Motoric Cognitive Risk Syndrome Using Three-Item Recall Test and Its Associations with Fall-Related Outcomes: The Korean Frailty and Aging Cohort Study
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Definitions of Motoric Cognitive Risk (MCR) Syndrome
2.2.1. Original MCR using Subjective Cognitive Complaints (SCCs)
2.2.2. New MCR using three-item recall (3IR)
2.3. Definitions of Fall-Related Outcomes
2.4. Measurements
2.5. Statistical Analyses
3. Results
3.1. Descriptive Characteristics of the Study Population
3.2. Associations of MCR using 3IR or MCR using SCCs with Fall-Related Outcomes
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Montero-Odasso, M.; Verghese, J.; Beauchet, O.; Hausdorff, J.M. Gait and cognition: A complementary approach to understanding brain function and the risk of falling. J. Am. Geriatr. Soc. 2012, 60, 2127–2136. [Google Scholar] [CrossRef] [PubMed]
- Cohen, J.A.; Verghese, J.; Zwerling, J.L. Cognition and gait in older people. Maturitas 2016, 93, 73–77. [Google Scholar] [CrossRef] [PubMed]
- Verghese, J.; Wang, C.; Lipton, R.B.; Holtzer, R. Motoric cognitive risk syndrome and the risk of dementia. J. Gerontol. A Biol. Sci. Med. Sci. 2013, 68, 412–418. [Google Scholar] [CrossRef] [PubMed]
- Chhetri, J.K.; Chan, P.; Vellas, B.; Cesari, M. Motoric Cognitive Risk Syndrome: Predictor of Dementia and Age-Related Negative Outcomes. Front. Med. 2017, 4, 166. [Google Scholar] [CrossRef]
- Sekhon, H.; Allali, G.; Launay, C.P.; Barden, J.; Szturm, T.; Liu-Ambrose, T.; Chester, V.L.; Wong, C.H.; Beauchet, O.; Canadian Gait, C. Motoric cognitive risk syndrome, incident cognitive impairment and morphological brain abnormalities: Systematic review and meta-analysis. Maturitas 2019, 123, 45–54. [Google Scholar] [CrossRef]
- Meiner, Z.; Ayers, E.; Verghese, J. Motoric Cognitive Risk Syndrome: A Risk Factor for Cognitive Impairment and Dementia in Different Populations. Annals Geriatr. Med. Res. 2020, 24, 3–14. [Google Scholar] [CrossRef]
- Bennett, D.A.; Schneider, J.A.; Buchman, A.S.; Barnes, L.L.; Boyle, P.A.; Wilson, R.S. Overview and findings from the rush Memory and Aging Project. Curr. Alzheimer Res. 2012, 9, 646–663. [Google Scholar] [CrossRef]
- Bennett, D.A.; Schneider, J.A.; Arvanitakis, Z.; Wilson, R.S. Overview and findings from the religious orders study. Curr. Alzheimer Res. 2012, 9, 628–645. [Google Scholar] [CrossRef]
- Verghese, J.; Annweiler, C.; Ayers, E.; Barzilai, N.; Beauchet, O.; Bennett, D.A.; Bridenbaugh, S.A.; Buchman, A.S.; Callisaya, M.L.; Camicioli, R. Motoric cognitive risk syndrome: Multicountry prevalence and dementia risk. Neurology 2014, 83, 718–726. [Google Scholar] [CrossRef]
- Caramelli, P.; Beato, R.G. Subjective memory complaints and cognitive performance in a sample of healthy elderly. Dement. Neuropsychol. 2008, 2, 42. [Google Scholar] [CrossRef][Green Version]
- Reid, L.M.; MacLullich, A.M. Subjective memory complaints and cognitive impairment in older people. Dement. Geriatr. Cognit. Dis. 2006, 22, 471–485. [Google Scholar] [CrossRef]
- Burmester, B.; Leathem, J.; Merrick, P. Subjective Cognitive Complaints and Objective Cognitive Function in Aging: A Systematic Review and Meta-Analysis of Recent Cross-Sectional Findings. Neuropsychol. Rev. 2016, 26, 376–393. [Google Scholar] [CrossRef]
- Sekhon, H.; Allali, G.; Beauchet, O. The association of anxio-depressive disorders and depression with motoric cognitive risk syndrome: Results from the baseline assessment of the Canadian longitudinal study on aging. Geroscience 2019, 41, 409–418. [Google Scholar] [CrossRef]
- Sanders, K.M.; Stuart, A.L.; Scott, D.; Kotowicz, M.A.; Nicholson, G.C. Validity of 12-Month Falls Recall in Community-Dwelling Older Women Participating in a Clinical Trial. Int. J. Endocrinol. 2015, 2015, 210527. [Google Scholar] [CrossRef]
- Park, M.H.; Min, J.Y.; Min, H.Y.; Lee, H.J.; Lee, D.H.; Song, M.S. Subjective memory complaints and clinical characteristics in elderly Koreans: A questionnaire survey. Int. J. Nurs. Stud. 2007, 44, 1400–1405. [Google Scholar] [CrossRef]
- Shim, H.; Kim, M.; Won, C.W. Motoric cognitive risk syndrome is associated with processing speed and executive function, but not delayed free recall memory: The Korean frailty and aging cohort study (KFACS). Arch. Gerontol. Geriatr. 2020, 87, 103990. [Google Scholar] [CrossRef]
- Park, J.H.; Kim, K.W.; Kim, M.H.; Kim, M.D.; Kim, B.J.; Kim, S.K.; Kim, J.L.; Moon, S.W.; Bae, J.N.; Woo, J.I.; et al. A nationwide survey on the prevalence and risk factors of late life depression in South Korea. J. Affect. Disord 2012, 138, 34–40. [Google Scholar] [CrossRef]
- Park, J.H.; Lee, J.J.; Lee, S.B.; Huh, Y.; Choi, E.A.; Youn, J.C.; Jhoo, J.H.; Kim, J.S.; Woo, J.I.; Kim, K.W. Prevalence of major depressive disorder and minor depressive disorder in an elderly Korean population: Results from the Korean Longitudinal Study on Health and Aging (KLoSHA). J. Affect. Dis. 2010, 125, 234–240. [Google Scholar] [CrossRef]
- Callisaya, M.L.; Ayers, E.; Barzilai, N.; Ferrucci, L.; Guralnik, J.M.; Lipton, R.B.; Otahal, P.; Srikanth, V.K.; Verghese, J. Motoric Cognitive Risk Syndrome and Falls Risk: A Multi-Center Study. J. Alzheimers Dis. 2016, 53, 1043–1052. [Google Scholar] [CrossRef]
- Beauchet, O.; Sekhon, H.; Schott, A.M.; Rolland, Y.; Muir-Hunter, S.; Markle-Reid, M.; Gagne, H.; Allali, G. Motoric Cognitive Risk Syndrome and Risk for Falls, Their Recurrence, and Postfall Fractures: Results From a Prospective Observational Population-Based Cohort Study. J. Am. Med. Dir. Assoc. 2019, 20, 1268–1273. [Google Scholar] [CrossRef]
- Lord, S.; Moyes, S.; Teh, R.; Port, W.; Muru-Lanning, M.; Bacon, C.J.; Wilkinson, T.; Kerse, N. Gait, cognition and falls over 5 years, and motoric cognitive risk in New Zealand octogenarians: Te Puawaitanga o Nga Tapuwae Kia Ora Tonu, LiLACS NZ. BMC Geriatr. 2020, 20, 43. [Google Scholar] [CrossRef]
- Semba, R.D.; Tian, Q.; Carlson, M.C.; Xue, Q.L.; Ferrucci, L. Motoric cognitive risk syndrome: Integration of two early harbingers of dementia in older adults. Ageing Res. Rev. 2020, 58, 101022. [Google Scholar] [CrossRef]
- Won, C.W.; Lee, S.; Kim, J.; Chon, D.; Kim, S.; Kim, C.O.; Kim, M.K.; Cho, B.; Choi, K.M.; Roh, E.; et al. Korean frailty and aging cohort study (KFACS): Cohort profile. BMJ Open 2020, 10, e035573. [Google Scholar] [CrossRef]
- Creavin, S.T.; Wisniewski, S.; Noel-Storr, A.H.; Trevelyan, C.M.; Hampton, T.; Rayment, D.; Thom, V.M.; Nash, K.J.; Elhamoui, H.; Milligan, R.; et al. Mini-Mental State Examination (MMSE) for the detection of dementia in clinically unevaluated people aged 65 and over in community and primary care populations. Cochrane Database Syst. Rev. 2016. [Google Scholar] [CrossRef]
- Yesavage, J.A. Geriatric depression scale. Psychopharmacol. Bull. 1988, 24, 709–711. [Google Scholar]
- Bae, J.N.; Cho, M.J. Development of the Korean version of the Geriatric Depression Scale and its short form among elderly psychiatric patients. J. Psychosom. Res. 2004, 57, 297–305. [Google Scholar] [CrossRef]
- Doi, T.; Verghese, J.; Shimada, H.; Makizako, H.; Tsutsumimoto, K.; Hotta, R.; Nakakubo, S.; Suzuki, T. Motoric Cognitive Risk Syndrome: Prevalence and Risk Factors in Japanese Seniors. J. Am. Med. Dir. Assoc. 2015, 16, 1103.e21–1103.e25. [Google Scholar] [CrossRef]
- Lee, J.H.; Lee, K.U.; Lee, D.Y.; Kim, K.W.; Jhoo, J.H.; Kim, J.H.; Lee, K.H.; Kim, S.Y.; Han, S.H.; Woo, J.I. Development of the Korean Version of the Consortium to Establish a Registry for Alzheimer's Disease Assessment Packet (CERAD-K): Clinical and Neuropsychological Assessment Batteries. J. Gerontol. Ser. B 2002, 57, P47–P53. [Google Scholar] [CrossRef]
- Borson, S.; Scanlan, J.; Brush, M.; Vitaliano, P.; Dokmak, A. The mini-cog: A cognitive ‘vital signs’ measure for dementia screening in multi-lingual elderly. Int. J. Geriatr. Psychiatry 2000, 15, 1021–1027. [Google Scholar] [CrossRef]
- Tinetti, M.E.; Speechley, M.; Ginter, S.F. Risk factors for falls among elderly persons living in the community. N. Eng. J. Med. 1988, 319, 1701–1707. [Google Scholar] [CrossRef]
- Close, J.; Ellis, M.; Hooper, R.; Glucksman, E.; Jackson, S.; Swift, C. Prevention of falls in the elderly trial (PROFET): A randomised controlled trial. Lancet 1999, 353, 93–97. [Google Scholar] [CrossRef]
- Uemura, K.; Shimada, H.; Makizako, H.; Doi, T.; Tsutsumimoto, K.; Lee, S.; Umegaki, H.; Kuzuya, M.; Suzuki, T. Effects of Mild Cognitive Impairment on the Development of Fear of Falling in Older Adults: A Prospective Cohort Study. J. Am. Med. Dir. Assoc. 2015, 16, 1104.e9–1104.e13. [Google Scholar] [CrossRef] [PubMed]
- Powell, L.E.; Myers, A.M. The activities-specific balance confidence (ABC) scale. J. Gerontol. Ser. A Biolog. Sci. Med. Sci. 1995, 50, M28–M34. [Google Scholar] [CrossRef] [PubMed]
- Moiz, J.A.; Bansal, V.; Noohu, M.M.; Gaur, S.N.; Hussain, M.E.; Anwer, S.; Alghadir, A. Activities-specific balance confidence scale for predicting future falls in Indian older adults. Clin. Interv. Aging 2017, 12, 645–651. [Google Scholar] [CrossRef] [PubMed]
- Son, J.; Kim, S.; Won, C.; Choi, H.; Kim, B.; Park, M. Physical frailty predicts medical expenses in community-dwelling, elderly patients: Three-year prospective findings from living profiles of older people surveys in Korea. Eur. Geriatr. Med. 2015, 6, 412–416. [Google Scholar] [CrossRef]
- Stevens, G.A.; White, R.A.; Flaxman, S.R.; Price, H.; Jonas, J.B.; Keeffe, J.; Leasher, J.; Naidoo, K.; Pesudovs, K.; Resnikoff, S.; et al. Global prevalence of vision impairment and blindness: Magnitude and temporal trends, 1990-2010. Ophthalmology 2013, 120, 2377–2384. [Google Scholar] [CrossRef]
- Yoo, M.; Kim, S.; Kim, B.S.; Yoo, J.; Lee, S.; Jang, H.C.; Cho, B.L.; Son, S.J.; Lee, J.H.; Park, Y.S.; et al. Moderate hearing loss is related with social frailty in a community-dwelling older adults: The Korean Frailty and Aging Cohort Study (KFACS). Arch. Gerontol. Geriatr. 2019, 83, 126–130. [Google Scholar] [CrossRef]
- Won, C.W. Korea Activities of Daily Living Scale and Korea Instrumental Activities of Daily Living Scale. J. Korean Geriatr. Soc. 2002, 6, 1–10. [Google Scholar]
- Rubenstein, L.Z.; Harker, J.O.; Salvà, A.; Guigoz, Y.; Vellas, B. Screening for undernutrition in geriatric practice: Developing the short-form mini-nutritional assessment (MNA-SF). J. Gerontol. Ser. A Biol. Sci. Med. Sci. 2001, 56, M366–M372. [Google Scholar] [CrossRef]
- Lee, D.Y.; Lee, K.U.; Lee, J.H.; Kim, K.W.; Jhoo, J.H.; Youn, J.C.; Kim, S.Y.; Woo, S.I.; Woo, J.I. A normative study of the mini-mental state examination in the Korean elderly. J. Korean Neuropsychiatr. Assoc. 2002, 41, 508. [Google Scholar]
- Lee, S.C.; Kim, W.H.; Chang, S.M.; Kim, B.S.; Lee, D.W.; Bae, J.N.; Cho, M.J. The use of the Korean version of Short Form Geriatric Depression Scale (SGDS-K) in the community dwelling elderly in Korea. J. Korean Geriatr. Psychiatry 2013, 17, 37. [Google Scholar]
- Jo, M.-W.; Yun, S.-C.; Lee, S.-I. Estimating quality weights for EQ-5D health states with the time trade-off method in South Korea. Value Health 2008, 11, 1186–1189. [Google Scholar] [CrossRef] [PubMed]
- Shumway-Cook, A.; Brauer, S.; Woollacott, M. Predicting the probability for falls in community-dwelling older adults using the Timed Up & Go Test. Phys. Ther. 2000, 80, 896–903. [Google Scholar] [PubMed]
- Guralnik, J.M.; Simonsick, E.M.; Ferrucci, L.; Glynn, R.J.; Berkman, L.F.; Blazer, D.G.; Scherr, P.A.; Wallace, R.B. A short physical performance battery assessing lower extremity function: Association with self-reported disability and prediction of mortality and nursing home admission. J. Gerontol. 1994, 49, M85–M94. [Google Scholar] [CrossRef]
- Jang, Y.; Small, B.J.; Haley, W.E. Cross-cultural comparability of the Geriatric Depression Scale: Comparison between older Koreans and older Americans. Aging Ment. Health 2001, 5, 31–37. [Google Scholar] [CrossRef]
- Lee, J.J.; Kim, K.W.; Kim, T.H.; Park, J.H.; Lee, S.B.; Park, J.W.; McQuoid, D.R.; Steffens, D.C. Cross-cultural considerations in administering the center for epidemiologic studies depression scale. Gerontology 2011, 57, 455–461. [Google Scholar] [CrossRef]
- Chin, J.; Oh, K.J.; Seo, S.W.; Na, D.L. Are depressive symptomatology and self-focused attention associated with subjective memory impairment in older adults? Int. Psychogeriatr. 2014, 26, 573–580. [Google Scholar] [CrossRef]
- Schweizer, S.; Kievit, R.A.; Emery, T.; Cam, C.A.N.; Henson, R.N. Symptoms of depression in a large healthy population cohort are related to subjective memory complaints and memory performance in negative contexts. Psychol. Med. 2018, 48, 104–114. [Google Scholar] [CrossRef]
- Slavin, M.J.; Brodaty, H.; Kochan, N.A.; Crawford, J.D.; Trollor, J.N.; Draper, B.; Sachdev, P.S. Prevalence and predictors of “subjective cognitive complaints” in the Sydney Memory and Ageing Study. Am. J. Geriatr. Psychiatry 2010, 18, 701–710. [Google Scholar] [CrossRef]
- Loewenstein, D.A.; Barker, W.W.; Harwood, D.G.; Luis, C.; Acevedo, A.; Rodriguez, I.; Duara, R. Utility of a modified mini-mental state examination with extended delayed recall in screening for mild cognitive impairment and dementia among community dwelling elders. Int. J. Geriatr. Psychiatry 2000, 15, 434–440. [Google Scholar] [CrossRef]
- Fage, B.A.; Chan, C.C.; Gill, S.S.; Noel-Storr, A.H.; Herrmann, N.; Smailagic, N.; Nikolaou, V.; Seitz, D.P. Mini-Cog for the diagnosis of Alzheimer’s disease dementia and other dementias within a community setting. Cochrane Database Syst. Rev. 2015. [Google Scholar] [CrossRef] [PubMed]
- Montejo Carrasco, P.; Montenegro-Pena, M.; Lopez-Higes, R.; Estrada, E.; Prada Crespo, D.; Montejo Rubio, C.; Garcia Azorin, D. Subjective Memory Complaints in healthy older adults: Fewer complaints associated with depression and perceived health, more complaints also associated with lower memory performance. Arch. Gerontol. Geriatr. 2017, 70, 28–37. [Google Scholar] [CrossRef] [PubMed]
- Payette, M.C.; Belanger, C.; Leveille, V.; Grenier, S. Fall-Related Psychological Concerns and Anxiety among Community-Dwelling Older Adults: Systematic Review and Meta-Analysis. PLoS ONE 2016, 11, e0152848. [Google Scholar] [CrossRef] [PubMed]
Characteristics | Overall | Normal (without Impaired 3IR and Slow Gait) | Impaired 3IR only | Slow Gait only | MCR Using 3IR | p Value |
---|---|---|---|---|---|---|
(n = 2133) | (n = 854) | (n = 1081) | (n = 93) | (n = 105) | ||
Sociodemographic factors | ||||||
Age (years) | 75.6 ± 3.8 | 75.4 ± 3.9 | 75.7 ± 3.8 | 75.2 ± 3.8 | 75.8 ± 4.0 | 0.350 |
Female sex | 1032 (48.4) | 468 (54.8) * | 476 (44.0) * | 48 (51.6) | 40 (38.1) | <0.001 |
Education (years) | 9.7 ± 4.7 | 9.6 ± 4.7 b | 10.1 ± 4.5 d | 7.7 ± 5.3 b,d | 9.0 ± 4.6 | <0.001 |
Residence | ||||||
Urban | 652 (30.6) | 287 (33.6) | 311 (28.8) | 25 (26.9) | 29 (27.6) | 0.008 |
Suburban | 976 (45.8) | 374 (43.8) | 523 (48.4) | 34 (36.6) | 45 (42.9) | |
Rural | 505 (23.7) | 193 (22.6) | 247 (22.8) * | 34 (36.6) | 31 (29.5) | |
Living alone | 423 (19.8) | 178 (20.8) | 193 (17.9) | 26 (28.0) | 26 (24.8) | 0.034 |
Marital status (without partner) | 614 (28.8) | 259 (30.3) | 283 (26.2) | 37 (39.8) | 35 (33.3) | 0.011 |
Basic livelihood security and/or medical care aid recipient | 149 (7.0) | 61 (7.1) | 61 (5.6) | 16 (17.2) * | 11 (10.5) | <0.001 |
Lifestyle-related factors | ||||||
Current smoker | 121 (5.7) | 43 (5.0) | 65 (6.0) | 5 (5.4) | 8 (7.6) | 0.650 |
Alcohol consumption(≥2 to 3 times/week) | 405 (19.0) | 150 (17.6) | 222 (20.5) | 13 (14.0) | 20 (19.0) | 0.228 |
Low physical activity | 169 (7.9) | 54 (6.3) * | 75 (6.9) | 20 (21.5) * | 20 (19.0) * | <0.001 |
General health and medical conditions | ||||||
BMI (kg/m2) | 24.5 ± 3.0 | 24.6 ± 3.0 | 24.4 ± 2.9 d | 25.1 ± 3.0 d | 24.8 ± 3.6 | 0.061 |
<18.5 | 34 (1.6) | 10 (1.2) | 21 (1.9) | 0 (0.0) | 3 (2.9) * | 0.257 |
18.5–24.9 | 1213 (56.9) | 479 (56.1) | 630 (58.3) | 48 (51.6) | 56 (53.3) | |
≥25 | 886 (41.5) | 395 (42.7) | 430 (39.8) | 45 (48.4) | 46 (43.8) | |
Number of drugs taken daily | 3.4 ± 2.9 | 3.3 ± 2.8 b,c | 3.3 ± 2.9 d,e | 4.7 ± 3.8 b,d | 4.2 ± 3.0 c,e | <0.001 |
Number of diseases | 1.7 ± 1.2 | 1.7 ± 1.2 c | 1.6 ± 1.2 e | 1.9 ± 1.2 | 2.0 ± 1.3 c,e | 0.004 |
Hypertension | 1211 (56.8) | 476 (55.7) | 611 (56.5) | 55 (59.1) | 69 (65.7) | 0.258 |
Diabetes | 458 (21.5) | 160 (18.7) | 236 (21.8) | 23 (24.7) | 39 (37.1) * | <0.001 |
Dyslipidemia | 718 (33.7) | 304 (35.6) | 353 (32.7) | 27 (29.0) | 34 (32.4) | 0.408 |
Urinary incontinence | 65 (3.0) | 29 (3.4) | 29 (2.7) | 5 (5.4) | 2 (1.9) | 0.390 |
Visual impairment | 39 (1.8) | 14 (1.6) | 18 (1.7) | 4 (4.3) | 3 (2.9) | 0.230 |
Hearing impairment | 325 (15.2) | 126 (14.8) | 166 (15.4) | 15 (16.1) | 18 (17.1) | 0.915 |
Poor nutritional status (MNA screening score ≤ 11) | 144 (6.8) | 56 (6.6) | 69 (6.4) | 11 (11.8) | 8 (7.6) | 0.239 |
IADL disability | 246 (11.5) | 109 (12.8) | 107 (9.9) * | 19 (20.4) * | 11 (10.5) * | 0.010 |
Psychological factors | ||||||
General cognitive function (MMSE score) | 27.0 ± 1.7 | 27.8 ± 1.7 a,c | 26.4 ± 1.4 a,d | 27.6 ± 2.0 d,f | 26.0 ± 1.4 c,f | <0.001 |
Fair/poor self-perceived health | 533 (25.0) | 201 (23.5) | 244 (22.6) | 45 (48.4) * | 43 (41.0) * | <0.001 |
Depressive symptoms (GDS score ≥ 6) | 383 (18.0) | 141 (16.5) | 179 (16.6) | 31 (33.3) * | 32 (30.5) * | <0.001 |
Quality of life (EQ-5D score) | 0.899 ± 0.117 | 0.903 ± 0.113 b,c | 0.909 ± 0.111 d,e | 0.824 ± 0.155 b,d | 0.830 ± 0.132 c,e | 0.007 |
Physical functions | ||||||
Handgrip strength (kg) | 27.4 ± 7.5 | 27.0 ± 7.4 a | 27.9 ± 7.6 a | 25.9 ± 7.6 | 26.7 ± 6.9 | <0.001 |
Usual walking speed (m/s) | 1.14 ± 0.24 | 1.19 ± 0.21 b,c | 1.17 ± 0.22 d,e | 0.78 ± 0.13 b,d | 0.78 ± 0.13 c,e | <0.001 |
Timed get up and go test (s) † | 10.0 ± 2.2 | 9.6 ± 2.0 b,c | 9.7 ± 1.8 d,e | 12.5 ± 3.4 b,d | 12.5 ± 3.1 c,e | <0.001 |
SPPB score † | 11.1 ± 1.3 | 11.2 ± 1.1 b,c | 11.2 ± 1.1 d,e | 10.1 ± 2.0 b,d | 9.9 ± 1.9 c,e | <0.001 |
MCR syndrome Using three-item recall test | ||||||
Impaired three-item recall | 1186 (55.6) | 0 (0) | 1081 (100) | 0 (0) | 105 (100) | <0.001 |
Slow gait | 198 (9.3) | 0 (0) | 0 (0) | 93 (100) | 105 (100) | <0.001 |
Dependent Variables | Odds Ratio (95% Confidence Interval) (p-Value) | ||||||
---|---|---|---|---|---|---|---|
Normal (without Impaired 3IR and Slow Gait) | Impaired 3IR only | p | Slow Gait only | p | MCR Using 3IR | p | |
Experience of falls in the past 1 year | |||||||
Model 1 | Ref. | 0.971 (0.754, 1.251) | 0.820 | 1.406 (0.823, 2.402) | 0.212 | 2.157 (1.282, 2.255) | 0.002 |
Model 2 | 0.969 (0.753, 1.248) | 0.809 | 1.349 (0.784, 2.320) | 0.279 | 2.098 (1.288, 3.416) | 0.003 | |
Model 3 | 0.972 (0.753, 1.254) | 0.827 | 1.257 (0.725, 2.179) | 0.414 | 2.080 (1.271, 3.404) | 0.004 | |
Model 4 | 0.959 (0.742, 1.239) | 0.748 | 1.166 (0.667, 2.038) | 0.590 | 1.915 (1.160, 3.160) | 0.011 | |
Recurrent falls (≥ twice) | |||||||
Model 1 | Ref. | 0.789 (0.523, 1.189) | 0.257 | 1.881 (0.921, 3.840) | 0.083 | 2.745 (1.446, 5.213) | 0.002 |
Model 2 | 0.785 (0.521, 1.184) | 0.248 | 1.686 (0.811, 3.505) | 0.162 | 2.503 (1.302, 4.811) | 0.006 | |
Model 3 | 0.809 (0.535, 1.223) | 0.315 | 1.563 (0.745, 3.280) | 0.237 | 2.581 (1.329, 5.012) | 0.005 | |
Model 4 | 0.778 (0.513, 1.180) | 0.237 | 1.361 (0.642, 2.889) | 0.422 | 2.194 (1.115, 4.318) | 0.023 | |
Falls with injury | |||||||
Model 1 | Ref. | 0.980 (0.766, 1.252) | 0.869 | 1.647 (0.992, 2.735) | 0.054 | 2.207 (1.380, 3.530) | 0.001 |
Model 2 | 0.977 (0.764, 1.250) | 0.856 | 1.585 (0.949, 2.648) | 0.079 | 2.151 (1.340, 3.454) | 0.002 | |
Model 3 | 0.980 (0.765, 1.255) | 0.871 | 1.493 (0.888, 2.511) | 0.131 | 2.141 (1.328, 3.452) | 0.002 | |
Model 4 | 0.967 (0.754, 1.240) | 0.790 | 1.392 (0.821, 2.360) | 0.219 | 1.982 (1.220, 3.220) | 0.006 | |
Falls with fracture | |||||||
Model 1 | Ref. | 0.660 (0.373, 1.165) | 0.660 | 2.442 (0.996, 5.987) | 0.051 | 3.133 (1.404, 6.988) | 0.005 |
Model 2 | 0.659 (0.373, 1.164) | 0.151 | 1.967 (0.780, 4.961) | 0.152 | 2.764 (1.224, 6.237) | 0.014 | |
Model 3 | 0.662 (0.372, 1.180) | 0.162 | 1.727 (0.671, 4.444) | 0.257 | 2.722 (1.185, 6.251) | 0.018 | |
Model 4 | 0.648 (0.363, 1.157) | 0.143 | 1.593 (0.608, 4.171) | 0.343 | 2.508 (1.086, 5.791) | 0.031 | |
Fear of falling | |||||||
Model 1 | Ref. | 0.969 (0.769, 1.221) | 0.789 | 3.090 (1.901, 5.023) | <0.001 | 3.851 (2.409, 6.157) | <0.001 |
Model 2 | 0.967 (0.767, 1.218) | 0.776 | 2.885 (1.764, 4.720) | <0.001 | 3.664 (2.283, 5.878) | <0.001 | |
Model 3 | 0.981 (0.776, 1.241) | 0.875 | 2.604 (1.575, 4.305) | <0.001 | 3.407 (2.111, 5.497) | <0.001 | |
Model 4 | 0.954 (0.751, 1.212) | 0.700 | 2.218 (1.314, 3.746) | 0.003 | 3.000 (1.830, 4.917) | <0.001 | |
Low activities-specific balance confidence | |||||||
Model 1 | Ref. | 1.037 (0.713, 1.508) | 0.849 | 5.403 (2.960, 9.863) | <0.001 | 5.269 (2.881, 9.639) | <0.001 |
Model 2 | 1.010 (0.692, 1.474) | 0.957 | 4.358 (2.335, 8.135) | <0.001 | 4.609 (2.477, 8.576) | <0.001 | |
Model 3 | 1.087 (0.733, 1.613) | 0.678 | 4.094 (2.087, 8.032) | <0.001 | 4.320 (2.268, 8.230) | <0.001 | |
Model 4 | 0.978 (0.648, 1.478) | 0.917 | 2.994 (1.467, 6.108) | 0.003 | 3.134 (1.571, 6.253) | 0.001 |
Dependent Variables | Odds Ratio (95% Confidence Interval) (p-Value) | ||||||
---|---|---|---|---|---|---|---|
Normal (without SCCs and Slow Gait) | SCCs only | p | Slow Gait only | p | MCR Using SCCs | p | |
Experience of falls in the past 1 year | |||||||
Model 1 | Ref. | 0.705 (0.519, 0.959) | 0.026 | 2.047 (1.133, 3.699) | 0.018 | 1.080 (0.647, 1.801) | 0.769 |
Model 2 | 0.711 (0.523, 0.967) | 0.029 | 1.989 (1.095, 3.612) | 0.024 | 1.061 (0.634, 1.774) | 0.823 | |
Model 3 | 0.770 (0.562, 1.055) | 0.103 | 1.955 (1.066, 3.586) | 0.030 | 1.123 (0.667, 1.888) | 0.663 | |
Model 4 | 0.902 (0.650, 1.253) | 0.540 | 1.865 (1.008, 3.452) | 0.047 | 1.254 (0.740, 2.126) | 0.400 | |
Recurrent falls (≥ twice) | |||||||
Model 1 | Ref. | 0.531 (0.336, 0.840) | 0.007 | 2.631 (1.255, 5.517) | 0.010 | 1.165 (0.574, 2.367) | 0.672 |
Model 2 | 0.550 (0.346, 0.872) | 0.011 | 2.430 (1.145, 5.156) | 0.021 | 1.106 (0.539, 2.271) | 0.784 | |
Model 3 | 0.609 (0.378, 0.979) | 0.041 | 2.411(1.113, 5.220) | 0.026 | 1.214 (0.586, 2.513) | 0.601 | |
Model 4 | 0.790 (0.479, 1.304) | 0.356 | 2.269 (1.038, 4.958) | 0.040 | 1.410 (0.672, 2.960) | 0.364 | |
Falls with injury | |||||||
Model 1 | Ref. | 0.709 (0.526, 0.955) | 0.024 | 2.021 (1.127, 3.622) | 0.018 | 1.258 (0.776, 2.040) | 0.352 |
Model 2 | 0.716 (0.531, 0.965) | 0.028 | 1.961 (1.089, 3.533) | 0.025 | 1.241 (0.763, 2.047) | 0.384 | |
Model 3 | 0.766 (0.565, 1.040) | 0.088 | 1.950 (1.073, 3.541) | 0.028 | 1.299 (0.794, 2.123) | 0.297 | |
Model 4 | 0.897 (0.652, 1.235) | 0.505 | 1.864 (1.018, 3.416) | 0.044 | 1.454 (0.882, 2.396) | 0.142 | |
Falls with fracture | |||||||
Model 1 | Ref. | 0.969 (0.473, 1.983) | 0.931 | 7.533 (2.893, 19.614) | <0.001 | 1.682 (0.580, 4.874) | 0.338 |
Model 2 | 0.998 (0.485, 2.051) | 0.995 | 6.678 (2.528, 17.638) | <0.001 | 1.449 (0.493, 4.254) | 0.500 | |
Model 3 | 1.193 (0.561, 2.534) | 0.647 | 8.001 (2.898, 22.094) | <0.001 | 1.479 (0.491, 4.458) | 0.487 | |
Model 4 | 1.491 (0.679, 3.273) | 0.319 | 7.738 (2.766, 21.651) | <0.001 | 1.763 (0.575, 5.410) | 0.321 | |
Fear of falling | |||||||
Model 1 | Ref. | 0.566 (0.428, 0.747) | <0.001 | 4.245 (2.223, 8.103) | <0.001 | 1.712 (1.088, 2.696) | 0.020 |
Model 2 | 0.569 (0.431, 0.752) | <0.001 | 4.047 (2.107, 7.773) | <0.001 | 1.632 (1.033, 2.580) | 0.036 | |
Model 3 | 0.644 (0.484, 0.857) | 0.003 | 3.756 (1.945, 7.252) | <0.001 | 1.701 (1.068, 2.709) | 0.025 | |
Model 4 | 0.874 (0.644, 1.185) | 0.385 | 3.719(1.861, 7.432) | <0.001 | 2.040 (1.260, 3.301) | 0.004 | |
Low activities-specific balance confidence | |||||||
Model 1 | Ref. | 0.414 (0.276, 0.621) | <0.001 | 3.951 (2.019, 7.733) | <0.001 | 2.198 (1.211, 3.990) | 0.010 |
Model 2 | 0.434 (0.288, 0.654) | <0.001 | 3.449 (1.727, 6.890) | <0.001 | 1.952 (1.056, 3.610) | 0.033 | |
Model 3 | 0.561 (0.362, 0.870) | 0.010 | 3.520 (1.683, 7.362) | 0.001 | 2.215 (1.153, 4.254) | 0.017 | |
Model 4 | 0.829 (0.517, 1.331) | 0.437 | 2.722 (1.235, 6.001) | 0.013 | 2.748 (1.374, 5.495) | 0.004 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shim, H.; Kim, M.; Won, C.W. Motoric Cognitive Risk Syndrome Using Three-Item Recall Test and Its Associations with Fall-Related Outcomes: The Korean Frailty and Aging Cohort Study. Int. J. Environ. Res. Public Health 2020, 17, 3364. https://doi.org/10.3390/ijerph17103364
Shim H, Kim M, Won CW. Motoric Cognitive Risk Syndrome Using Three-Item Recall Test and Its Associations with Fall-Related Outcomes: The Korean Frailty and Aging Cohort Study. International Journal of Environmental Research and Public Health. 2020; 17(10):3364. https://doi.org/10.3390/ijerph17103364
Chicago/Turabian StyleShim, Hayoung, Miji Kim, and Chang Won Won. 2020. "Motoric Cognitive Risk Syndrome Using Three-Item Recall Test and Its Associations with Fall-Related Outcomes: The Korean Frailty and Aging Cohort Study" International Journal of Environmental Research and Public Health 17, no. 10: 3364. https://doi.org/10.3390/ijerph17103364
APA StyleShim, H., Kim, M., & Won, C. W. (2020). Motoric Cognitive Risk Syndrome Using Three-Item Recall Test and Its Associations with Fall-Related Outcomes: The Korean Frailty and Aging Cohort Study. International Journal of Environmental Research and Public Health, 17(10), 3364. https://doi.org/10.3390/ijerph17103364