Food Supply without Risk: Multicriteria Analysis of Institutional Conditions of Exporters
Abstract
1. Introduction
2. Literature Review
3. Materials and Methods
4. Results and Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
Appendix A.1. TOPSIS Method
- Calculate the normalized decision matrix.
- Calculate the weighted normalized decision matrix.
- Calculate ideal and negative ideal solutions.
- Calculate the separation measures.
- Calculate the relative closeness to the ideal solution.
- Rank the preference order.
Appendix A.2. ELECTRE Method
- Implementing this method involves the following steps:
- Calculate the decision matrix.
- Calculate the normalized decision matrix using the ratio of the range.
- Calculate the weighted normalized decision matrix
- Calculate the concordance index matrix.
- Calculate the discordance index matrix.
- Set the threshold values: a minimum for concordance and a maximum for discordance.
- Calculate the concordance dominance matrix
- Calculate the discordance dominance matrix.
- Calculate the aggregate dominance matrix
- Interpret the values of the aggregate dominance matrix.
Appendix A.3. DEA Model: Cross-Efficiency
References
- WHO; FAO. Risk Assessment of Microbiological Hazards in Foods; FAO/WHO Expert Consultation; World Health Organization: Geneva, Switzerland, 1999; p. 24. [Google Scholar]
- Walker, E.; Jones, N. An assessment of value of documenting food safety in small and less developed catering businesses. Food Control 2002, 13, 307–314. [Google Scholar] [CrossRef]
- Sun, Y.; Ockerman, H.W. A review of the needs and current applications of hazard analysis and critical control point (HACCP) system in foodservice areas. Food Control 2005, 16, 325–332. [Google Scholar] [CrossRef]
- Rohr, J.R.; Barrett, C.B.; Civitello, D.J.; Craft, M.E.; Delius, B.; DeLeo, G.A.; Hudson, P.J.; Jouanard, N.; Nguyen, K.H.; Ostfeld, R.S.; et al. Emerging human infectious diseases and the links to global food production. Nat. Sustain. 2019, 2, 445–456. [Google Scholar] [CrossRef] [PubMed]
- De Jonge, J.; Van Trijp, J.C.M.; van der Lans, I.A.; Renes, R.J.; Frewer, L.J. How trust in institutions and organizations builds general consumer confidence in the safety of food: A decomposition of effects. Appetite 2008, 51, 311–317. [Google Scholar] [CrossRef]
- Neill, C.; Holcomb, R.B. Does a food safety label matter? Consumer heterogeneity and fresh produce risk perceptions under the Food Safety Modernization Act. Food Policy 2019, 85, 7–14. [Google Scholar] [CrossRef]
- Smith, A.; Watkiss, P.; Tweddle, G.; McKinnon, A.; Browne, M.; Hunt, A.; Treleven, C.; Nash, C.; Cross, S. The Validity of Food Miles as an Indicator of Sustainable Development; Report No. ED50254; AEA Technology: Oxfordshire, UK, 2005. [Google Scholar]
- Wood, V.R.; Robertson, K.R. Evaluating international markets: The importance of information by industry, by country of destination, and by type of export transaction. Int. Mark. Rev. 2000, 17, 34–55. [Google Scholar] [CrossRef]
- Davidson, V.J.; Stockwell, D. Food safety risk management: Evidence-Informed policies and decisions, considering multiple factors. In Food Safety and Quality Series 4; Food and Agriculture Organization (FAO): Rome, Italy, 2017. [Google Scholar]
- Jouanjean, M.A.; Maur, J.C.; Shepherd, B. Reputation matters: Spillover effects for developing countries in the enforcement of US food safety measures. Food Policy 2015, 55, 81–91. [Google Scholar] [CrossRef]
- Van Ruth, S.M.; Huisman, W.; Luning, P.A. Food fraud vulnerability and its key factors. Trends Food Sci. Technol. 2017, 67, 70–75. [Google Scholar] [CrossRef]
- Baylis, K.; Nogueira, L.; Pace, K. Food import refusals: Evidence from the European Union. Am. J. Agric. Econ. 2010, 93, 566–572. [Google Scholar] [CrossRef]
- Bouzembrak, Y.; Marvin, H.J. Prediction of food fraud type using data from Rapid Alert System for Food and Feed (RASFF) and Bayesian network modelling. Food Control 2016, 61, 180–187. [Google Scholar] [CrossRef]
- Tudela-Marco, L.; García-Álvarez-Coque, J.M.; Martí-Selva, L. Do EU member states apply food standards uniformly? A look at fruit and vegetable safety notifications. J. Common Mark. Stud. 2017, 55, 387–405. [Google Scholar] [CrossRef]
- Verhaelen, K.; Bauer, A.; Günther, F.; Müller, B.; Nist, M.; Celik, B.Ü.; Wallner, P. Anticipation of food safety and fraud issues: ISAR-A new screen ing tool to monitor food prices and commodity flows. Food Control 2018, 94, 93–101. [Google Scholar] [CrossRef]
- Garcia-Alvarez-Coque, J.M.; Taghouti, I.; Martinez-Gomez, V. Changes in aflatoxin standards: Implications for EU border controls of nut imports. Appl. Econ. Perspect. Policy 2019. [Google Scholar] [CrossRef]
- Fischer, A.R.H.; De Jong, A.E.I.; De Jonge, R.; Frewer, L.J.; Nauta, M.J. Improving food safety in the domestic environment: The need for a transdisciplinary approach. Risk Anal. 2005, 25, 503–517. [Google Scholar] [CrossRef]
- Frewer, L.J.; Salter, B. Societal trust in risk analysis: Implications for the interface of risk assessment and risk management. In Trust in Cooperative Risk Management: Uncertainty and Scepticism in the Public Min; Siegrist, M., Earle, T., Gutscher, H., Eds.; Earthscan: London, UK, 2007; pp. 143–158. [Google Scholar]
- Houghton, J.R.; Rowe, G.; Frewer, L.J.; Van Kleef, E.; Chryssochoidis, G.; Kehagia, O.; Korzen-Bohr, S.; Lassen, J.; Pfenning, U.; Strada, A. The quality of food risk management in Europe: Perspectives and priorities. Food Policy 2008, 33, 13–26. [Google Scholar] [CrossRef]
- Demortain, D. Enabling global principle-based regulation: The case of risk analysis in the Codex Alimentarius. Regul. Gov. 2012, 6, 207–224. [Google Scholar] [CrossRef]
- Fazil, A.; Rajic, A.; Sanchez, J.; McEwen, S. Choices, choices: The application of multi-criteria decision analysis to a food safety decision-making problem. J. Food Prot. 2008, 71, 2323–2333. [Google Scholar] [CrossRef]
- Ruzante, J.M.; Davidson, V.J.; Caswell, J.; Fazil, A.; Cranfield, J.A.L.; Henson, S.J.; Anders, S.M.; Schmidt, C.; Farber, J.M. A multifactorial risk prioritization framework for foodborne pathogens. Risk Anal. 2010, 30, 724–742. [Google Scholar] [CrossRef][Green Version]
- Mazzocchi, M.; Ragona, M.; Zanoli, A. A fuzzy multi-criteria approach for the ex-ante impact assessment of food safety policies. Food Policy 2013, 38, 177–189. [Google Scholar] [CrossRef]
- Govindan, K.; Kadzinski, M.; Sivakumar, R. Application of a novel PROMETHEE-based method for construction of a group compromise ranking to prioritization of green suppliers in food supply chain. Omega 2017, 71, 129–145. [Google Scholar] [CrossRef]
- Segura, M.; Maroto, C.; Segura, B. Quantifying the sustainability of products and suppliers in food distribution companies. Sustainability 2019, 11, 5875. [Google Scholar] [CrossRef]
- Lau, H.; Nakandala, D.; Shum, P.K. A business process decision model for fresh-food supplier evaluation. Bus. Process. Manag. J. 2018, 24, 716–744. [Google Scholar] [CrossRef]
- Garcia-Alvarez-Coque, J.; Abdullateef, O.; Fenollosa, L.; Ribal, J.; Sanjuan, N.; Soriano, J. Integrating sustainability into the multi-criteria assessment of urban dietary patterns. Renew. Agric. Food Syst. 2020, 1–8. [Google Scholar] [CrossRef]
- Bergeaud-Blackler, F. Intermediate EU Report on the Institutional Dimensions of Consumer Trust in Food; Aix Marseille Université: Marseille, France, 2004. [Google Scholar]
- Vos, E.; Ni’Ghiollarnáth, C.; Wendler, F. EU Food Safety Regulation Under Review: An Institutional Analysis; University of Maastricht: Maastricht, The Netherlands, 2005. [Google Scholar]
- Grant, W. Economic patriotism in European agriculture. J. Eur. Public Policy 2012, 19, 420–434. [Google Scholar] [CrossRef]
- Zahrnt, V. Food Security and the EU’s Common Agricultural Policy: Facts Against Fears; ECIPE: Brussels, Belgium, 2011. [Google Scholar]
- Maye, D.; Kirwan, J. Food security: A fractured consensus. J. Rural Stud. 2013, 29, 1–6. [Google Scholar] [CrossRef]
- Anthony, R. Taming the unruly side of ethics: Overcoming challenges of a bottom-up approach to ethics in the areas of food policy and climate change. J. Agric. Environ. Ethics 2012, 25, 813–841. [Google Scholar] [CrossRef]
- MacMillan, T.; Dowler, E. Just and sustainable? Examining the rhetoric and potential realities of UK food security. J. Agric. Environ. Ethics 2012, 25, 181–204. [Google Scholar] [CrossRef]
- Jaud, M.; Cadot, O.; Suwa-Eisenmann, A. Do food scares explain supplier concentration? An analysis of EU agri-food imports. Eur. Rev. Agric. Econ. 2013, 40, 873–890. [Google Scholar] [CrossRef]
- Spink, J.; Fortin, N.D.; Moyer, D.C.; Miao, H.; Wu, Y. Food fraud prevention: Policy, strategy, and decision-making-implementation steps for a government agency or industry. CHIM. Inter. J. Chem. 2016, 70, 320–328. [Google Scholar] [CrossRef]
- Van Ruth, S.M.; Luning, P.A.; Silvis, I.C.J.; Yang, Y.; Huisman, W. Differences in fraud vulnerability in various food supply chains and their tiers. Food Control 2018, 84, 375–381. [Google Scholar] [CrossRef]
- Triantaphyllou, E. Multi-Criteria Decision Making Methods: A Comparative Study; Springer: Dordrecht, The Netherlands, 2010. [Google Scholar]
- Eleren, A.; Karagül, M. 1986–2006 Türkiye ekonomisinin performans değerlendirmesi. Yönetim Ve Ekon. 2008, 15, 1–14. [Google Scholar]
- Xidonas, P.; Psarras, J. Equity portfolio management within the MCDM frame: A literature review. Int. J. Bank. Account. Financ. 2009, 1, 285–309. [Google Scholar] [CrossRef]
- Melo, M.T.; Nickel, S.; Saldanha-da-Gama, F. Facility location and supply chain management—A review. Eur. J. Oper. Res. 2009, 169, 401–412. [Google Scholar] [CrossRef]
- Urfalioğlu, F.; Genç, T. Çok kriterli karar verme teknikleri ile Türkiye’nin ekonomik performansının avrupa birliği üye ülkeleri ile karşılaştırılmasi. Marmara Univ. J. Econ. Adm. Sci. 2013, 35, 329–360. [Google Scholar]
- Mandic, K.; Delibasic, B.; Knezevic, S.; Benkovic, S. Analysis of the financial parameters of Serbian banks through the application of the fuzzy AHP and TOPSIS methods. Econ. Model. 2014, 43, 30–37. [Google Scholar] [CrossRef]
- Uygun, O.; Kacamak, H.; Kahraman, U.A. An integrated DEMATEL and fuzzy ANP techniques for evaluation and selection of outsourcing provider for a telecommunication company. Comput. Ind. Eng. 2015, 86, 137–146. [Google Scholar] [CrossRef]
- Wanke, P.; Azad, M.D.A.K.; Barros, C.P. Predicting efficiency in Malaysian Islamic banks: A two-stage TOPSIS and neural networks approach. Res. Int. Bus. Financ. 2016, 36, 485–498. [Google Scholar] [CrossRef]
- Stojčić, M.; Zavadskas, E.K.; Pamučar, D.; Stević, Z.; Mardani, A. Application of MCDM methods in sustainability engineering: A literature review 2008–2018. Symmetry 2019, 11, 350. [Google Scholar] [CrossRef]
- Xu, L.; Shah, S.A.A.; Zameer, H.; Solangi, Y.A. Evaluating renewable energy sources for implementing the hydrogen economy in Pakistan: A two-stage fuzzy MCDM approach. Environ. Sci. Pollut. Res. 2019, 32, 33202–33215. [Google Scholar] [CrossRef]
- Huang, I.B.; Keisler, J.; Linkov, I. Multi-Criteria decision analysis in environmental sciences: Ten years of applications and trends. Sci. Total Environ. 2011, 409, 3578–3594. [Google Scholar] [CrossRef]
- Balin, A.; Demirel, H.; Alarcin, F. A hierarchical structure for ship diesel engine trouble-shooting problem using fuzzy AHP and fuzzy VIKOR hybrid methods. Brodogradnja 2015, 66, 54–65. [Google Scholar]
- Pons, O.; De la Fuente, A.; Aguado, A. The use of MIVES as a sustainability assessment MCDM method for architecture and civil engineering applications. Sustainability 2016, 8, 460. [Google Scholar] [CrossRef]
- Shishegaran, A.; Shishegaran, A.; Mazzulla, G.; Forciniti, C. A novel approach for a sustainability evaluation of developing system interchange: The case study of the Sheikhfazolah-Yadegar interchange, Tehran, Iran. Int. J. Environ. Res. Public Health 2020, 17, 435. [Google Scholar] [CrossRef] [PubMed]
- Wu, H.-Y.; Chen, J.-K.; Chen, I.-S.; Zhuo, H.H. Ranking universities based on performance evaluation by a hybrid MCDM model. Measurement 2012, 45, 856–880. [Google Scholar] [CrossRef]
- Shakouri, G.H.; Tavassoli, N.Y. Implementation of a hybrid fuzzy system as a decision support process: A FAHP-FMCDM-FIS composition. Expert Syst. Appl. 2012, 39, 3682–3691. [Google Scholar] [CrossRef]
- Mavi, K.R.; Goh, M.; Mavi, N.K. Supplier selection with Shannon entropy and fuzzy TOPSIS in the context of supply chain risk management. Procedia Soc. Behav. Sci. 2016, 235, 216–225. [Google Scholar] [CrossRef]
- Montgomery, B.; Dragicevic, S.; Dujmovic, J.; Schmidt, M. A GIS-based logic scoring of preference method for evaluation of land capability and suitability for agriculture. Comput. Electron. Agric. 2016, 124, 340–353. [Google Scholar] [CrossRef]
- Debenath, A.; Roy, J.; Kar, S.; Zavadskas, E.K.; Antucheviciene, J.A. Hybrid MCDM approach for strategic project portfolio selection of agro by-products. Sustainability 2017, 9, 1302. [Google Scholar] [CrossRef]
- Seyedmohammadi, J.; Sarmadian, F.; Jafarzadeh, A.A.; Ghorbani, M.A.; Shahbazi, F. Application of SAW, TOPSIS and fuzzy TOPSIS models in cultivation priority planning for maize, rapeseed and soybean crops. Georderma 2018, 310, 178–190. [Google Scholar] [CrossRef]
- Rostamzadeh, R.; Keshavarz, M.; Kannan, G.; Esmaeili, G.A.; Nobar, H.B.K. Evaluation of sustainable supply chain risk management using an integrated fuzzy TOPSIS-CRITIC approach. J. Clean. Prod. 2018, 175, 651–669. [Google Scholar] [CrossRef]
- Raut, R.D.; Gardas, B.B.; Kharat, M.; Narkhede, B. Modeling the drivers of post-harvest losses—MCDM approach. Comput. Electron. Agric. 2018, 154, 426–433. [Google Scholar] [CrossRef]
- Qureshi, M.R.N.; Singh, R.K.; Hasan, M.A. Decision support model to select crop pattern for sustainable agricultural practices using fuzzy MCDM. Environ. Dev. Sustain. 2018, 20, 641–659. [Google Scholar] [CrossRef]
- Rao, C.S.; Kareemulla, K.; Krishnan, P.; Murthy, G.R.K.; Ramesh, R.; Ananthan, P.S.; Joshi, P.K. Agro-Ecosystem based sustainability indicators for climate resilient agriculture in India: A conceptual framework. Ecol. Indic. 2019, 105, 621–633. [Google Scholar] [CrossRef]
- Paul, M.; Negahban-Azar, M.; Shirmohammadi, A.; Montas, H. Assessment of agricultural land suitability for irrigation with reclaimed water using geospatial multi-criteria decision. Agric. Water. Manag. 2020, 231, 105987. [Google Scholar] [CrossRef]
- Balenzetis, T.; Chen, X.; Galnaityte, A.; Namiotko, V. Optimizing crop mix with respect to economic and environmental constraints: An integrated MCDM approach. Sci. Total Environ. 2020, 705, 135896. [Google Scholar] [CrossRef] [PubMed]
- Jahan, A.; Edwards, K.L. VIKOR method for material selection problems with interval numbers and target-based criteria. Mater. Des. 2013, 47, 759–765. [Google Scholar] [CrossRef]
- Scott, J. Rational choice theory. In From Understanding Contemporary Society: Theories of the Present; Browning, G., Ed.; SAGE Publications: London, UK, 2000; pp. 126–139. [Google Scholar]
- Pourhejazy, P.; Kwon, O.K.; Chang, Y.T.; Park, H. Evaluating resiliency of supply chain network: A data envelopment analysis approach. Sustainability 2017, 9, 255. [Google Scholar] [CrossRef]
- Stewart, T.J. Relationships between data envelopment analysis and multicriteria decision analysis. J. Oper. Res. Soc. 1996, 47, 654–665. [Google Scholar] [CrossRef]
- Li, X.B.; Reeves, G.R. A multiple criteria approach to data envelopment analysis. Eur. J. Oper. Res. 1999, 115, 507–517. [Google Scholar] [CrossRef]
- Zavadskas, E.K.; Turskis, Z.; Kildienė, S. State of art surveys of overviews on MCDM/MADM methods. Technol. Econ. Dev. Econ. 2014, 20, 165–179. [Google Scholar] [CrossRef]
- Mousavi-Nasab, S.H.; Sotoudeh-Anvari, A. A comprehensive MCDM-based approach using TOPSIS, COPRAS and DEAas an auxiliary tool for material selection problems. Mater. Des. 2017, 121, 237–253. [Google Scholar] [CrossRef]
- Bouyssou, D.J. Using DEA as a tool for MCDM: Some remarks. J. Oper. Res. Soc. 1999, 50, 974–978. [Google Scholar] [CrossRef]
- Özcan, T.; Çelebi, N.; Esnaf, Ş. Comparative analysis of multi-criteria decision making methodologies and implementation of a warehouse location selection problem. Expert Syst. Appl. 2011, 38, 9773–9779. [Google Scholar] [CrossRef]
- Løken, E. Use of multicriteria decision analysis methods for energy planning problems. Renew. Sustain. Energy Rev. 2007, 11, 1584–1595. [Google Scholar] [CrossRef]
- Darji, V.P.; Rao, R.V. Intelligent multi criteria decision making methods for material selection in sugar industry. Procedia Mater. Sci. 2014, 5, 2585–2594. [Google Scholar] [CrossRef]
- Ceballos, B.; Lamata, M.T.; Pelta, D.A. A comparative analysis of multi-criteria decision-making methods. Prog. Artif. Intell. 2016, 5, 315–322. [Google Scholar] [CrossRef]
- Sen, B.; Bhattacharjee, P.; Mandal, U.K. A comparative study of some prominent multi criteria decision making methods for connecting rod material selection. Perspect. Sci. 2016, 8, 547–549. [Google Scholar] [CrossRef]
- Wu, D. A note on DEA efficiency assessment using ideal point: An improvement of Wang and Luo’s model. Appl. Math. Comput. 2006, 183, 819–830. [Google Scholar] [CrossRef]
- Kou, G.; Peng, Y.; Wang, G. Evaluation of clustering algorithms for financial risk analysis using MCDM methods. Inf. Sci. 2014, 275, 1–12. [Google Scholar] [CrossRef]
- Roy, B. How outranking relation helps multiple criteria decision making. In Multiple Criteria Decision Making; Cochrane, J.L., Zeleny, M., Eds.; University of South-Carolina Press: Columbia, SC, USA, 1973. [Google Scholar]
- Roy, B. The outranking approach and the foundations of ELECTRE methods. Theory Decis. 1991, 31, 49–73. [Google Scholar] [CrossRef]
- Yoon, P.; Hwang, C.L. Manufacturing plant location analysis by multiple attribute decision making: Part I—Single-Plant strategy. Int. J. Prod. Res. 1985, 23, 345–359. [Google Scholar] [CrossRef]
- Sexton, T.R.; Silkman, R.H.; Hogan, A.J. Data envelopment analysis: Critique and extensions. In Measuring Efficiency: An Assessment of Data Envelopment Analysis; Silkman, R.H., Ed.; Jossey-Bass: San Francisco, CA, USA, 1986; pp. 73–105. [Google Scholar]
- Doyle, J.R.; Green, R. Efficiency and cross-efficiency in data envelopment analysis: Derivatives, meanings and uses. J. Oper. Res. Soc. 1994, 45, 567–578. [Google Scholar] [CrossRef]
- Doroshenko, V. Cosechar lo Que se ha Sembrado; Organización de las Naciones Unidas para la Alimentación y la Agricultura: Rome, Italy, 2018. [Google Scholar]
- European Commission. Impacts of EU Trade Agreements on the Agricultural Sector; Copenhagen Economics: Luxembourg, 2016. [Google Scholar]
- Arvis, J.F.; Ojala, L.; Wiederer, C.; Shepherd, B.; Raj, A.; Dairabeyera, K.; Kiiski, T. Connecting to Compete: Trade Logistics in the Global Economy; World Bank: Washington, DC, USA, 2018. [Google Scholar]
- Arvis, J.F.; Saslavsky, D.; Ojala, L.; Shepherd, B.; Bush, C.; Raj, A.; Naula, T. Connecting to Compete: Trade Logistics in the Global Economy; World Bank: Washington, DC, USA, 2016. [Google Scholar]
- Arvis, J.F.; Saslavsky, D.; Ojala, L.; Shepherd, B.; Bush, C.; Raj, A. Connecting to Compete: Trade Logistics in the Global Economy; World Bank: Washington, DC, USA, 2014. [Google Scholar]
- Martí, L.; Martin, J.C.; Puertas, R. A DEA-Logistics performance index. J. Appl. Econ. 2017, 20, 169–192. [Google Scholar] [CrossRef]
- Migueláñez, R. Canadá y la UE: Si Quiero. 2016. Available online: https://www.Euroganadería.eu (accessed on 30 October 2019).
- Hwang, C.L.; Yoon, K. Multiple Attribute Decision Making—Methods and Applications a State-of-the-Art Survey; Springer: Berlin/Heidelberg, Germany, 1981. [Google Scholar]
- Karabiyik, C.; Kutlu, K.B. Benchmarking international trade performance of OECD countries: TOPSIS and AHP approaches. Gaziantep Univ. J. Soc. Sci. 2018, 17, 239–251. [Google Scholar] [CrossRef][Green Version]
- Lin, M.C.; Wang, C.C.; Chen, M.S.; Chang, C.A. Using AHP and TOPSIS approaches in customer driven product design process. Comput. Ind. 2008, 59, 17–31. [Google Scholar] [CrossRef]
- Lourenzutti, R.; Krohling, R.A. A generalized TOPSIS method for group decision making with heterogeneous information in a dynamic environment. Inf. Sci. 2016, 330, 1–18. [Google Scholar] [CrossRef]
- Roy, B. Classement et choix en présence de points de vue múltiples. Oper. Res. 1968, 2, 57–75. [Google Scholar] [CrossRef]
- Jaini, N.; Utyuzhnikov, S. Trade-off ranking method for multi-criteria decision analysis. J. Multi Crit. Decis. Anal. 2016, 24, 121–132. [Google Scholar] [CrossRef]
- Navarro, I.; Martí, J.V.; Yepes, V. Multi-Criteria decision making techniques in engineering education for sustainability. In Proceedings of the ICERI2018 Conference, Seville, Spain, 12–14 November 2018. [Google Scholar]
- Farrell, M.J. The measurement of productive efficiency. J. R. Stat. Soc. Ser. A 1957, 3, 253–290. [Google Scholar] [CrossRef]
- Charnes, A.; Cooper, W.W.; Rhodes, E. Measuring the efficiency of decision making units. Eur. J. Oper. Res. 1978, 2, 429–444. [Google Scholar] [CrossRef]
- Banker, R.D.; Charnes, R.F.; Cooper, W.W. Some Models for estimating technical and scale inefficiencies in data envelopment analysis. Manag. Sci. 1984, 30, 1078–1092. [Google Scholar] [CrossRef]
- Angulo-Meza, L.; Lins, M.P.E. Review of methods for increasing discrimination in data envelopment analysis. Ann. Oper. Res. 2002, 116, 225–242. [Google Scholar] [CrossRef]
- Coll-Serrano, V.; Benitez, R.; Bolós, V.J. Tutorial Data Envelopment Analysis with deaR. Version 1.0.; Facultat d´Economia, Universitat de València: València, Spain, 2018. [Google Scholar]
- Falagario, M.; Sciancalepore, F.; Costantino, N.; Pietroforte, R. Using a DEA-cross efficiency approach in public procurement tenders. Eur. J. Oper. Res. 2012, 218, 523–529. [Google Scholar] [CrossRef]
- Puertas, R.; Martí, L. Sustainability in universities: DEA-Greenmetric. Sustainability 2019, 11, 3766. [Google Scholar] [CrossRef]



| AUTHORS | RESEARCH OBJECTIVES | METHODOLOGY | CONCLUSIONS |
|---|---|---|---|
| Mavi et al. (2016) [54] | Supplier selection in supply chain risk management | Shannon entropy Fuzzy TOPSIS | Demand risk is the most important factor |
| Montgomery et al. (2016) [55] | Evaluate agricultural land capability and suitability | GIS-Logic Scoring of Preference | The model is an effective tool for integrated regional land-use planning |
| Debnath et al. (2017) [56] | Recognize and select the valuation criteria for strategic project portfolio selection of agro byproducts | Grey DEMATEL-MABAC | The genetically modified agro by-products are found to be the best portfolio. |
| Seyedmohammadi et al. (2018) [57] | Evaluate areas suitable for cultivation priority planning | SAW, TOPSIS, Fuzzy TOPSIS | Fuzzy TOPSIS results were more accurate than the others |
| Rostamzadeh et al. (2018) [58] | Develop a framework for the sustainable supply chain risk management evaluation. | FTOPSIS-CRITIC | The most important criteria are sustainable production/manufacturer risks, while sustainable recycling risk is the least important one |
| Raut et al. (2018) [59] | Identify the factors of postharvest losses in the fruits and vegetables supply chain | AHP | (1) Lack of linkages between institution, industry, and government, (2) climate and weather conditions, (3) lack of linkages in the marketing channel are the three top factors. |
| Qureshi et al. (2018) [60] | Focuses on the crop selection pattern in Indian environment | Fuzzy TOPSIS | The scarce availability of resources to Indian farmers poses many challenges to farming practices which most need sustainability |
| Rao et al. (2019) [61] | Identify indicators for development of climate resilient agriculture | WSM, AHP | Identifies a list of 30 sustainability indicators for climate resilient agriculture |
| Paul et al. (2020) [62] | Evaluate the potentiality of reclaimed water use for agricultural irrigation | AHP | Spatial distribution of suitable areas for water reuse is closely linked to the agricultural areas |
| Garcia-Alvarez-Coque et al. (2020) [27] | Evaluate social, health and environmental criteria for dietary patterns | AHP | Mediterranean diet adapts well to urban multiactor priorities. |
| Balezentis et al. (2020) [63] | Assessment of crop farming sustainability | SAW, TOPSIS, EDAS | Scenarios minimizing labor use yield the most sustainable crop-mix |
| Method | Description | Advantages | Disadvantages |
|---|---|---|---|
| ELECTRE (Roy, 1973, 1991) [79,80] | Uses outranking classification method, pairwise comparison, and compensatory method |
|
|
| TOPSIS (Yoon and Hwang, 1985) [81] | Assessment based on the compensatory method; Measures the distance of the alternatives from the ideal solution |
|
|
| Cross-efficiency (Sexton et al., 1986; Doyle and Green, 1994) [82,83] | Provides a peer evaluation such that each unit is assessed with respect to the weights of the other units in the sample. |
|
|
| Rank Order | 2012 | 2014 | 2016 |
|---|---|---|---|
| 1 | Ukraine | Ukraine | Ukraine |
| 2 | Russian Fed. | Canada | Canada |
| 3 | USA | USA | USA |
| 4 | Canada | Russian Fed. | Russian Fed. |
| 5 | Switzerland | Switzerland | Switzerland |
| 6 | Serbia | Serbia | Thailand |
| 7 | Thailand | Pakistan | Brazil |
| 8 | Argentina | Turkey | Turkey |
| 9 | Brazil | Brazil | Cambodia |
| 10 | Turkey | Cambodia | Serbia |
| 11 | Australia | Argentina | Pakistan |
| 12 | Kazakhstan | Chile | Argentina |
| 13 | India | Myanmar | Mexico |
| 14 | Cambodia | Peru | Myanmar |
| 15 | Pakistan | Mexico | Peru |
| 16 | Mexico | South Africa | Australia |
| 17 | Uruguay | Australia | Viet Nam |
| 18 | Viet Nam | Bolivia | Kazakhstan |
| 19 | Singapore | New Zealand | Singapore |
| 20 | Chile | Uruguay | Uruguay |
| 21 | Egypt | Egypt | Chile |
| 22 | Norway | Indonesia | Norway |
| 23 | Israel | Egypt | |
| 24 | Indonesia | Israel | |
| 25 | Bolivia |
| Criterion | Source | Unit Measured |
|---|---|---|
| Notifications | RASFF | No. Notifications |
| Logistics Performance Index (LPI) | World Bank | Score of 1–5 |
| Quality & Safety Index (Q&S) | The Economist Intelligence Unit | Scale from 0 to 100 |
| Corruption Perceptions Index (CPI) | Transparency International. | Scale from 0 to 100 |
| Environmental Performance Index (EPI) Agriculture | Yale Centre for Env. Law and Policy | Scale from 0 to 100 |
| Statistic | 2012 | ||||
|---|---|---|---|---|---|
| Notifications | LPI | Q&S | CPI | EPI | |
| Mean | 1.33 | 3.24 | 65.93 | 50.13 | 61.19 |
| Max | 8.00 | 4.00 | 88.10 | 87.00 | 96.00 |
| Min | 0.00 | 2.68 | 26.80 | 22.00 | 14.66 |
| St. Dev. | 2.28 | 0.44 | 16.37 | 23.55 | 28.28 |
| 2014 | |||||
| Notifications | LPI | Q&S | CPI | EPI | |
| Mean | 0.36 | 3.15 | 65.56 | 48.18 | 83.57 |
| Max | 2.00 | 3.99 | 87.00 | 90.00 | 100.00 |
| Min | 0.00 | 2.25 | 28.00 | 21.00 | 41.21 |
| St. Dev. | 0.66 | 0.50 | 15.35 | 22.14 | 18.33 |
| 2016 | |||||
| Notifications | LPI | Q&S | CPI | EPI | |
| Mean | 0.44 | 3.10 | 67.38 | 48.72 | 43.14 |
| Max | 2.00 | 4.00 | 86.70 | 86.00 | 72.38 |
| Min | 0.00 | 2.30 | 34.70 | 21.00 | 4.59 |
| St. Dev. | 0.58 | 0.51 | 14.11 | 22.42 | 16.74 |
| TOPSIS | ELECTRE | CE | Mean | ||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|
| 2012 | 2014 | 2016 | 2012 | 2014 | 2016 | 2012 | 2014 | 2016 | TOPSIS | ELECTRE | CE |
| Singapore | Switzerland | USA | Singapore | Canada | Canada | Singapore | USA | USA | Canada | Canada | USA |
| Canada | Canada | Canada | Canada | USA | USA | USA | Argentina | Canada | Switzerland | USA | Canada |
| Chile | Australia | Uruguay | Switzerland | Switzerland | Switzerland | Canada | Canada | Argentina | N. Zealand | Switzerland | Switzerland |
| Australia | USA | Switzerland | Norway | Australia | Australia | Switzerland | Switzerland | Switzerland | Australia | Norway | Argentina |
| Switzerland | N. Zealand | Australia | USA | N. Zealand | Norway | Thailand | Australia | Australia | USA | N Zealand | Singapore |
| Uruguay | Uruguay | Norway | Chile | Uruguay | Uruguay | Norway | Serbia | Norway | Uruguay | Australia | S. Africa |
| Norway | Chile | Chile | Turkey | Russian F | Chile | Turkey | S. Africa | Brazil | Singapore | Singapore | Norway |
| Serbia | Brazil | Israel | Thailand | Mexico | Israel | Chile | Turkey | Singapore | Norway | Uruguay | Australia |
| Turkey | Indonesia | Ukraine | Australia | S. Africa | Ukraine | India | Uruguay | Turkey | Chile | Chile | Turkey |
| Egypt | Peru | Egypt | Uruguay | Brazil | Brazil | Argentina | Ukraine | Israel | Israel | S. Africa | N Zealand |
| Mexico | Mexico | Bolivia | Mexico | Turkey | Singapore | Uruguay | N. Zealand | Russian F | Egypt | Mexico | Thailand |
| Israel | Russian F | Singapore | Egypt | Indonesia | Mexico | Mexico | Russian F | Chile | Mexico | Turkey | Uruguay |
| Indonesia | Bolivia | Myanmar | Serbia | Cambodia | Egypt | Brazil | Mexico | Uruguay | Indonesia | Brazil | India |
| Brazil | Egypt | Mexico | Argentina | Chile | Turkey | Australia | Brazil | Serbia | Bolivia | Israel | Serbia |
| Ukraine | Myanmar | Kazakhstan | Brazil | Peru | Serbia | Israel | Bolivia | Viet Nam | Myanmar | Russian F | Brazil |
| Kazakhstan | Cambodia | Brazil | Israel | Myanmar | Argentina | Egypt | Myanmar | Thailand | Kazakhstan | Thailand | Chile |
| Cambodia | S. Africa | Serbia | Ukraine | Argentina | Bolivia | Ukraine | Peru | Mexico | Brazil | Ukraine | Ukraine |
| USA | Turkey | Turkey | Indonesia | Ukraine | Russian F | Pakistan | Indonesia | Ukraine | Ukraine | Egypt | Israel |
| Russian F | Ukraine | Russian F | India | Bolivia | Thailand | Serbia | Cambodia | Peru | Russian F | Indonesia | Mexico |
| Argentina | Pakistan | Viet Nam | Kazakhstan | Egypt | Viet Nam | Viet Nam | Chile | Egypt | Turkey | Argentina | Russian F |
| Viet Nam | Argentina | Cambodia | Viet Nam | Serbia | Myanmar | Russian F | Egypt | Bolivia | Cambodia | Serbia | Peru |
| Thailand | Serbia | Thailand | Russian F | Pakistan | Kazakhstan | Kazakhstan | Pakistan | Myanmar | Peru | Bolivia | Viet Nam |
| India | Peru | Cambodia | Peru | Indonesia | Kazakhstan | Viet Nam | Myanmar | Bolivia | |||
| Pakistan | Pakistan | Pakistan | Cambodia | Cambodia | Cambodia | S. Africa | Peru | Myanmar | |||
| Argentina | Pakistan | Pakistan | Serbia | India | Egypt | ||||||
| Thailand | Cambodia | Indonesia | |||||||||
| Argentina | Viet Nam | Pakistan | |||||||||
| Pakistan | Kazakhstan | Cambodia | |||||||||
| India | Pakistan | Kazakhstan | |||||||||
| High Income | Lower-Middle Income | Upper-Middle Income |
|---|---|---|
| Singapore | Viet Nam | Thailand |
| Australia | Indonesia | Serbia |
| New Zealand | Myanmar | Turkey |
| Switzerland | Cambodia | Russian Fed |
| Norway | Ukraine | Kazakhstan |
| Uruguay | Bolivia | Mexico |
| Chile | Egypt | Argentina |
| Israel | India | Brazil |
| USA | Pakistan | Peru |
| Canada | South Africa |
| Type of Differences | Df | SumSq | MeanSq | F-Value | p-Value | |
|---|---|---|---|---|---|---|
| inter-group | 2 | 0.172 | 0.086 | 12.453 | 0.000 | *** |
| intra-group | 26 | 0.180 | 0.007 | |||
| Total | 28 | 0.352 |
| Country Group | N | 1 | 2 | |
|---|---|---|---|---|
| Lower-middle income | 9 | 0.6661 | ||
| Upper-middle income | 10 | 0.7583 | ||
| High income | 10 | 0.8468 | ||
| Comparison (income) | Difference | Lower | Upper | |
| High income | Lower-middle income Upper-middle income | 0.1907 * 0.0885 | 0.0957 −0.0039 | 0.2856 0.1809 |
| Lower-middle income | High income Upper-middle income | −0.1907 * −0.1022 * | −0.2856 −0.1971 | −0.0957 −0.0072 |
| Upper-middle income | High income Lower-middle income | −0.0885 0.1021 * | −0.1809 0.0072 | 0.0039 0.1971 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Puertas, R.; Marti, L.; Garcia-Alvarez-Coque, J.-M. Food Supply without Risk: Multicriteria Analysis of Institutional Conditions of Exporters. Int. J. Environ. Res. Public Health 2020, 17, 3432. https://doi.org/10.3390/ijerph17103432
Puertas R, Marti L, Garcia-Alvarez-Coque J-M. Food Supply without Risk: Multicriteria Analysis of Institutional Conditions of Exporters. International Journal of Environmental Research and Public Health. 2020; 17(10):3432. https://doi.org/10.3390/ijerph17103432
Chicago/Turabian StylePuertas, Rosa, Luisa Marti, and Jose-Maria Garcia-Alvarez-Coque. 2020. "Food Supply without Risk: Multicriteria Analysis of Institutional Conditions of Exporters" International Journal of Environmental Research and Public Health 17, no. 10: 3432. https://doi.org/10.3390/ijerph17103432
APA StylePuertas, R., Marti, L., & Garcia-Alvarez-Coque, J.-M. (2020). Food Supply without Risk: Multicriteria Analysis of Institutional Conditions of Exporters. International Journal of Environmental Research and Public Health, 17(10), 3432. https://doi.org/10.3390/ijerph17103432

