname: Results from the MeKiTamara Study. International Journal of Environmental Research and Public Health, 17(12), 4444. https://doi.org/10.3390/ijerph17124444