Community Faecal Management Strategies and Perceptions on Sludge Use in Agriculture
Abstract
:1. Introduction
2. Materials and Methods
2.1. Location of the Study
2.2. Field Study
2.3. Water Resource Sampling
2.4. Ethical Approval
2.5. Data Analysis
3. Results
3.1. Qualitative Survey
Extent of Water, Sanitation Quality, and Sludge Management in the Sampled Monontsha Village
3.2. Bacteria Water Analysis
4. Discussion
4.1. Water and Sanitation Qualitative Survey
4.2. Water Analysis
4.3. Implications
4.4. Policy Implications
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- WHO. Zambia Cholera Outbreak Situation, 10 March Reports. The Weekly WHO Outbreak and Emergencies Bulletin. 2018. Available online: Https://www.afro.who.int/countries/zambia/situation-reports/cholera (accessed on 13 April 2020).
- Luthi, C.; McConville, J.; Norstrom, A.; Panesar, A.; Ingle, R.; Saywell, D.; Schutze, T. Rethinking sustainable sanitation for the urban environment. In Proceedings of the 4th International Conference of the International Forum on Urbanism (IFoU), Amsterdam, The Netherlands; Delft, The Netherlands, 26–29 November 2009. [Google Scholar]
- Rosa, G.; Clasen, T. Estimating the scope of household water treatment in low and medium-income countries. Am. J. Trop. Med. Hyg. 2010, 82, 289–300. [Google Scholar] [CrossRef] [PubMed]
- DWAF. Groundwater Strategy 2010. Department of Water Affairs. Republic of South Africa; DWAF: Pretoria, South Africa, 2010.
- Stats SA’s GHS (Statistics SA analysis of General Household Survey). Water and Sanitation: Statistics SA Analysis; Water&Sanitation Infrastructure: Auditor-General performance audit. Parliamentary Monitoring Group (PMG). 2017. Available online: https://pmg.org.za/committee-meeting/23868/ (accessed on 13 April 2020).
- DWAF. Guidelines for the Utilization and Disposal of Wastewater Sludge. Volume 4, 2008. Available online: http://www.dwaf.gov.za/Dir_WQM/docs/wastewatersludgeMar08vol4part1.pdf (accessed on 13 April 2020).
- Pullan, R.L.; Brooker, S.J. The global limites and population at risk of soil-transmitted helminth infections in 2010. Parasites Vectors 2012, 5, 1–14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Graham, J.P.; Polizzotto, M.L. Pit Latrines and Their Impacts on Groundwater Quality: A Systematic Review. Environ. Health Perspect. 2013, 121, 521–530. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Still, D.; Foxon, K. Tackling the Challenges of Full Pit Latrines: Understanding Sludge Accumulation in VIPs and Strategies for Emptying Full Pits; WRC Report No. 1745/1/12; Water Research Commission: Durban, South Africa, 2012; Volume 1. [Google Scholar]
- Brouckaert, C.; Foxon, K.; Wood, K. Modelling the filling rate of pit latrines. Water SA 2013, 39, 555–562. [Google Scholar] [CrossRef] [Green Version]
- Department of Environmental Affairs (DEA). National Policy for the Provision of Basic Refuse Removal Services to Indigent Households; Department of Environmental Affairs: Gauteng, South Africa, 2010; Volume 1, pp. 10–20.
- Chinedu, U.O.; Yofe, J.M.; Henry, L.; Wethe, J.; Djagoun, G.; Doucoure, I.; Ali, M. The Impact of Prices and Tariffs on Faecal Sludge Management in Africa. Sanit. Matters 2010, 4, 3. [Google Scholar]
- Harrison, J.; Wilson, D. Towards sustainable pit latrine management through LaDePa. Sustain. Sanit. Pract. 2012, 13, 6–7. [Google Scholar]
- WRC; WIN-SA. Sanitation Matters. Faecal Sludge Management in Africa Developments, Research and Innovations; WRC: Pretoria, South Africa; WIN-SA: Namur, Belgium, 2013; Volume 4, pp. 6–28. [Google Scholar]
- Tissington, K. Basic Sanitation in South Africa: A Guide to Legislation, Policy and Practice; Socio-Economic Rights Institute of South Africa (SERI): Johannesburg, South Africa, 2011. [Google Scholar]
- Department of Water and Sanitation (DWS). Water and Sanitation on Implementing Long-Term Solutions in QwaQwa. Relief Efforts Continue in QwaQwa to Address Water Challenges in the Long Term. South African Government; 2020. Available online: https://www.gov.za/speeches/relief-efforts-continue-qwaqwa-13-feb-2020-0000 (accessed on 30 March 2020).
- Diallo, M.O.; Hopkins, D.R.; Kane, M.S.; Amadou, A.; Kadri, B.; Amza, A.; Emerson, P.M.; Zingeser, J.A. Household latrine use, maintenance and acceptability in rural Zinder, Niger. Int. J. Environ. Health Res. 2015, 17, 443–452. [Google Scholar] [CrossRef]
- Sheikh, A.D.; Rehman TYates, C.M. Logit models for identifying the factors that influence the uptake of new “no-tillage” technologies by farmers in the rice-wheat and cotton—Wheat farming system. Agric. Syst. 2003, 75, 79–95. [Google Scholar] [CrossRef]
- Pfadenhauer, L.M.; Rehfuess, E. Towards effective and socio-culturally appropriate sanitation and hygiene interventions in the Philippines: A mixed method approach. Int. J. Environ. Res. Public Health 2015, 12, 1902–1927. [Google Scholar] [CrossRef] [Green Version]
- Sibiya, J.E.; Gumbo, J.R. Knowledge, Attitude and Practices (KAP) Survey on Water, Sanitation and Hygiene in Selected Schools in Vhembe District, Limpopo, South Africa. Int. J. Environ. Res. Public Health 2013, 10, 2282–2295. [Google Scholar] [CrossRef]
- Jacobs, A.J.; van Tol, J.J.; du Preez, C.C. Farmers’ perceptions of precision agriculture and the role of agricultural extension: A case study of crop farming in the Schweizer-Reneke region, South Africa. S. Afr. J. Agric. Ext. 2018, 46, 107–118. [Google Scholar] [CrossRef] [Green Version]
- Chichongue, O.; Pelser, A.; van Tol, J.J.; du Preez, C.; Ceronio, G. Factors influencing the adoption of conservation agriculture practices among smallholder farmers in Mozambique. Int. J. Agric. Ext. 2019, 7, 277–291. [Google Scholar] [CrossRef] [Green Version]
- O’Loughlin, R.; Fentie, G.; Flannery, B.; Emerson, P. Follow-up of a low cost latrine promotion programme in one district of Amhara, Ethiopia: Characteristics of early adopters and non-adopters. Trop. Med. Int. Health 2006, 11, 1406–1415. [Google Scholar] [CrossRef] [PubMed]
- Sigler, R.; Mahmoudi, L.; Graham, J.P. Analysis of behavioral change techniques in community-led total sanitation programs. Health Promot. Int. 2015, 30, 16–28. [Google Scholar] [CrossRef] [Green Version]
- Gjefle, K. The Sustainable Sanitation Design Concept for Sludge Treatment for Cities in Africa. Sustainable Sanitation Design. Sanit. Matters 2013, 4, 4. [Google Scholar]
- Aghoghovwia, M.P. Effect of Different Biochars on Inorganic Nitrogen Availability. Ph.D. Thesis, University of Stellenbosch, Stellenbosch, South Africa, 2018. [Google Scholar]
- Bai, X.; Li, Z.; Zhang, Y.; Ni, J.; Wang, X.; Zhou, X. Recovery of ammonium in urine by biochar derived from faecal sludge and its application as soil conditioner. Waste Biomass Valorization 2018, 9, 1619–1628. [Google Scholar] [CrossRef]
- Rogers, T.W.; Rogers, T.S.; Stoner, M.H.; Sellgren, K.L.; Lynch, B.J.; Forbis-Stokes, A.A.; Stoner, B.R.; Hawkins, B.T. A granular activated carbon/electrochemical hybrid system for onsite treatment and reuse of blackwater. Water Res. 2018, 144, 553–560. [Google Scholar] [CrossRef]
- Mohanty, S.K.; Cantrell, K.B.; Nelson, K.L.; Boehm, A.B. Efficacy of biochar to remove Escherichia coli from stormwater under steady and intermittent flow. Water Res. 2014, 61, 288–296. [Google Scholar] [CrossRef]
- Stats South Africa. Population Statistics, Census 2011 Community Profile Databases, and Geographical Areas, Census GIS DVD. 2011. Available online: https://census2011.adrianfrith.com/place/472035001 (accessed on 13 April 2020).
- Devine, J. Introducing Sani FOAM: A Framework to Analyze Sanitation Behaviors to Design Effective Sanitation Programs (English); Water and sanitation program working paper. World Bank: Washington, DC, USA, 2009. Available online: http://documents.worldbank.org/curated/en/272351468334778050/Introducing-SaniFOAM-aframework-to-analyze-sanitation-behaviors-to-design-effective-sanitation-programs (accessed on 13 April 2020).
- USEPA. Method 1604: Total Coliforms and Escherichia Coli in Water by Membrane Filtration Using a Simultaneous Detection Technique (MI Medium); USEPA: Washington, DC, USA, 2002.
- Mullis, K. Polymerase Chain Reaction (PCR); Birkhauser Publishers: Bethesda, MD, USA, 1980. [Google Scholar]
- SANS. South African National Standard: Drinking Water Part 1: Microbial, Physical, Aesthetic and Chemical Determinands; SABS Standards Division: Pretoria, South Africa, 2011. [Google Scholar]
- Jenkins, M.W.; Scott, B. Behavioral indicators of household decision-making and demand for sanitation and potential gains from social marketing in Ghana. Soc. Sci. Med. 2007, 64, 2427–2442. [Google Scholar] [CrossRef]
- Barnard, S.; Routray, P.; Majorin, F.; Peletz, R.; Boisson, S.; Sinha, A.; Clasen, T. Impact of Indian total sanitation campaign on latrine coverage and use: A cross sectional study in Orissa. Three years following programme implementation. PLoS ONE 2013, 8, e71438. [Google Scholar] [CrossRef]
- Tadesse Yimam, Y.; Gelaye, K.A.; Chercos, D.H. Latrines utilization and associated factors among people living in rural areas of Denbia district, Northwest Ethiopia, a cross-sectional study. Pan Afr. Med. J. 2014, 18, 334. [Google Scholar]
- Swiss TPH. Household Survey: Hygiene and Sanitation Behavior as Well as Willingness to Pay in Rural Senegal, Water and Sanitation Program, Final report—Final version; World Bank: Washington, DC, USA, 2015; Volume 15, p. 12. [Google Scholar]
- Rabbi, S.E.; Dey, N.C. Exploring the gap between hand washing knowledge and practices in Bangladesh: A cross-sectional comparative study. BMC Public Health 2013, 13, 89. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mjoli, N. Review of Sanitation Policy and Practice in South Africa from 2001–2008; Report to the Water Research Commission; Water Research Commission: Pretoria, South Africa, 2010; p. 13. [Google Scholar]
- Sara, S.; Graham, J. Ending open defecation n rural Tanzania: Which factors facilitate latrine adoption? Int. J. Environ. Res. Public Health 2014, 11, 9854–9870. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- DWAF. Sanitation Technology Options; Department of Water and Forestry: Pretoria, South Africa, 2002; Volume 5, pp. 9–13.
- Seal, D.; Bown, R.T.; Parker, A.H. Penetrometer tests on 109 pit latrines in Kibera, Nairobi, Kenya. Water SA 2018, 44. [Google Scholar] [CrossRef] [Green Version]
- Tumwebaze, I.K.; Orach, C.G.; Niwagaba Luthi, C.; Mosler, H.J. Sanitation facilities in Kampala slums, Uganda: Users’ satisfaction and determinant factors. Int. J. Environ. Health Res. 2013, 23, 191–204. [Google Scholar] [CrossRef]
- Nelson, K.B.; Karver, J.; Kullman, C.; Graham, J.P. User perceptions of shared sanitation among rural households in Indonesia and Bangladesh. PLoS ONE 2014, 9, e103886. [Google Scholar] [CrossRef]
- Ngondi, J.; Teferi, T.; Gebre, T.; Shargie, E.B.; Zerihun, M.; Ayele, B.; Adamu, L.; King, J.D.; Cromwell, A.; Emerson, P.M. Effect of a community intervention with pit latrines in five districts of Amhara, Ethiopia. Trop. Med. Int. Health 2019, 5, 592–599. [Google Scholar] [CrossRef]
- Ndiaye, N.M.; Seck, I.; Diedhiou, A.; Tal-Dia, A. Participation communautaire dans un projet de latrines en zone rurale Senegalaise. St. Publique 2011, 22, 147–154. [Google Scholar] [CrossRef]
- Kema, K.; Semall, I.; Mkuwa, S.; Kagonji, I.; Temu, F.; Ilako, F.; Mkuye, M. Factors affecting the utilisation of improved ventilated latrines among communities in Mtwara rural district, Tanzania. Pan Afr. Med. J. 2012, 13, 4. [Google Scholar]
- Awoke, W.; Muche, S. A cross sectional study: Latrine coverage and associated factors among rural communities in the district of Bahir Dar Zuria, Ethiopia. BMC Public Health 2013, 13, 99. [Google Scholar] [CrossRef] [Green Version]
- Williams, R. Effectiveness of Biochar Addition in Reducing Concentrations of Selected Nutrients and Bacteria in Runoff. Master’s Thesis, University of Kentucky, Lexington, KY, USA, 2016. [Google Scholar]
- Lexington Fayette Urban County Government. West Hickman Wastewater Treatment Plant. 2012. Available online: www.lexingtonky.gov (accessed on 12 March 2020).
- Benoit, N. Individual’s Perception and the Potential of Urine as a Fertiliser in Ethekwini, South Africa. Master’s Thesis, University of KwaZulu-Natal, Durban, South Africa, 2012. [Google Scholar]
- Jamieson, R.C.; Gordon, R.J.; Sharples, K.E.; Stratton, G.W.; Madani, A. Movement and persistence of fecal bacteria in agricultural soils and subsurface drainage water: A review. Can. Biosyst. Eng. 2002, 44, 11–19. [Google Scholar]
- Tallon, P.; Magajna, B.; Lofranco, C.; Leung, K.T. Microbial indicators of faecal contamination in water: A current perspective. WaterAirSoil Pollut. 2005, 166, 139–166. [Google Scholar] [CrossRef]
- Mamera, M.; van Tol, J.J. Application of Hydropedological Information to Conceptualize Pollution Migration from Dry Sanitation Systems in the Ntabelanga Catchment Area, South Africa. Air Soil Water Res. 2018, 11, 1–12. [Google Scholar] [CrossRef]
- Mubiru, D.N.; Coyne, M.S.; Grove, J.H. Mortality of Escherichia coli O157:H7 in two soils with different physical and chemical properties. J. Environ. Qual. 2000, 29, 1821–1825. [Google Scholar] [CrossRef]
- Gerba, C.P.; Bitton, G. Microbial pollutants: Their survival and transport pattern to groundwater. In Groundwater Pollution Microbiology; Bitton, G., Gerba, C.P., Eds.; John Wiley and & Sons, Inc.: New York, NY, USA, 1984; pp. 154–196. [Google Scholar]
- Matthess, G.; Pekdeger, A. Microbial pollutants. In Groundwater Quality; Ward, C.H., Giger, W., McCarty, P.L., Eds.; John Wiley & Sons: New York, NY, USA, 1995; pp. 472–482. [Google Scholar]
- O’Connor, R. Report of the Walkerton Inquiry; Publications Ontario: Toronto, ON, USA, 2001. [Google Scholar]
- Niemi, R.M.; Niemi, J. Bacterial pollution of waters in pristine and agricultural lands. J. Environ. Qual. 1991, 20, 620–627. [Google Scholar] [CrossRef]
- Howell, J.M.; Coyne, M.S.; Cornelius, P.L. Fecal bacteria in agricultural waters of the bluegrass region of Kentucky. J. Environ. Qual. 1995, 24, 411–419. [Google Scholar] [CrossRef] [Green Version]
- Wildi, W. Environmental hazards of dams and reservoirs. In Near Curriculum in Natural Environmental Science, Earth and Environment; University of Geneva: Versoix, Switzerland, 2010; Volume 88, pp. 187–197. [Google Scholar]
- Pote, J.; Haller, L.; Kottelat, R.; Sastre, V.; Arpagaus, P.; Wildi, W. Persistence and growth of faecal culturable bacterial indicators in water column and sediments of Vidy Bay, Lake Geneva, Switzerland. J. Environ. Sci. 2009, 21, 62–69. [Google Scholar] [CrossRef]
- Yoada, R.M.; Chirawurah, D.; Adongo, P.B. Domestic waste disposal practice and perceptions of private sector waste management in urban Accra. BMC Public Health 2014, 14, 697. [Google Scholar] [CrossRef] [Green Version]
- Xu, G.; Lv, Y.; Sun, J.; Shao, H.; Wei, L. Recent advances in biochar applications in agricultural soils: Benefits and environmental implications. Clean–Soil Air Water 2015, 40, 1093–1098. [Google Scholar] [CrossRef] [Green Version]
- Stetina, K. Control of Fecal Malodor by Adsorption onto Biochar; University of Colorado: Boulder, CO, USA, 2017. [Google Scholar]
Dependent Variables | Variable Description | Expected Effect |
---|---|---|
Y * | Quality of drinking water (0 = Poor 1 = Good) | Determined by explanatory variables |
Y ** | Community faecal sludge management in VIP/UN-IP Latrines (0 = Empty 1 = Construct new pit) | |
Y *** | Sewage sludge application in agricultural production (0 = Willing 1 = Not willing) | |
Y **** | Biochar adaption in sludge treatment (0 = Yes 1 = No) | |
Explanatory variables | ||
Socio-economic characteristics | ||
Gender (X1) | Gender of the participant (0 = Male 1 = Female) | |
Age (X2) | Age of participant (Years) | |
Household size (X3) | Number of household occupancy | |
Education (X4) | Participant education level (0 = None 1 = Primary 2 = Secondary 3 = Tertiary) | |
Employment (X5) | Participant employment status (0 = Employed 1 = Self-employed 2= Unemployed) | |
Income (X6) | Average monthly household income (Measured in SA Rand, ZAR) | |
Social amenities: Water and Sanitation | ||
Drinking water source (X7) | Source used (0 = Selected 1 = Not selected) | |
Household water source (X8) | Source used (0 = Selected 1 = Not selected) | |
Regularity (X9) | Water supply/ flow (0 = Regular 1 = Not regular 2 = Unreliable) | |
Sanitation type (X10) | Household sanitation type (0 = VIP 1 = UN-IP latrine) | |
Latrine users (X11) | Number of household members using pit latrine (Head count) | |
Sludge filling rate (X12) | Period a pit latrine is used by a household (Measured in years) | |
Sludge draining (X13) | Pit latrine sludge disposal (0 = Participant 1 = Community 2 = Municipality 3 = Private contractor) | |
Equipment (X14) | Access to disposal equipment (0 = Yes 1 = No) | |
Diseases (X15) | Perceived outbreaks in the community (0 = Cholera 1 = Dysentery 2 = Diarrhea 3 = No outbreaks) | |
Community perceptions on treated faecal sludge in crop production | ||
Crops (X16) | Major crops grown (0 = Selected 1 = Not selected) | |
Fertilizer (X17) | Use of fertilizer in cropping practices (0 = Yes 1 = No) | |
Manure (X18) | Use of animal manure (0 = Yes 1 = No) | |
Yield (X19) | Estimate crop yield (0 = Low 1 = Medium 2 = High) | |
Human manure (X20) | Awareness of the use of faecal sludge (0 = Yes 1 = No) | |
Biochar amendments | ||
Biochar use in latrines (X21) | Willingness to use in pit latrine sludge treatments (0 = Yes 1 = No) | |
Purchasing (X22) | Willingness to buy Biochar (0 = Yes 1 = No) | |
Wood ash (X23) | Use of ash in pit latrines (0 = Yes 1 = No) | |
Groundwater contamination (X24) | Awareness on pit latrine water pollution (0 = Yes 1 = No) | |
Pit latrine sludge treatment (X25) | Material added in latrine to reduce groundwater contamination (0 = Nothing 1 = Detergent) | |
Detergent price (X26) | Cost of material applied in pit latrines per month (Measure in SA ZAR) | |
β1…βn | Coefficients of independent variables X1…Xn | |
α | Intercept |
Variables | Response | (%) | Total (%) |
---|---|---|---|
Water quality | Good | 58.7 | 100 |
Poor | 41.3 | ||
Sludge management | Dispose | 83.4 | 100 |
Reconstruct latrine | 16.6 | ||
Sludge use in agriculture | Willing | 60 | 100 |
Not willing | 40 | ||
Biochar adaption | Yes | 73.8 | 100 |
No | 26.2 |
Variables | Total (%) | 1st Group | 2nd Group | |
---|---|---|---|---|
Gender (%) | Male | 36.3 | 69.8 | 30.2 |
Female | 63.8 | 68.6 | 31.4 | |
Age (Mean-49, Minimum-18, Maximum-80) | Below 30 | 21.3 | 69.12 | 30.89 |
31–54 | 40 | 72.66 | 27.35 | |
Above 55 | 38.8 | 65.32 | 34.68 | |
Average household sizes | 4.6 | 5 | 4.7 | |
Participant highest education level (%) | None | 2.5 | 87.5 | 12.5 |
Primary | 15 | 66.67 | 33.33 | |
Secondary | 77.5 | 69.76 | 30.24 | |
Tertiary | 5 | 56.25 | 43.75 | |
Participant employment status | Employed | 11.3 | 52.78 | 47.22 |
Self-employed | 16.3 | 67.31 | 32.69 | |
Unemployed | 72.5 | 55.33 | 44.67 | |
Estimated monthly household income (%) | Below ZAR 1200 | 41.3 | 68.94 | 31.06 |
ZAR 1200–4500 | 45 | 67.80 | 32.20 | |
Above 4500 | 13.8 | 77.27 | 22.73 |
Variable | Frequencies (%) | |
---|---|---|
Water sources | Tap water | 4.2 |
Rainwater harvesting | 8.5 | |
Municipal tank | 61 | |
River | 8.5 | |
Borehole | 17.8 | |
Number of Latrine users | 2–3 | 33.3 |
4–6 | 58.8 | |
7–14 | 8.2 | |
Sludge emptying | Municipality | 51.25 |
Private contractor | 48.75 | |
Sludge disposal equipment | Yes | 2 |
No | 98 | |
Perceived disease outbreaks | Cholera | 14 |
Diarrhea | 69 | |
No outbreak | 17 | |
Crop type | Vegetables | 55.5 |
Field crops | 44.5 | |
Awareness of human manure uses | Yes | 71.3 |
No | 28.8 | |
Willingness to purchase biochar | Yes | 82.5 |
No | 17.5 | |
Wood ash use in latrines | Yes | 7.5 |
No | 92.5 | |
Awareness for potential pit latrine pollution | Yes | 12.5 |
No | 87.5 | |
Pit sludge treatment | Not treating | 77.5 |
Detergents | 22.5 | |
Commercial detergent price | ˂ ZAR 50 | 12.5 |
ZAR 51–100 | 7.5 | |
˃ ZAR 100 | 2.5 |
Variables | Water Quality | Faecal Sludge Management | Sludge Application in Agriculture | Biochar Adoption | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
β | p Value | Exp β | β | p Value | Exp β | β | p Value | Exp β | β | p Value | Exp β | ||
Socio-economic | Gender | 1.45 | 0.19 | 4.25 | −0.07 | 0.94 | 0.92 | 0.10 | 0.84 | 1.11 | −0.67 | 0.51 | 0.51 |
Age | 0.45 | 0.77 | 1.57 | −0.65 | 0.62 | 0.52 | 0.05 | 0.89 | 1.05 | 1.07 | 0.50 | 2.92 | |
Household size | 2.00 | 0.20 | 7.08 | −4.76 | 0.04 | 0.00 | −0.16 | 0.46 | 0.86 | 0.56 | 0.78 | 1.76 | |
Education | 8.25 | 1.00 | 1.21 | −1.27 | 1 | 0.28 | 0.28 | 059 | 1.32 | 1.17 | 1.00 | 3.21 | |
Employment | 0.14 | 0.54 | 1.06 | −0.04 | 0.98 | 0.96 | 0.19 | 0.63 | 1.21 | 0.47 | 0.74 | 1.59 | |
Income | 0.30 | 0.37 | 1.26 | 8.06 | 0.99 | 33 | 0.23 | 0.51 | 1.26 | −0.84 | 0.56 | 0.43 | |
Drinking water | |||||||||||||
1 Tap water | - | 0.97 | 0.00 | - | 0.92 | 17.5 | - | 0.99 | 0.00 | - | 0.99 | 1.39 | |
Rain harvesting | −9.89 | 0.99 | 0.00 | 18.4 | 0.99 | 19.7 | −0.05 | 0.81 | 0.63 | −19.3 | 0.99 | 0.00 | |
Municipal tank | −0.92 | 0.50 | 0.40 | 0.04 | 0.97 | 1.04 | 0.50 | 0.54 | 1.64 | −0.54 | 0.67 | 0.58 | |
River | −2.61 | 0.14 | 0.07 | −2.54 | 0.26 | 0.08 | 0.20 | 0.79 | 1.23 | −0.46 | 0.73 | 0.64 | |
Borehole | −3.73 | 0.04 * | 0.24 | 0.04 | 0.001 *** | 1.04 | 0.49 | 0.50 | 1.64 | −0.53 | 0.67 | 0.58 | |
Household water | −0.92 | 0.54 | 0.40 | −0.06 | 0.97 | 0.94 | 0.27 | 0.75 | 1.31 | −0.19 | 0.89 | 0.83 | |
Regularity | −0.10 | 1.00 | 0.00 | −15.3 | 0.99 | 0.00 | 0.50 | 0.77 | 1.64 | 17.4 | 0.99 | 60 | |
Constant | 0.35 | 0.12 | 1.42 | −1.64 | 0.00 | 0.19 | 41.6 | 0.99 | 113 | 2.2 | 0.00 | 9 | |
Nagelkerke R2 | 0.66 | 0.61 | 0.24 | 0.33 | |||||||||
Chi-squared | 53.8 | 35.3 | 15.4 | 13.6 | |||||||||
p Value | 0.01 * | 0.006 * | 0.57 | 0.69 | |||||||||
Sanitation | Sanitation type | 9.3 | 1.00 | 0.18 | 0.52 | 0.79 | 1.68 | 1.39 | 0.18 | 4.00 | 19.7 | 0.99 | 51 |
Latrine users | 0.17 | 0.80 | 1.17 | −1.44 | 0.02 * | 023 | −22.6 | 0.99 | 0.00 | 2.32 | 0.21 | 10.2 | |
Sludge filling rate | 0.68 | 0.12 | 0.26 | 0.68 | 0.65 | 1.96 | 1.89 | 0.03 * | 6.59 | 19.6 | 0.99 | 54 | |
Sludge emptying | 0.09 | 0.89 | 1.10 | −1.68 | 0.03 * | 0.19 | −1.66 | 0.01 * | 0.19 | 0.02 | 0.98 | 1.02 | |
Equipment | −4.31 | 0.99 | 0.00 | 1.94 | 0.02 * | 27.2 | 20.1 | 1 | 51 | 0.98 | 1.00 | 2.66 | |
Diseases | |||||||||||||
1 Cholera | - | 0.99 | 0.00 | - | 0.12 | 0.12 | - | 1 | 0.75 | - | 0.99 | 45 | |
Diarrhea | 0.43 | 0.59 | 1.54 | −1.50 | 0.01 * | 0.22 | −1.17 | 0.14 | 0.31 | −0.83 | 1.00 | 0.44 | |
No outbreak | −20.8 | 0.98 | 0.00 | −20.6 | 0.99 | 0.00 | −1.28 | 0.26 | 0.28 | −1.02 | 0.52 | 0.36 | |
Constant | 1.07 | 1 | 2.91 | −40.2 | 1 | 0.00 | 24.5 | 1 | 42 | 19.7 | 1 | 34 | |
Nagelkerke R2 | 0.53 | 0.69 | 0.33 | 0.33 | |||||||||
Chi-squared | 39.8 | 42 | 22.1 | 13.6 | |||||||||
p Value | 0.004 * | 0.04 * | 0.05 * | 0.4 | |||||||||
Agriculture | Crops | 3.64 | 0.04 * | 2.37 | 1.34 | 0.05 * | 3.82 | −1.60 | 0.03 * | 0.20 | 1.61 | 0.26 | 5.00 |
Fertilizer | 1.71 | 0.27 | 5.54 | −3.93 | 0.18 | 0.02 | −0.31 | 0.85 | 0.73 | 0.92 | 1.00 | 2.52 | |
Manure | 0.30 | 0.63 | 1.35 | −0.71 | 0.54 | 0.49 | −1.26 | 0.08 | 0.28 | −1.61 | 0.34 | 0.20 | |
Yield | −1.83 | 0.27 | 0.16 | 0.85 | 0.69 | 0.43 | −0.30 | 0.83 | 0.74 | −19.4 | 1.00 | 0.00 | |
Human manure use | 0.29 | 0.63 | 1.35 | 0.72 | 0.59 | 0.49 | −0.53 | 0.46 | 0.59 | −2.02 | 0.05 * | 1.82 | |
Constant | 0.41 | 0.99 | 1.04 | −13.2 | 1 | 0.00 | 2.22 | 1 | 9.18 | 79.2 | 0.99 | 241 | |
Nagelkerke R2 | 0.28 | 0.56 | 0.45 | 0.63 | |||||||||
Chi-squared | 18.8 | 32.1 | 31 | 28.4 | |||||||||
p Value | 0.22 | 0.07 | 0.05* | 0.05 * | |||||||||
Pollution management | Biochar use in latrines | −0.43 | 0.85 | 0.65 | −0.24 | 0.82 | 0.79 | −1.65 | 0.08 | 0.19 | −36.7 | 0.99 | 0.00 |
Purchasing | −1.31 | 0.05 * | 0.27 | 0.37 | 0.77 | 1.44 | 1.07 | 0.30 | 2.90 | 3.6 | 0.01 * | 95 | |
Wood ash | −0.74 | 0.68 | 0.48 | −0.33 | 0.81 | 0.72 | 2.26 | 0.05 * | 9.57 | −1.60 | 0.23 | 0.20 | |
Water pollution | −0.38 | 0.93 | 0.68 | −0.97 | 0.44 | 0.38 | 0.78 | 0.35 | 2.18 | −1.37 | 0.02 * | 0.26 | |
Pit sludge treatment | −4.51 | 0.82 | 0.00 | −2.21 | 0.03 * | 0.11 | 21.7 | 0.99 | 258 | −19.2 | 0.99 | 0.00 | |
Detergent price | |||||||||||||
1 ˂ ZAR 50 | - | 0.44 | 8.89 | - | 0.001 *** | 0.09 | - | 0.04 * | 0.88 | - | 1.00 | 0.07 | |
ZAR 51–100 | 8.89 | 0.99 | 13.7 | −1.85 | 0.21 | 0.92 | 23.8 | 0.99 | 21.7 | −2.98 | 0.98 | 0.03 | |
˃ ZAR 100 | 9.91 | 0.99 | 15.1 | 0.42 | 0.83 | 1.52 | −0.13 | 0.96 | 0.88 | −22.5 | 0.99 | 0.00 | |
Constant | 2.69 | 0.1 | 14.7 | 0.04 | 0.99 | 1.04 | −22.1 | 0.99 | 0.00 | 22.7 | 0.99 | 70 | |
Observations | 80 | 80 | 80 | 80 | |||||||||
Nagelkerke R2 | 0.19 | 0.23 | 0.34 | 0.51 | |||||||||
Chi-squared | 11.8 | 11.6 | 23.4 | 22.3 | |||||||||
p Value | 0.16 | 0.17 | 0.003 * | 0.002 * |
Site | Water Source | Faecal coliforms | E. coli | Faecal coliforms | E. coli | Faecal coliforms | E. coli |
---|---|---|---|---|---|---|---|
Oct 2019 | Dec 2019 | Feb 2020 | |||||
QM 1 | Borehole | ˂1 | ˂1 | ˂1 | ˂1 | - | - |
QM 2 | River | 687 * | 687 * | 99 * | 70 * | 1414 * | 980 * |
QM 3 | Borehole | ˂1 | ˂1 | ˂1 | ˂1 | 1 | ˂1 |
QM 4 | River | 11 * | 11 * | ˃2420 * | ˃2420 * | ˃2420 * | ˃2420 * |
QM 5 | River | 1986 * | 50 * | 261 * | 86 * | 1986 * | 1553 * |
QM 6 | River | ˃2420 * | ˃2420 * | ˃2420 * | ˃2420 * | ˃2420 * | 1553 * |
QM 7 | Borehole | ˂1 | ˂1 | ˂1 | ˂1 | ˂1 | ˂1 |
QM 8 | Borehole | ˂1 | ˂1 | 3 * | 2 * | ˂1 | ˂1 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mamera, M.; van Tol, J.J.; Aghoghovwia, M.P.; Mapetere, G.T. Community Faecal Management Strategies and Perceptions on Sludge Use in Agriculture. Int. J. Environ. Res. Public Health 2020, 17, 4128. https://doi.org/10.3390/ijerph17114128
Mamera M, van Tol JJ, Aghoghovwia MP, Mapetere GT. Community Faecal Management Strategies and Perceptions on Sludge Use in Agriculture. International Journal of Environmental Research and Public Health. 2020; 17(11):4128. https://doi.org/10.3390/ijerph17114128
Chicago/Turabian StyleMamera, Matthew, Johan J. van Tol, Makhosazana P. Aghoghovwia, and Gabriel T. Mapetere. 2020. "Community Faecal Management Strategies and Perceptions on Sludge Use in Agriculture" International Journal of Environmental Research and Public Health 17, no. 11: 4128. https://doi.org/10.3390/ijerph17114128
APA StyleMamera, M., van Tol, J. J., Aghoghovwia, M. P., & Mapetere, G. T. (2020). Community Faecal Management Strategies and Perceptions on Sludge Use in Agriculture. International Journal of Environmental Research and Public Health, 17(11), 4128. https://doi.org/10.3390/ijerph17114128