How Safe is Chicken Litter for Land Application as an Organic Fertilizer?: A Review
Abstract
:1. Introduction
2. Methodology
3. Findings
3.1. Pathogenic Microorganisms in Chicken Litter, Source, Mode of Spread, and Prevalence
3.1.1. Bacteria and Antibiotic-Resistant Genes
Pathogen | Disease | Symptom | Reference |
---|---|---|---|
E. coli | Colibacilosis | Diarrhea, blood in stool 10 days after infection, abdominal gas in human | [16,39] |
Mastitis metris in dairy cattle | Sudden onset of swelling and redness of the udder, pain, and reduced and altered milk (with clots, flakes, or watery) | [39] | |
Salmonella | Salmonellosis in human and cattle | Diarrhea, nausea, chills, fever, headache, abdominal pain | [14] |
Campylobacter | Neurological disorder in very young, elderly or immuno-compromised human patients | - | [40,41] |
Guillain-Barre syndrome in human | Muscular paralysis | [42] | |
Staphylococcus | Food borne illnesses | [31] | |
Mastitis in dairy producing cattle and goats | [43] | ||
Bumble foot in chicken | Lameness and loss of performance | [43] | |
Clostridium botulinum | Intoxication in chicken and dairy cattle | - | [11] |
Clostridinum perfrigens | Food poisoning and wound infection in human | Diarrhea, nausea, chills, fever, headache, abdominal pain | [35] |
Hemorrhagic enteristis in newly born calf | acute onset of depression, weakness, bloody diarrhea, and death within a few hours | [35] | |
Enterotoxemia in sheep | Sudden death | [35] | |
Listeria monoctgogenes | Listerosis: General central nervous system infection of human | Still birth in early pregnancy Neonatal infection | [35,44] |
Febrile gastroenteritis | Diarrhea, | [44] | |
Perinatal infection | Fever, headache, chills, leucocyte breakdown | [36] |
Bacteria | Location/Year of Study | Sample Type and Size | Outcome | Reference |
---|---|---|---|---|
Coliforms | US | Broiler litter samples from 43 houses of 30 farms | All the 30 (100%) broiler chicken farms had isolates resistant to both NAL and SAR | [14] |
E. coli | US 2004–2007 | 30 composts of chicken litter and carcasses; 42 composts of pine shavings chicken litter; 18 composts of pine fine chicken litter; 24 composts of chicken litter, carcasses, and fresh wood chips | 63% of E. coli isolates from chicken litter composts in California indicated higher resistance to AMP 50% of the Isolates in composts from South Carolina indicated higher resistance to TET | [14] |
US | 9 broiler litter samples | All (100%) isolates were multi-resistant to at least 7 antibiotics especially to AMO, TIO, TET, and SUL | [14] | |
Enterococus | US 2006 | Broiler samples from 3 farms | 68% isolates were resistant to CLI; 18% to ERY | [14] |
Staphylococci | US 2006 | Broiler litter from 3 farms | 57% of the isolates were resistant to ERY | [14] |
Bacteria | Sri Lanka | Soils from 3 cultivated, 3 uncultivated land where chicken litter has been applied; Broiler litter from 4 farms; Layer litter from 4 farms; 5 heaps chicken manure at agricultural fields. | The soils, poultry litter and manure contain bacteria resistant to TET and/or ENR In the soil resistance of bacteria was highest to TET and ENR ranging from 3.58–4.99 log10 CFU/g and 0.96–2.55 log10 CFU/g soil, respectively | [53] |
3.1.2. Fungi, Helminthes, Parasitic Protozoa, and Viruses
Pathogen | Disease | Symptom | Reference |
---|---|---|---|
Fungi: Histoplasma capsulatum Aspergillus spp. Penicillum spp. Fusarium spp. | Histplasmosis Food poisoning Food poisoning Keratinophilic | Fever, chills, muscle ache, cough, stiffness, joint pain Darkening/rotting of nails in human | [39] [65] [56] |
Infective Parasites: Heliminth ova (Ascaris spp. & Tenia spp.) Protozoa (Cryptosporidium & Giardia spp.) | Nutrient malabsorption Cryptosporidiosis: Digestive tract infection in vertebrates (human, cattle, chicken, wild birds, horse, fish. Giardiasis | Reduced weight and meat in broiler. Poor egg laying and death in layers. Diarrhea, dehydration, weakness, cramping Diarrhea, abdominal pain, abdominal gas, nausea, vomiting, fever. | [39] [59] [63] [39] |
Viruses: HPAI H5NI strain | Avian Influenza (AI) in birds and human | Breathing difficulty and death | [56] |
3.1.3. Maximum Permissible Limits of Pathogenic Micro-Organisms in Chicken Litter
3.2. Antibiotics and Pesticides
- (a)
- Fluoroquinolones, which include ciprofloxacin, danofloxacin, difloxacin, enrofloxacin, fleroxacin, lomefloxacin, and norfloxacin.
- (b)
- Sulfonamides that entail sulfachloropyradazine, sulfadiazine, sulfadimidine, sulfaguanidine, sulfamerazine, sulfomethoxazole, sulfamonomethoxine, and sulfanilamide.
- (c)
- Tetracyclines, which encompass chlortetracycline, doxycycline, methacycline, oxytetracycline, fluoroquinolones, sulfonamides, and tetracyclines.
3.3. Heavy Metals
Feed Type and Location | Concentration in mg/kg | Reference | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
As | Cd | Cr | Cu | Ni | Pb | Se | Zn | Hg | ||
Layer feeds/US | <1.0 | 0.39 | 0.76 | 23 | 2.6 | - | - | 153 | - | [1] |
Broiler feeds/US | 1.27 | 1.66 | 1.66 | 1.81 | 887 | 4.4 | 10.5 | 6980 | - | [1] |
Poultry complete feed/Asia, North & Latin America Between 2009–2016 | 404 | 782.8 | - | - | - | 722.4 | - | - | - | [88] |
Premix/Asia, North & Latin America Between 2009–2016 | 3190 | 10,914 | - | - | - | 6467 | - | - | [88] | |
Chicken from herds of <2000 birds/China | 0.08–1.91 | nd | nd–39.80 | 2.88–10.28 | - | - | - | 52.62–111.12 | - | [89] |
2000–20,000 birds/China | 0.04–3.36 | nd–1.70 | nd–936.45 | 2.88–51.73 | - | - | - | 63.12–127 | - | [89] |
>20,000 birds/China | 32 | |||||||||
Permissible levels (non-essential elements) in poultry feedstuff according to EU regulations | <2.0 | 0.5 | - | - | <5.0 | - | - | - | [90] | |
Permissible levels (non-essential elements) in complete diet for all animal spp. according to EU regulations | 2.0 | 0.1 | - | - | - | 2.0 | - | - | 0.1 | |
Permissible levels in poultry feed according to NRC | 30 | 10 | 500 | 250 | 250 | 10 | 500 | 0.1 | [91,92] |
Element | Level in Chicken Manure (mg/kg) | Permissible Levels (mg/kg) in Biosolids for Land Application | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Standard Agency | |||||||||||
South Africa [93] | China/Flock Size (no. of Birds) [94] | US EPA [95] | NRM MC [96] | NSW EP [96] | VIC EPA [96] | CFIA [96] | UNBS [97] | ||||
<2000 | 2000–20,000 | >20,000 | Compost | Cat. AFC | Cat. BFC | Organic fertilizers | |||||
As | - | 0.75–4.59 | 0.68–6.59 | 0.55–10.42 | - | 60 | 20 | 20 | 13 | 75 | 10 |
Cd | - | nd-0.60 | nd-6.10 | nd-37.99 | - | 20 | 3 | 1.9 | 3 | 20 | 5 |
Cr | nd | 0.75–4.59 | nd-2402.95 | nd-150.1 | ≤1200 | 500–3000 | 100 | 150 | 210 | - | 50 |
Cu | 39.3–134.4 | 19.78–94.73 | 1.53–101.93 | 21.83–487.43 | ≤1500 | 2500 | 100 | 75 | 400 | - | 300 |
Ni | nd-25.7 | - | - | - | ≤420 | 270 | 60 | 21 | 62 | 180 | - |
Pb | nd -107.1 | nd-4.00 | nd–6.10 | 0.68–22.10 | ≤300 | 420 | 180 | 15 | 150 | 500 | 100 |
Zn | 330–845 | 203.37–394.00 | 15.37–367.92 | 152.17–1063.32 | ≤2800 | 2500 | 200 | 140 | 700 | 1850 | - |
Hg | - | - | - | - | - | - | 1 | 0.85 | 0.8 | 5 | 2 |
Se | - | - | - | - | - | - | 5 | 5 | 2 | 14 | - |
Co | - | - | - | - | - | - | - | - | 34 | 75 | - |
Element | Chicken Litter Compost Type | Regulatory Authority | ||||
---|---|---|---|---|---|---|
US EPA | CFIA | |||||
Layer litter [98] kg/ha | Broiler litter [98] kg/ha | Poultry Manure [86] kg/ha/y | General Annual pollutant loading rates [86] kg/ha/y | Cumulative pollutant loading rates [86] kg/ha | Cumulative addition to soil from category B finished compost [87] kg/ha | |
As | <0.01 | <0.01 | 0.054 | 2 | 41 | 15 |
Cd | 0.007 | 0.003 | 0.008 | 1.9 | 39 | 4 |
Cr | 0.03 | 0.01 | 0.016 | 150 | 3000 | - |
Cu | 0.5 | 0.2 | 0.086 | 75 | 1500 | - |
Ni | 0.05 | 0.02 | 0.004 | 21 | 18 | 36 |
Pb | 0.05 | 0.02 | 0.004 | 15 | 420 | 100 |
Zn | 2.9 | 1.1 | 1.167 | 140 | 2800 | 370 |
Hg | - | - | - | 0.85 | 300 | 1 |
Se | - | - | 0.002 | 5 | 100 | 2.5 |
Co | - | - | - | - | - | - |
Element | Regulatory Authority | ||||
---|---|---|---|---|---|
mg/kg | Indian Standard Awashth and European Union 2002 | FAO/WHO [Codex General Stand for Contaminants and Toxins in Foods 1996 | WHO 2000 | WHO 2004 | WHO and Encyclopedia Environmental Science |
As | - | - | - | 0.5 | - |
Cd | - | - | - | - | - |
Cr | - | - | 65 | - | - |
Cu | - | 6 60 | - | - | - |
Ni | 75–150 | - | - | - | - |
Pb | - | 10–70 | |||
Zn | - | - | - | - | 50–100 |
Hg | - | - | - | - | - |
Se | - | - | - | - | - |
Co | - | - | 10 | - | - |
Fe | - | - | 150 | ||
Mn | - | - | 437 | - | - |
Element | Countries | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
A | A * Class 2 ** | B Agr | B Park | CH | DK | F | D | I | NL | NL | SP | C A, AA | |
As | - | - | - | - | - | 25 | - | - | 10 | 25 | 15 | - | 13 |
Cd | 4.0 | 1 | 5 | 5 | 3 | 1.2 | 8 | 1.5 | 1.5 | 2 | 1 | 40 | 3 |
Cr | 150 | 70 | 150 | 200 | 150 | - | - | 100 | 100 | 200 | 70 | 750 | 210 |
Co | - | - | 10 | 20 | 25 | - | - | - | - | - | - | - | 34 |
Cu | 400 | 100 | 100 | 500 | 150 | - | - | 100 | 300 | 300 | 90 | 1750 | 100 |
Pb | 500 | 150 | 600 | 1000 | 150 | 120 | 800 | 150 | 140 | 200 | 120 | 1200 | 150 |
Hg | 4 | 1 | 5 | 5 | 3 | 1.2 | 8 | 1 | 1.5 | 2 | 0.7 | 2.5 | 0.8 |
Ni | 100 | 60 | 50 | 100 | 50 | 45 | 200 | 50 | 50 | 50 | 20 | 400 | 62 |
Se | - | - | - | - | - | - | - | - | - | - | - | - | 2 |
Zn | 1000 | 400 | 1000 | 1500 | 500 | - | - | 400 | 500 | 9000 | 280 | 4000 | 500 |
3.4. Growth Hormones
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Bolan, N.S.; Stogy, A.A.; Chuasavathi1, T.; Seshadri1, B.; Rothrock, M.J.; Panneerselvam, P. Uses and management of poultry litter. World’s Poult. Sci. J. 2010, 66, 673–698. [Google Scholar] [CrossRef] [Green Version]
- Aires, A.M. Biodigestão Anaeróbica da Cama de Frangos de Corte com ou sem Separação das Frações Sólida e Líquida. Master’s Thesis, Faculdade de Ciências Agrárias e Veterinárias- UNESP, Jaboticabal, Brazil, 2009. [Google Scholar]
- Sanchuki, C.E.; Soccol, C.R.; de Carvalho, J.C.; Soccol, V.T.; de Nascimento, C.; Waciechowski, A.L. Evaluation of poultry litter traditional composting process. Braz. Arch. Boil. Technol. 2011, 54, 1053–1058. [Google Scholar] [CrossRef]
- Oliveira, M.O.; Somariva, R.; Junior, O.H.; Neto, J.M.; Bretas, A.S.; Perrowe, O.E.; Reversat, J.H. Biomass electricity generation using industry poultry waste. In Proceedings of the 2012 International Conference on Renewable Energies and Power Quality (ICREPQ’12), Santiago de Compostela, Spain, 28–30 March 2012; Volume 10, pp. 1–5. [Google Scholar]
- Griffiths, N. Best practice guidelines for using poultry litter on pastures. In Agnote DPI-212; State of New South Wales (NSW) Department of Primary Industries: Sydney, Australia, 2007; pp. 1–33. [Google Scholar]
- Enticknap, J.J.; Nonogaki, H.; Place, A.R.; Hill, R.T. Microbial diversity associated with odor modification for production of fertilizers from chicken litter. Appl. Environ. Microbiol. 2006, 72, 4105–4114. [Google Scholar] [CrossRef] [PubMed]
- Hochmuth, G.; Hochmuth, R.; Mylavarapu, R. Using Composted Poultry Manure (Litter) in Mulched Vegetable Production, revised ed.; University of Florida (UF) IFAS Extension SL 293: Gainesville, FL, USA, 2016; pp. 1–8. [Google Scholar]
- Li, X.; Payne, J.B.; Santos, F.B.; Levine, J.B.; Anderson, K.E.; Shaleon, B.W. Salmonella populations and prevalence in layer feces from commercial high rise houses and characterization of the Salmonella isolates by serotyping, antibiotic resistance analyses, and pulsed field gel. Poult. Sci. 2007, 86, 591–597. [Google Scholar] [CrossRef] [PubMed]
- Jenkins, M.; Brooks, J.; USDA ARS; Bowman, D.; Liotta, S. Pathogens and Potential Risks Related to Livestock and Poultry: Animal Manure Management; Extension Issues. Innovation. Impact; United States Department of Agriculture, National Institute of Food and Agriculture (USDA NIFA), New Technologies for Ag Extension project; Cornell University: Ithaca, NY, USA, 2015. [Google Scholar]
- Canadian Council of Ministers of the Environment (CCME). Guide to the Canada-wide Accord on Environmental Harmonition. 1998. Available online: https://www.ccme.ca/en/resources/harmonization/index.html (accessed on 20 September 2019).
- The State of Queenslands Department of Agriculture, Fisheries and Forestry. Managing Human Health Risks of Chicken Litter Application; Queensland Government: East QLD, Australia, 2009; Available online: https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&ved=2ahUKEwjK6oy1s97kAhVUeXAKHVgKCGwQFjAAegQIARAC&url=http%3A%2F%2Fdairyinfo.biz%2Fwp-content%2Fuploads%2F2014%2F11%2FManaging_human_health_risks_of_chicken_litter_application.pdf&usg=AOvVaw2agOKh5AzGh-HgsPVkxbi8 (accessed on 20 September 2019).
- Lu, J.; Sanchez, S.; Hofacre, C.; Maurer, J.J.; Harmon, B.G.; Lee, M.D. Evaluation of broiler litter with reference to the microbial composition as assessed by using 16S rRNA and functional gene markers. Appl. Environ. Micrbiol. 2003, 69, 901–990. [Google Scholar] [CrossRef] [PubMed]
- Viegas, C.; Carolino, E.; Malta-Vacas, J.; Sabino, R.; Viegas, S.; Verissimmo, C. Fungal contamination of poultry litter: A public health problem. J. Toxicol. Environ. Health Part A 2012, 75, 1341–1350. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Jiang, X. Microbiological safety of chicken litter or chicken litter-based organic fertilizers: A review. Agriculture 2014, 4, 1–29. [Google Scholar] [CrossRef]
- Graffins, N. Best Practice Guidelines for Using Poultry Litter on Pastures, Primefact 534 2nd ed.; Industry Development, Agriculture & Forestry 161 Kile Street, Orange; State of New South Wales Government Industry and Investments: New South Wales, Australia, 2011; pp. 1–7. Available online: www.dpi.nsw.gov.au/publications (accessed on 29 August 2019).
- Terzich, M.; Pope, M.J.; Cherry, T.E.; Hollinger, J. Survey of pathogens in poultry litter in the United States. J. Appl. Poult. Res. 2000, 9, 287–291. [Google Scholar] [CrossRef]
- Runge, G.A.; Blackall, P.J.; Casey, R.D. Chicken Litter: Issues Associated with Sourcing and Use; RIRDC Publication No.07/035; Australian Government Rural Industries Research and Development Corporation: Barton, Australia, 2007.
- EPA. Literature Review of Contaminants in Livestock and Poultry Manure and Implications for Water Quality; EPA 820-R-13-002; EPA: Washington, DC, USA, 2013.
- Gerber, P.; Opio, C.; Steinfeld, H. Poultry Production and the Environment–A Review. In Poultry in the 21st Century; Animal Production and Health Division, Food and Agriculture Organization of the United Nations: Rome, Italy, 2007. [Google Scholar]
- Wageningen Centre for Development and Innovation. The European Poultry Industry Guide (EPIG) to Good Hygiene Practice for the Prevention and Control of Pathogenic Microorganisms with Reference to Salmonella in Gallus Gallus (broiler) Reared for Meat on Farms and During Catching, Loading and Transportation; a.v.e.c. and COPE-COGECA; Wageningen Centre for Development and Innovation: Wageningen, The Netherlands, 2010. [Google Scholar]
- Saad, M.M. More nutrients and more hazards when using poultry litter in plant and/or animal nutrition. Nutri. Food Sci. Int. J. 2017, 4, 556–635. [Google Scholar]
- Hoog, G.S.; Guarro, J.; Gene’, J.; Figueras, M.J. Atlas of Clinical Fungi; Centraalbureau voor Schimmelcultures: Utrecht, The Netherlands, 2000. [Google Scholar]
- Alexander, D.C.; Carrière, J.A.; McKay, K.A. Bacteriological studies of poultry litter fed to livestock. Can. Vet. J. 1968, 9, 127–131. [Google Scholar]
- Martin, S.A.; McCann, M.A.; Waltman, W.D. Microbiological survey of Georgia poultry litter. J. Appl. Poult. Res. 1998, 7, 90–98. [Google Scholar] [CrossRef]
- Wilkinson, K.G.; Tee, I.E.; Tomkins, R.B.; Hepworth, G.; Premier, R. Effect of heating and aging of poultry litter on the persistence of enteric bacteria. Poult. Sci. 2011, 90, 10–18. [Google Scholar] [CrossRef] [PubMed]
- Chinivasagam, H.N.; Redding, M.; Runger, G.; Blackall, P.J. Presence and incidence of food- borne pathogens in Australian chicken litter. Br. Poult. Sci. 2010, 51, 311–318. [Google Scholar] [CrossRef] [PubMed]
- Shepherd, M.W.; Liang, P.; Jiang, X.; Doyle, M.P.; Erickson, M.C. Microbiological analysis of composts produced on South Carolina poultry farms. J. Appl. Microbiol. 2010, 108, 2067–2076. [Google Scholar] [CrossRef] [PubMed]
- Jeffrey, J.S.; Kirk, J.H.; Atwill, E.R.; Cullor, J.S. Research notes: Prevalence of selected microbial pathogens in processed poultry waste used as dairy cattle feed. Poult. Sci. 1998, 77, 808–811. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stern, N.J.; Robach, M.C. Enumeration of Campylobacter spp. in broiler feces and in corresponding processes carcasses. J. Food Protect. 2003, 66, 1557–1563. [Google Scholar] [CrossRef] [PubMed]
- Montrose, M.S.; Shane, S.M.; Harrington, K.S. Role of litter in the transmission of Campylobacter jejuni. Avian Dis. 1984, 29, 392–399. [Google Scholar] [CrossRef]
- Scallan, E.; Hoekstra, R.M.; Angulo, F.J.; Tauxe, R.V.; Widdowson, M.; Roy, S.L.; Jones, J.L.; Griffin, P.M. Foodborne illness acquired in the United States- major pathogens. Emerg. Infect. Dis. 2011, 17, 7–15. [Google Scholar] [CrossRef]
- Martin, S. Clostridium botulism type D intoxication in a dairy herd in Ontario. Student paper. Can. Vet. J. 2003, 44, 493–495. [Google Scholar]
- Jean, D.; Fecteau, G.; Scott, D.; Higgins, R.; Quessy, S. Clostridium botulinum type C intoxication in feedlot steers being fed ensiled poultry litter. Can. Vet. J. 1995, 36, 626–628. [Google Scholar]
- Radostits, O.M.; Gay, C.C.; Blood, D.C.; Hinchcliff, K.W. Veterinary Medicine, 9th ed.; WB Saunders: London, UK, 2000; pp. 757–760. [Google Scholar]
- Wioland, L.; Duport, J.L.; Bossu, J.L.; Popojj, B.P. Attack of the nervous system by Clostriduim perfrigens Epsiton toxin. From disease to mode of action on neural cells. Toxicon 2013, 75, 122–135. [Google Scholar] [CrossRef] [PubMed]
- Drevets, D.A.; Bronze, M.S. Listeriamonocytogenes: Epidemiology, human disease, and mechanisms of brain invasion: Minireview. FEMS Immunol. Med. Microbiol. 2008, 53, 151–165. [Google Scholar] [CrossRef] [PubMed]
- Walkden-Brown, S.W.; Islam, A.E.M.F.; Laurenson, Y.C.S.M.; Dunlop, M.; Wells, B.A. Poultry Litter Pasteurization; Zootecnica International: Florence, Italy, 2017. [Google Scholar]
- Burkholder, J.; Libra, B.; Weyer, P.; Heathcote, S.; Kolpin, D.; Thorne, P.S.; Wichman, M. Impact of waste from concentrated animal feeding operations on water quality. Environ. Health Perspect. 2007, 115, 308–312. [Google Scholar] [CrossRef] [PubMed]
- Ngongeh, W.A.; Chiejina, S.N.; Lawol, A.I. Prevalence of gastrointestinal helminth infections on slaughtered chickens reared in the Nsukka area of Enugu State, Nigeria. IOSR J. Agric. Vet. Sci. 2014, 7, 51–54. [Google Scholar]
- Ibrahim, U.I.; EL-Yuguda, A.D.; Tambara, P.S. Traits of feed base New Castle disease Lasota vaccine in chickens using feeds as vaccine vehicles. Niger. J. Exp. Appl. Biol. 2000, 1, 20. [Google Scholar]
- Fayer, R.; Xiao, L.; Fayer, N. (Eds.) Cryptosporidium and Cryptosporidiosis, 2nd ed.; CRC Press: Boca Ratan, FL, USA, 2007. [Google Scholar]
- Gômez-Couso, H.; Amar, C.F.L.; McLauchilin, J.; Ares-Mazas, E. Characterization of a Crptosporidium isolate from water buffalo (Bubalus bubalis) by sequencing of fragment of Cryptosporidium oocys wall protein gene (COWP). Vet. Parasitol. 2005, 131, 139–144. [Google Scholar] [CrossRef]
- MacMahon, K.M.; Delancy, L.T.; Kullmah, G.; Gibbins, J.D.; Decker, J.; Klefer, M.J. Protecting poultry workers from exposure to avian influenza viruses. Public Health Rep. 2008, 123, 317–321. [Google Scholar] [CrossRef]
- Zur Hausen, H. Proliferation-inducing viruses in non-permissive systems as possible causes of human cancers. Lancet 2001, 357, 381–384. [Google Scholar] [CrossRef]
- Agyare, C.; Boaman, V.E.; Zumbi, C.N.; Osci, F.B. Chapter 3: Antibiotic Use in Poultry Production and its EFFECTs on Bacterial Resistance-A Global Threat, Yashwant Kumar; IntechOpen: Rijeka, Croatia, 2018. [Google Scholar] [CrossRef]
- Omeira, N.; Barbour, E.K.; Nehme, P.A.; Hamadeh, S.K.; Zurayk, R.; Bashour, I. Microbiological and chemical properties of litter from different chicken types and production systems. Sci. Total Environ. 2006, 367, 156–162. [Google Scholar] [CrossRef]
- McNamee, P.T.; Smyth, J.A. Bacterial chondronecrosis with osteolmyelitis (‘femoral head necrosis’) of broiler chickens: A review. Avian Pathol. 2000, 29, 253–270. [Google Scholar] [CrossRef]
- Smith, T.J. Origin of botulinum toxin types–Toxin serotypes. In 3D Rendering of Botulinum Toxin Protein; List of biological labs. Inc.: Campbell, CA, USA, 2018. [Google Scholar]
- Danilova, N.V.; Yu Galitskaya, P.; Yu Selivanoskaya, S. Antibiotic resistance of microorganisms in agricultural soils in Russia. In IOP Conference Series: Earth and Environmental Science; IOP Publishing: Washington, DC, USA, 2018; Volume 107, p. 012054. [Google Scholar] [CrossRef]
- Blake, D.P.; Hillman, K.; Felnlon, D.R.; Low, J.C. Transfer of antibiotic resistance between commensal and pathogenic members of the Enterobacteriaceae under ideal conditions. J. Appl. Microbiol. 2003, 95, 428–436. [Google Scholar] [CrossRef] [PubMed]
- Levy, S.B. The Antibiotic Paradox: How Miracle Drugs are Destroying the Miracles; Plenum Publishing: New York, NY, USA, 1992. [Google Scholar]
- Levy, S.B.; Marshall, B. Antibacterial resistance worldwide: Causes, challenges and responses. Rev. Nat. Med. 2004, 10, 122–129. [Google Scholar] [CrossRef] [PubMed]
- Vazquez-Boland, J.A.; Kuhn, M.; Berche, P.; Chakraborty, T.; Domínguez-Bernal, G.; Goebel, W.; Kreft, J. Listeria pathogenesis and molecular virulence determinants. Clin. Microbiol. Rev. 2001, 14, 584–640. [Google Scholar] [CrossRef] [PubMed]
- Anbu, P.; Hilda, A.; Copinath, S. Keratinophilic fungi of poultry farm and feather dumping soil in Tamil Nadu, India. Mycopathologia 2004, 158, 303–309. [Google Scholar] [CrossRef] [PubMed]
- Kyaw, M.H.; Christie, P.; Jones, I.G.; Campbell, H. The changing epidemiology of bacterial meningitis and invasive non-meningitic bacterial disease in Scotland during the period 1983–1999. Scand. J. Infect. Dis. 2002, 34, 289–298. [Google Scholar] [CrossRef]
- Tsapko, V.; Chudnovets, A.; Sterenbogen, M.; Papach, V.; Dutkiewicz, J.; Skórska, C.; Krysi’nska-Traczyk, E.; Golec, M. Exposure to bioaerosols in the selected agricultural facilities of the Ukraine and Poland: A review. Ann. Agric. Environ. Med. 2011, 18, 19–27. [Google Scholar] [PubMed]
- Mylonakis, E.; Paliou, M.; Hohmann, E.L.; Calderwood, S.B.; Wing, E.J. Listeriosis during pregnancy: A case series and review of 222 cases. Medicine 2002, 81, 260–269. [Google Scholar] [CrossRef]
- Weatherspoon, D.; Dalgado, A. Histoplasmosis. Healthline Media 2016. Available online: www.healthline.com (accessed on 7 June 2019).
- Guan, J.; Watsty, A.; Grenier, C.; Chen, M. Influence of temperature on survival and conjugative transfer of multiple antibiotic- resistant plasmids in chicken manure and compost microcosms. Poult. Sci. 2007, 86, 610–613. [Google Scholar] [CrossRef]
- Chee-Sanford, J.C.; Mackie, R.I.; Koike, S.; Krapac, I.G.; Lin, Y.; Yannarell, A.C.; Maxwell, S.; Aminov, R.I. Fate and Transport of Antibiotic Residues and Antibiotic Resistance Genes. J. Environ. Qual. 2009, 38, 1086–1108. [Google Scholar] [CrossRef]
- Heurer, H.; Schmitt, H.; Smalia, K. Antibiotic resistance gene spread due to manure application. Curr. Opin. Microbiol. 2011, 14, 236–243. [Google Scholar] [CrossRef]
- Millner, P.D. Bioaerosols associated with animal production systems. Bioresour. Technol. 2009, 100, 5379–5385. [Google Scholar] [CrossRef] [PubMed]
- Food Safety News, 2019. Available online: http://www.foodsafetynews.com (accessed on 8 June 2019).
- Daniels, T. Worming Chickens and Other Poultry, 2018. Poultrykeeper.com. Available online: https://poultrykeeper.com/general- chickens/worming-chickens (accessed on 7 January 2019).
- Efird, J.T.; Davies, S.W.; O’Neal, W.T.; Anderson, E.J. Animal viruses, bacteria, and cancer: A brief commentary review article. Front. Public Health 2014, 2, 14. [Google Scholar] [CrossRef] [PubMed]
- Kumar, K.; Gupta, S.C.; Chander, Y.; Singh, A.K. Antibiotic use in agriculture and its impact on geoglic environment. Adv. Agron. 2005, 87, 1–54. [Google Scholar]
- Kumar, K.; Thomson, A.; Singh, A.K.; Chander, Y.; Gupta, S.C. Enzyme-linked immunosorbent assay for ultratrace determination of antibiotics in aqueous samples. J. Environ. Qual. 2004, 33, 250–256. [Google Scholar] [CrossRef] [PubMed]
- Van Epps, A.; Blaney, L. Antibiotic residues in animal waste: Occurrence and degradation in conventional agricultural waste management practices. Curr. Pollut. Rep. 2016, 2, 135–155. [Google Scholar] [CrossRef]
- Hobson-Frohock, A.; Johnson, H.A. Coccidiostat residues in poultry excreta. J. Sci. Food Agric. 2006, 34, 37–44. [Google Scholar] [CrossRef]
- Thiele-Bruhn, S. Pharmaceutical antibiotic compounds in soils: A review. J. Plan. Nutr. Soil Sci. 2003, 166, 45–167. [Google Scholar] [CrossRef]
- National Academy of Agricultural Sciences Policy Paper. Antibiotics in Manure and Soil–A Grave Threat to Human4; and Animal Health; Policy Paper 43; National Academy of Agriculture Science: New Delhi, India, 2010. [Google Scholar]
- Healthgrades Editorial Stafff. Septicemia. Healthgrades Operating Company, Inc. Patent U.S. Nos. 7,752,060 and 8,719,052, 2019. Available online: https://www.healthgrades.com/conditions/septicemia (accessed on 16 April 2019).
- Ajit, K.S.; Meyer, M.T.; Boxall, A.B.A. A global perspective on the use, sales, exposure path ways, occurrence, fate and effects of veterinary antibiotics (Vas) in the environment. Chemosphere 2006, 65, 725–759. [Google Scholar]
- Ewall, M. Air Pollution and Toxic Hazards Associated with Poultry Litter Incineration; Justice Network: Philadelphia, PA, USA, 2007. [Google Scholar]
- Andrejaš, F.; Avdić, G.; Selimbašić, V.; Stuhli, V. Energetic valorization of poultry waste: The sideview. Agric. Conspec. Sci. 2009, 74, 127–131. [Google Scholar]
- Yuan, Y.; Marshall, G.; Ferreccio, C.; Steinmaus, C.; Selvin, S.; Liaw, J.; Bates, M.N.; Smith, A.H. Acute Myocardial infarction mortality in comparison with lung and bladder cancer mortality in Arsenic-exposed Region II of Chile from 1950 to 2000. Am. J. Epidemiol. 2000, 166, 1381–1391. [Google Scholar] [CrossRef]
- Gerber, P.; Chilonda, P.; Franceschini, G.; Manzi, H. Geographical determinants and environmental implications of livestock production intensification in Asia. Bioresour. Technol. 2005, 96, 263–276. [Google Scholar] [CrossRef] [PubMed]
- Liu, D. Occurrence, fate and ecotoxicity of antibiotics in agro-ecosystems–A review. Agron. Sustain. Dev. 2012, 32, 309–327. [Google Scholar]
- U.S. EPA. Clean Water Act; Section 503, 58, No. 32; U.S. Environmental Protection Agency: Washington, DC, USA, 1993.
- U.S. EPA. Clean Water Act; Section 503, 48 No. 32; U.S. Environmental Protection Agency: Washington, DC, USA, 1993.
- Tucker, J.F. Survival of salmonellae in built-up litter for housing of rearing and laying fowls. Br. Vet. J. 1967, 123, 92–103. [Google Scholar] [CrossRef]
- Momplaisir, G.M.; Rosal, C.G.; Heithmer, E.M. Arsenic Speciation Methods for Studying the Environmental Fate of Organoarsenic Animal-Feed Additives; NERI (TIM No. 01-11); U.S. EPA: Las Vegas, NV, USA, 2001.
- Bush, D.J.; Poore, M.H.; Rogers, G.M.; Altier, C. Effect of stacking method on Salmonella elimination from recycled poultry bedding. Bioresour. Technol. 2007, 98, 571–578. [Google Scholar] [CrossRef] [PubMed]
- You, Y.; Rankin, S.C.; Aceto, H.W.; Benson, C.E.; Toth, J.D.; Dou, Z. Survival of Salmonella enterica serovar Newport in manure and manure-amended soils. Appl. Environ. Microbiol. 2006, 72, 5777–5783. [Google Scholar] [CrossRef] [PubMed]
- Shepherd, M.W.; Liang, P.; Jiang, X.; Aoyla, M.P.; Erickson, M.C. Fate of Escherichia coli 0157:H7 during on-farm dairy manure-based composting. J. Food Protect. 2007, 70, 2708–2716. [Google Scholar] [CrossRef] [PubMed]
- Health and Safety Executive. HSE. Statement of Evidence: Respiratory Hazards of Poultry Dust; Health and Safety Executive: Suffolk, UK, 2008.
- Nevels, M.; Tauber, B.; Spruss, T.; Wolf, H.; Dobnar, T. Hit- and –run transformation by adenovirus oncogenes. J. Virol. 2001, 75, 3089–3094. [Google Scholar] [CrossRef]
- Smith, E.; Naidu, R.; Alston, A.M. Arsenic in the soil environment: A review. Adv. Agron. 1998, 64, 149–195. [Google Scholar]
- Gulz, P.A. Arsenic Uptake of Common Crop Plants from Contaminated Soils and Interaction with Phosphate. Ph.D. Thesis, Swiss Federal Institute of Technology Zurich, Zurich, Switzerland, 2003. [Google Scholar]
- National Research Council, NRC. Nutrient Requirements of Poultry, 9th ed.; National Academic Press: Washington, DC, USA, 1994. [Google Scholar]
- Dhama, K.; Chakraborty, S.; Verma, A.K.; Tiwari, R.; Barathidasan, R.; Kumar, A.; Singh, S.D. Fungal/mycotic diseases of poultry- diagnosis, treatment and control: A review. Pak. J. Biol. Sci. 2013, 16, 1626–1640. [Google Scholar] [CrossRef]
- Jay, D.; Olson, K.C. Feeding Poultry Litter to Beef Cattle, Agricultural University of Missouri Guide; University of Missouri Extension, University of Missouri: Columba, MO, USA, 2005; pp. 1–3. [Google Scholar]
- Ravindran, B.; Mupambwa, H.A.; Mnkeni, N.S. Assessment of nutrient quality, heavy metals and phytotoxic properties of chicken manure on selected commercial vegetable crops. Heliyon 2017, 3, e00493. [Google Scholar] [CrossRef]
- Zhang, F.; Li, Y.; Yang, M.; Li, W. Content of heavy metals in animal feeds and manures from farms of different scales in northeast China. Int. J. Environ. Res. Public Health 2012, 9, 2658–2668. [Google Scholar] [CrossRef] [PubMed]
- Food Safety Authority of Ireland. Mercury, Lead, Cadmium, Tin and Arsenic in Food. 2009. Available online: https://www.google.com.hk/url?sa=t&rct=j&q=&esrc=s&source=web&cd=4&ved=2ahUKEwj0g6T0sd7kAhUJZt4KHcA0BfMQFjADegQIAhAC&url=https%3A%2F%2Fwww.fsai.ie%2FWorkArea%2FDownloadAsset.aspx%3Fid%3D8412&usg=AOvVaw3FBsEpJfCgD9wznz2Uu-nH (accessed on 29 August 2019).
- Jaishankar, M.; Tseten, T.; Anbalagan, N.; Mathew, B.B.; Beeregowga, K.N. Toxicity, mechanism and health effects of some heavy metals. Interdiscip. Toxicol. 2014, 7, 6–72. [Google Scholar] [CrossRef] [PubMed]
- Esquivel-Hernandez, Y.; Ahumada-Cota, R.E.; Attene-Ramos, M.; Alvarado, C.Z.; Castañeda- Serrano, P.; Nava, G.M. Making things clear: Science-based reasons that chickens are not fed growth hormones. Trends Food Sci. Technol. 2016, 51, 106–110. [Google Scholar] [CrossRef]
- Tyler, C.R.; Jobbing, C.; Sumpter, J.B. Endocrine disruption in wildlife: A critical review of evidence. CRC Crit. Rev. Toxicol. 1999, 28, 319–361. [Google Scholar] [CrossRef] [PubMed]
- Bellows, B. Arsenic in Poultry Litter: Organic Regulations; 1-800-346-9140. National Sustainable Agriculture Coalition 110 Maryland Avenue NE, Phone: (202) 547-5754; A Publication of ATTRA; The National Sustainable Agriculture Information Service: Washington, DC, USA, 2005; Available online: [email protected] (accessed on 29 August 2019).
- Fisher, D.J.; Staver, K.W.; Yonkos, L.T.; Ottinger, M.A.; Pollack, S. Poultry Litter-Associated Contaminants: Environmental Fate and Effects on Fish; Report to Maryland Centre for Agro- Ecology Inc: Queenstown, New Zealand, 2005. [Google Scholar]
- Tacon, A.G.J.; Metian, M. Fishing for feed or fishing for food: increasing global competition for small pelagic forage fish. Ambio 2009, 38, 294–302. [Google Scholar]
- Burton, C.; Turner, C. Manure Management: Treatment Strategies for Sustainable Agriculture, 2nd ed.; Silsoe Research Institute: Bedford, UK, 2003. [Google Scholar]
- Banrie. Chickens do Not Receive Growth Hormones: So Why All the Confusion? The Poulytry Site. Available online: https://the poultrysite.com/articles/chickens-do-not-receive-growth-hormones-sowhy-all-the-confusion (accessed on 29 August 2019).
Bacteria | Location and Year of Study | Sample Type | Sample Size | Prevalence | Reference |
---|---|---|---|---|---|
E. coli | Nigeria | Layer litter | - | Positive | [23] |
Georgia | - | 28 samples | 7% | [24] | |
Australia | Broiler litter (feces + rice hulls) | - | Positive | [25] | |
Salmonella | Canada 1980–1981 | Broiler litter Broiler feces | 36 samples from 15 houses 2 samples from each of the 15 houses | 0%–100% 19%–89% | [26] [27] |
Australia | Re-used broiler litter | - | 83% | [26] | |
Non-reused (Fresh) broiler | - | 68% | [26] | ||
Broiler litter (feces + rice hulls) | - | Positive | [25] | ||
US | Layer feces of 18 weeks old birds | - | 55% | [8] | |
US | Layer feces of 28 weeks old birds | - | 41% | [8] | |
US | Layer feces of 66–74 weeks old Birds | - | 5.5% | [8] | |
Campylobacter | US 2001 | Broiler fecal | 450 samples from 9 flocks | 80%–100% | [28,29] |
Staphylococcus | Nigeria | Litter | - | + | [27] |
Clostridium | Canada | Layer litter | - | + | [26] |
Nigeria | Layer litter | 44 samples | 18% | [23] | |
Listeria | Australia | Broiler litter | 60 samples from 28 farms | - | [24] |
Actinobacillus | Canada | Broiler litter | 44 | 2% | [23] |
US 1995 | Broiler Fecal | 948 | 80%–100% | [23] | |
Australia | Broiler litter | 60 shades (3 sets of 20 combined) | 36% | [23] | |
Australia | Broiler Litter | 60 samples from 28 farms | 100% | [30] | |
Mycobacterium | Nigeria | Layer litter | - | + | [28] |
Pathogen | Load in Chicken Litter | Standards for Composts, Soil Conditioners and Mulches for Unrestricted Use [17] | |||
---|---|---|---|---|---|
Authorities | |||||
ARMCANZ | NSW EPA | VIC EPA | UNBS | ||
E. coli | 105–1010 Average109 CFU/g [16] | - | <100 MPN per g dry weight | <100 MPN per g of solids | Absent (should not be detected) |
Thermo-tolerant Coliform | <100 MPN per g of final product | - | - | - | |
Feacal coliforms | - | - | <1000 MPN per g dry weight | - | - |
Total coliform | 106–108 CFU/g [16] | - | - | - | 5 × 102 CFU/g |
Salmonella | Not detected at times [12] | <1 per 50 g of final product | Not detected in 50 g of final product | <1 MPN in 50 g | Absent |
Campylobacter | - | - | - | - | - |
Staphylococcus | 1011 CFU/g [16,66] | - | - | - | - |
Clostridium | - | - | - | - | - |
Listeria | - | - | - | - | - |
Enterococci | - | - | - | - | Absent |
Infective Parasites: Heliminth ova (Ascaris spp. & Tania spp.) Protozoa (Cryptosporidium & Giardia spp.) | - - | - - | <1 per 4 g total dry solids - | 100% inactivation of eggs - | Absent Absent |
Fungi | - | - | - | - | - |
Enteric virus | - | <1 PFU per 4 g total dry solids | <1per 100 g sample | - |
Drug | Name | Detected Levels in Layer Litter (mg kg−1) | |
---|---|---|---|
Chemical | Common | ||
Antibiotics | Amprolium | Amprol | 0.0–77.0 |
Chlortetracycline | Aureomycin | 0.8–26.3 | |
Chlortetracycline | Aureomycin | 0.1–2.8 | |
Neomycin sulphate | Neomycin | - | |
Nicarbazin | - | 35.1–152.1 | |
Oxytetracycline | Terramycin | 5.5–29.1 | |
Penicillin | Propen | 0–25 | |
Amprolium | Amprol | - | |
Zoalene | - | - | |
Larvicide | 2-Chloro-1-(2,4,5-trichlorophenyl) vinyl dimethyl phosphate | Rabon | 196–580 |
Feed Additive | Other Name | Chemical Name | Chemical Formula |
---|---|---|---|
Chlortetracycline | Aureomycin, Lederle | Chlortetracycline; Aureomycin; Clortetraciclina; Chlorotetracycline; Chlortetracyclinum; 7-Chlorotetracycline | C22H23ClN2O8 |
Amprolium | Amprol; Amprolium; 121-25-5; Amprolio; | (1-[(4-amino-2-propylpiridin-5-yl)methyl]-2-methyl-pyridimium chloride hydrochloride) | C14H19CIN4 |
Clopidol | Coyden | 3;5-Dichloro-2;6-dimethyl-4-pyridinol | C7H7Cl2NO |
Diclazuril | Diclazo | Benzeneacetonitrile, 2,6-dichloro-alpha-(4-chlorophenyl)-4-(4,5-di hydro-3,5-dioxo-1,2,4-triazin-2(3H)-yl) | C17H9Cl3N4O2 |
Halofuginone hydrobromide | Deccox | HBr,DL-trans-7-bromo-6-chloro-3-(3-(3-hydroxy-2-piperidy) acetonyl)quinazolin-4(3H)-one hydrobromide | C16H17BrClN3O3 |
Robenidine hydrochloride | - | HCl,1,3-bis[(p-chlorobenzylidene)amino] guanidine hydrochloride | C15H13Cl2N5 |
Meticlorpindol | Clopidol | 3,5-dichloro-2,6-dimethylpyridine-4-ol | C7H7Cl2NO |
Enrofloxacin (1 of 2 poultry fluoroquinolones) | 93106-60-6; Baytril; Enrofloxacine; CFPQ; Enrofloxacino | 1-Cyclopropy1-6-fluoro-1,4-dihydro-4-oxo-7-[(4-ethyl)-1- piperaziny1]-3-quinolinecarboxylic acid,hydrochloride | C19H22FN3O3-HCl |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kyakuwaire, M.; Olupot, G.; Amoding, A.; Nkedi-Kizza, P.; Ateenyi Basamba, T. How Safe is Chicken Litter for Land Application as an Organic Fertilizer?: A Review. Int. J. Environ. Res. Public Health 2019, 16, 3521. https://doi.org/10.3390/ijerph16193521
Kyakuwaire M, Olupot G, Amoding A, Nkedi-Kizza P, Ateenyi Basamba T. How Safe is Chicken Litter for Land Application as an Organic Fertilizer?: A Review. International Journal of Environmental Research and Public Health. 2019; 16(19):3521. https://doi.org/10.3390/ijerph16193521
Chicago/Turabian StyleKyakuwaire, Margaret, Giregon Olupot, Alice Amoding, Peter Nkedi-Kizza, and Twaha Ateenyi Basamba. 2019. "How Safe is Chicken Litter for Land Application as an Organic Fertilizer?: A Review" International Journal of Environmental Research and Public Health 16, no. 19: 3521. https://doi.org/10.3390/ijerph16193521