Does CABG with Saphenous Vein Grafting and Standard Cardiac Rehabilitation Affect Lower Limb Function? A Clinical Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study of Temperature Distribution in Lower Limbs
2.2. Dynamics of Venous Blood Flow in Lower Extremities
2.3. Study of Muscle Torque of the Lower Extremities in Isokinetic Conditions
2.4. Statistical Analyses
3. Results
3.1. Lower Limb Temperature Distribution
3.2. Lower Limb Hemodynamics
3.3. Lower Limb Muscle Function
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Sethares, K.A.; Chin, E.; Costa, I. Pain intensity, interference and patient pain management strategies the first 12 weeks after coronary artery bypass graft surgery. Appl. Nurs. Res. 2013, 26, 174–179. [Google Scholar] [CrossRef] [PubMed]
- Rajaei, S.; Dabbagh, A. Risk factors for postoperative respiratory mortality and morbidity in patients undergoing coronary artery bypass grafting. Anesthesiol. Pain Med. 2012, 2, 60–65. [Google Scholar] [CrossRef] [PubMed]
- Roca, J.; Valero, R.; Gomar, C. Pain locations in the postoperative period after cardiac surgery: Chronology of pain and response to treatment. Rev. Española Anestesiol. Reanim. 2017, 64, 391–400. [Google Scholar] [CrossRef] [PubMed]
- Gibbons, R.J.; Balady, G.J.; Bricker, J.T.; Chaitman, B.R.; Fletcher, G.F.; Froelicher, V.F.; Mark, D.B.; McCallister, B.D.; Mooss, A.N.; O’Reilly, M.G.; et al. ACC/AHA 2002 Guideline Update for Exercise Testing: Summary Article. J. Am. Coll. Cardiol. 2002, 40, 1531–1540. [Google Scholar] [CrossRef]
- Casillas, J.M.; Gremeaux, V.; Damak, S.; Feki, A.; Pérennou, D. Exercise training for patients with cardiovascular disease. Ann. Readapt. Med. Phys. 2007, 50, 403–418. [Google Scholar] [CrossRef] [PubMed]
- Lindsay, G.M.; Hanlon, W.P.; Smith, L.N.; Belcher, P.R. Experience of cardiac rehabilitation after coronary artery surgery: Effects on health and risk factors. Int. J. Cardiol. 2003, 87, 67–73. [Google Scholar] [CrossRef]
- Mosayebi, A.; Javanmard, S.H.; Mirmohamadsadeghi, M.; Rajabi, R.; Mostafavi, S.; Mansourian, M. The effects of cardiac tertiary prevention program after coronary artery bypass graft surgery on health and quality of life. Int. J. Prev. Med. 2011, 2, 269–274. [Google Scholar]
- Loponen, P.; Luther, M.; Wistbacka, J.O.; Korpilahti, K.; Laurikka, J.; Sintonen, H.; Huhtala, H.; Tarkka, M.R. Quality of life during 18 months after coronary artery bypass grafting. Eur. J. Cardiothorac. Surg. 2007, 32, 77–82. [Google Scholar] [CrossRef]
- Strong, P.C.; Lee, S.H.; Chou, Y.C.; Wu, M.J.; Hung, S.Y.; Chou, C.L. Relationship between quality of life and aerobic capacity of patients entering phase II cardiac rehabilitation after coronary artery bypass graft surgery. J. Chin. Med. Assoc. 2012, 75, 121–126. [Google Scholar] [CrossRef]
- Ghashghaei, F.; Sadeghi, M.; Marandi, S.M.; Ghashghaei, S.E. Exercise-based cardiac rehabilitation improves hemodynamic responses after coronary artery bypass graft surgery. ARYA Atheroscler. J. 2012, 7, 151–156. [Google Scholar]
- Pack, Q.R.; Goel, K.; Lahr, B.D.; Greason, K.L.; Squires, R.W.; Lopez-Jimenez, F.; Zhang, Z.; Thomas, R.J. Participation in cardiac rehabilitation and survival after coronary artery bypass graft surgery: A community-based study. Circulation 2013, 128, 590–597. [Google Scholar] [CrossRef] [PubMed]
- Safikhani, H.; Baghli, F.; Behoor, N.; Kamalden, T.-F. Effect of cardiac rehabilitation (resistance training) in CABG’s Patients. Aust. J. Basic Appl. Sci. 2011, 5, 534–540. [Google Scholar]
- Sumide, T.; Shimada, K.; Ohmura, H.; Onishi, T.; Kawakami, K.; Masaki, Y.; Fukao, K.; Nishitani, M.; Kume, A.; Sato, H.; et al. Relationship between exercise tolerance and muscle strength following cardiac rehabilitation: Comparison of patients after cardiac surgery and patients with myocardial infarction. J. Cardiol. 2009, 54, 273–281. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kan, Y.M.; Delis, K.T. Hemodynamic effects of supervised calf muscle exercise in patients with venous leg ulceration—A prospective controlled study. Arch. Surg. 2001, 136, 1364–1369. [Google Scholar] [CrossRef] [PubMed]
- Padberg, F., Jr.; Johnston, M.V.; Sisto, S.A. Structured exercise improves calf muscle pump function in chronic venous insufficiency: A randomized trial. J. Vasc. Surg. 2004, 39, 79–87. [Google Scholar] [CrossRef]
- Pasquali, S.K.; Alexander, K.P.; Coombs, L.P.; Lytle, B.L.; Peterson, E.D. Effect of cardiac rehabilitation on functional outcomes after coronary revascularization. Am. Heart J. 2003, 145, 445–451. [Google Scholar] [CrossRef]
- Kugler, C.; Strunk, M.; Rudofsky, G.J. Venous pressure dynamics of the healthy human leg: Role of muscle activity, joint mobility and anthropometric factors. J. Vasc. Res. 2001, 38, 20–29. [Google Scholar] [CrossRef]
- de Moura, R.M.F.; de Alencar Gomes, H.; da Silva, S.L.A.; Britto, R.R.; Dias, R.C. Analysis of the physical and functional parameters of older adults with chronic venous disease. Arch. Gerontol. Geriatr. 2012, 55, 696–701. [Google Scholar] [CrossRef]
- Zeevi, D. Muscle Testing, Interpretation and Clinical Applications; Churchill Livingstone: Edinburgh, UK, 1995. [Google Scholar]
- Dziubek, W.; Bulińska, K.; Stefańska, M.; Woźniewski, M.; Kropielnicka, K.; Jasiński, T.; Jasiński, R.; Pilch, U.; Dąbrowska, G.; Skórkowska-Telichowska, K.; et al. Peripheral arterial disease decreases muscle torque and functional walking capacity in elderly. Maturitas 2015, 81, 480–486. [Google Scholar] [CrossRef]
- Suzuki, K.; Omiya, K.; Yamada, S.; Kobayashi, T.; Suzuki, N.; Osada, N.; Miyake, F. Relations between strength and endurance of leg skeletal muscle and cardiopulmonary exercise testing parameters in patients with chronic heart failure. J. Cardiol. 2004, 43, 59–68. [Google Scholar]
- Lee, J.S.; Kim, C.G.; Seo, T.B.; Kim, H.G.; Yoon, S.J. Effects of 8-week combined training on body composition, isokinetic strength, and cardiovascular disease risk factors in older women. Aging Clin. Exp. Res. 2015, 27, 179–186. [Google Scholar] [CrossRef] [PubMed]
- Bagavathiappan, S.; Saravanan, T.; Philip, J.; Jayakumar, T.; Raj, B.; Karunanithi, R.; Panicker, T.M.; Korath, M.P.; Jagadeesan, K. Infrared thermal imaging for detection of peripheral vascular disorders. J. Med. Phys. 2009, 34, 43–47. [Google Scholar] [CrossRef] [PubMed]
- Cholewka, A.; Stanek, A.; Sieroń, A.; Drzazga, Z. Thermography study of skin response due to whole-body cryotherapy. Skin Res. Technol. 2012, 18, 180–187. [Google Scholar] [CrossRef]
- Debiec-Bak, A.; Skrzek, A.; Podbielska, H. Application of thermovision for estimation of the optimal and safe parameters of the whole body cryotherapy. J. Therm. Anal. Calorim. 2013, 111, 1853. [Google Scholar] [CrossRef]
- Skrzek, A.; Ciszek, A.; Nowicka, D.; Dębiec-Bąk, A. Evaluation of changes in selected skin parameters under the influence of extremely low temperature. Cryobiology 2019, 86, 19–24. [Google Scholar] [CrossRef] [PubMed]
- Skomudek, A.; Gilowska, I.; Jasinski, R.; Rozek-Piechura, K. Analysis of the dynamics of venous blood flow in the context of lower limb temperature distribution and tissue composition in the elderly. Clin. Interv. Aging. 2017, 12, 1371–1378. [Google Scholar] [CrossRef]
- Szentkuti, A.; Kavanagh, H.; Grazio, S. Infrared thermography and image analysis for biomedical use. Period. Biol. 2011, 113, 385–392. [Google Scholar]
- Jaworski, Ł.; Siondalski, P.; Jarmoszewicz, K.; Rogowski, J. Arm temperature distribution in thermographic pictures after radial artery harvesting for coronary bypass operation. Interact. Cardiovasc. Thorac. Surg. 2007, 6, 598–602. [Google Scholar] [CrossRef] [Green Version]
- Beraldo, S.; Satpathy, A.; Dodds, S.R. A study of the routine use of venous photoplethysmography in a one-stop vascular surgery clinic. Ann. R. Coll. Surg. Engl. 2007, 89, 379–383. [Google Scholar] [CrossRef]
- Jasiński, R.; Socha, M.; Sitko, L.; Kubicka, K.; Woźniewski, M.; Sobiech, K.A. Effect of nordic walking and water aerobics training on body composition and the blood flow in lower extremities in elderly women. J. Hum. Kinet. 2015, 45, 113–122. [Google Scholar] [CrossRef]
- Kelechi, T.J.; McNeil, R.B. A pilot study of venous photoplethysmography screening of patients with chronic venous disorders. Appl. Nurs. Res. 2010, 23, 178–183. [Google Scholar] [CrossRef]
- Jiang, L.J.; Ng, E.Y.; Yeo, A.C.; Wu, S.; Pan, F.; Yau, W.Y.; Chen, J.H.; Yang, Y.J. A perspective on medical infrared imaging. Med. Eng. Technol. 2005, 29, 257–267. [Google Scholar] [CrossRef] [PubMed]
- Marston, W.A. PPG, APG, duplex: Which noninvasive tests are most appropriate for the management of patients with chronic venous insufficiency? Semin. Vasc. Surg. 2002, 15, 13–20. [Google Scholar] [CrossRef]
- Price, K.J.; Gordon, B.A.; Bird, S.R.; Benson, A.C. A review of guidelines for cardiac rehabilitation exercise programmes: Is there an international consensus? Eur. J. Prev. Cardiol. 2016, 23, 1715–1733. [Google Scholar] [CrossRef] [PubMed]
- Jelinek, H.F.; Huang, Z.Q.; Khandoker, A.H.; Chang, D.; Kiat, H. Cardiac rehabilitation outcomes following a 6-week program of PCI and CABG Patients. Front. Physiol. 2013, 4, 302. [Google Scholar] [CrossRef] [Green Version]
- Taylor, R.S.; Brown, A.; Ebrahim, S.; Jolliffe, J.; Noorani, H.; Rees, K.; Skidmore, B.; Stone, J.A.; Thompson, D.R.; Oldridge, N. Exercise-based rehabilitation for patients with coronary artery disease: Systematic review and meta-analysis of randomized controlled trials. Am. J. Med. 2004, 116, 682–692. [Google Scholar] [CrossRef] [PubMed]
- Santos, K.; Cerqueira, N.M.; Carvalho, V.; Santana, F.V.; Silva Junior, W.; Araújo, F.A.; Cerqueira, T.; Cacau, L.A. Evaluation of peripheral muscle strength of patients undergoing elective cardiac surgery: A longitudinal study. Rev. Bras. Cir. Cardiovasc. 2014, 29, 355–359. [Google Scholar] [CrossRef]
- Jasiński, R.; Turek, J.; Rudzińska, E.; Dąbrowska, G.; Skrzek, A. Effects of Nordic Walking on the lower-limb venous system in Third Age University students. Acta Bio-Optica et Informatica Medica. Inżynieria Biomed. 2014, 20, 39–49. [Google Scholar]
- Nazari, N.; Hashemi-Javaheri, A.A.; Rashid-Lamir, A.; Alaviniya, E. Effect of cardiac rehabilitation on strength and balance in patients after coronary artery bypass graft. Zahedan J. Res. Med. Sci. (ZJRMS) 2014, 16, 74–78. [Google Scholar]
- Siddiqi, M.S.; Al Sabti, H.; Mukaddirov, M.; Sharma, A.K. Prospective comparative study of single-layer versus double-layer closure of leg wounds after long saphenous vein harvest in coronary artery bypass graft operations. J. Thorac. Dis. 2011, 3, 171–176. [Google Scholar] [CrossRef] [PubMed]
Variable | Group I n = 47 | Group II n = 14 | LSD Post-Hoc Significance of Differences | ||
---|---|---|---|---|---|
SD | SD | p | |||
Age (years) | 59.51 | 7.06 | 63.14 | 8.46 | 0.1118 |
Body height (cm) | 172.09 | 5.63 | 175.43 | 5.23 | 0.0524 |
Body mass (kg) | 83.32 | 12.46 | 88.72 | 16.56 | 0.1856 |
BMI (kg/m2) | 28.06 | 3.34 | 29.04 | 4.86 | 0.3874 |
Variable | Group | ||
---|---|---|---|
Group I n = 47 | Group II n = 14 | p | |
CR protocol (Price et al., 2016) | |||
B | n = 23 (48.94%) | n = 7 (50%) | 0.9454 |
C | n = 24 (51.06%) | n = 7 (50%) |
Studies | ||||||||
---|---|---|---|---|---|---|---|---|
Pre-CR | Post-CR | |||||||
Group I | Group II | Group I | Group II | |||||
OP | NOP | OP | NOP | OP | NOP | OP | NOP | |
Tavg (°C) | 31.85 ± 0.95 | 32.28 ± 1.06 | 30.52 ± 1.18 | 30.81 ± 0.67 | 31.82 ± 1.15 | 32.09 ± 1.20 | 29.82 ± 1.19 | 31.09 ± 1.03 |
∆ (Tmax–Tmin) (°C) | 3.13 ± 1.14 | 3.39 ± 1.02 | 3.53 ± 0.87 | 3.30 ± 1.05 | 2.85 ± 1.03 | 3.41 ± 1.20 | 3.19 ± 1.08 | 3.36 ± 0.92 |
RT (s) | 21.87 ± 9.16 | 28.03 ± 11.60 | 20.59 ± 9.89 | 29.64 ± 8.34 | 25.50 ± 10.94 | 29.58 ± 11.25 | 24.70 ± 10.09 | 29.78 ± 7.27 |
VP | 30.04 ± 10.31 | 31.35 ± 11.82 | 28.14 ± 9.42 | 32.38 ± 11.84 | 31.31 ± 11.34 | 31.01 ± 11.30 | 35.02 ± 14.57 | 31.14 ± 10.81 |
p Value | |||||||||
---|---|---|---|---|---|---|---|---|---|
Operated–Non-Operated Limb | Pre–Post CR | Post CR | |||||||
Group I | Group II | Group I | Group II | I-II | |||||
Pre-CR | Post-CR | Pre-CR | Post-CR | OP | NOP | OP | NOP | OP | |
Tavg (°C) | 0.0015 | 0.0401 | 0.0419 | 0.0000 | 0.1523 | 0.8303 | 0.0041 | 0.2397 | 0.0000 |
∆ (Tmax–Tmin) (°C) | 0.0004 | 0.0519 | 0.3660 | 0.5210 | 0.8889 | 0.0570 | 0.1951 | 0.8064 | 0.5573 |
RT (s) | 0.0000 | 0.0046 | 0.0007 | 0.0500 | 0.0114 | 0.2683 | 0.0411 | 0.9546 | 0.8239 |
VP | 0.9792 | 0.5554 | 0.3788 | 0.3185 | 0.4378 | 0.8311 | 0.0243 | 0.6773 | 0.0463 |
Variable | Angular velocity (o/s) | Flexion | Pre CR | Post CR | ||||||
---|---|---|---|---|---|---|---|---|---|---|
Group I | Group II | Group I | Group II | |||||||
OP | NOP | OP | NOP | OP | NOP | OP | NOP | |||
Peak Torque | 60 | Plantar | 33.19 ± 15.28 | 39.46 ± 20.33 | 25.80 ± 13.55 | 31.97 ± 12.99 | 43.65 ± 19.59 | 44.75 ± 18.68 | 32.79 ± 15.28 | 34.00 ± 19.70 |
Dorsi | 19.31 ± 7.42 | 21.23 ± 6.16 | 24.96 ± 9.74 | 24.93 ± 10.05 | 21.86 ± 6.16 | 22.28 ± 6.58 | 25.96 ± 10.95 | 29.73 ± 9.40 | ||
120 | Plantar | 26.08 ± 12.20 | 29.51 ± 15.03 | 23.47 ± 12.40 | 26.79 ± 10.19 | 29.77 ± 13.12 | 29.60 ± 12.70 | 26.44 ± 12.92 | 27.06 ± 12.41 | |
Dorsi | 13.84 ± 5.44 | 15.51 ± 5.26 | 17.70 ± 8.23 | 19.18 ± 7.05 | 15.36 ± 4.73 | 15.07 ± 4.17 | 19.20 ± 7.90 | 23.39 ± 7.14 | ||
Peak TQ/BM | 60 | Plantar | 40.91 ± 18.55 | 48.47 ± 24.17 | 29.51 ± 11.68 | 38.90 ± 15.06 | 53.24 ± 23.92 | 54.88 ± 23.68 | 38.84 ± 20.45 | 39.19 ± 17.38 |
Dorsi | 23.66 ± 8.64 | 25.67 ± 6.95 | 29.13 ± 14.13 | 29.84 ± 12.51 | 26.46 ± 8.10 | 26.91 ± 7.76 | 30.98 ± 13.95 | 34.49 ± 13.13 | ||
120 | Plantar | 32.20 ± 13.95 | 36.07 ± 17.33 | 27.60 ± 10.97 | 31.52 ± 12.43 | 36.34 ± 16.14 | 36.38 ± 16.07 | 30.62 ± 12.21 | 32.30 ± 10.58 | |
Dorsi | 16.75 ± 6.55 | 18.82 ± 6.05 | 20.80 ± 10.36 | 22.80 ± 8.63 | 18.67 ± 5.75 | 18.54 ± 5.70 | 22.60 ± 10.25 | 26.94 ± 8.36 | ||
Total Work | 60 | Plantar | 76.31 ± 47.16 | 94.12 ± 62.37 | 66.71 ± 34.45 | 81.91 ± 56.54 | 103.27 ± 57.98 | 108.08 ± 61.97 | 73.85 ± 44.43 | 85.39 ± 41.98 |
Dorsi | 46.62 ± 24.03 | 54.40 ± 23.79 | 73.59 ± 39.96 | 78.49 ± 40.21 | 57.76 ± 24.22 | 59.53 ± 25.05 | 78.78 ± 41.89 | 93.69 ± 46.49 | ||
120 | Plantar | 85.84 ± 12.52 | 124.52 ± 63.10 | 67.21 ± 17.96 | 135.34 ± 57.42 | 118.92 ± 70.13 | 112.44 ± 71.01 | 113.25 ± 65.71 | 130.39 ± 67.73 | |
Dorsi | 55.70 ± 27.71 | 67.15 ± 31.15 | 100.20 ± 48.90 | 105.88 ± 54.92 | 69.06 ± 27.83 | 71.74 ± 33.41 | 103.94 ± 61.10 | 124.19 ± 47.89 | ||
Avg Power | 60 | Plantar | 17.08 ± 10.43 | 18.35 ± 11.54 | 11.82 ± 6.64 | 15.49 ± 7.10 | 22.94 ± 11.05 | 24.10 ± 12.87 | 16.33 ± 8.79 | 17.19 ± 9.26 |
Dorsi | 10.88 ± 4.99 | 11.11 ± 4.09 | 14.07 ± 6.16 | 14.44 ± 6.33 | 11.64 ± 3.69 | 12.74 ± 4.46 | 16.25 ± 7.31 | 18.39 ± 6.43 | ||
120 | Plantar | 19.22 ± 10.64 | 19.56 ± 12.40 | 17.02 ± 9.72 | 19.46 ± 8.04 | 21.27 ± 11.05 | 22.96 ± 12.53 | 18.92 ± 9.02 | 19.49 ± 10.40 | |
Dorsi | 9.98 ± 4.14 | 10.04 ± 5.29 | 15.08 ± 7.02 | 15.59 ± 8.70 | 10.27 ± 3.46 | 11.27 ± 3.98 | 17.39 ± 8.28 | 20.55 ± 6.99 |
Variable | Angular Velocity (°/s) | Flexion | p Value | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Operated–Non-Operated Limb | Pre–Post CR | Post | |||||||||
Group I | Group II | Group I | Group II | I–II | |||||||
Pre-CR | Post-CR | Pre-CR | Post-CR | OP | NOP | OP | NOP | OP | |||
Peak Torque | 60 | Plantar | 0.0003 | 0.4996 | 0.0427 | 0.6850 | 0.0000 | 0.0019 | 0.0078 | 0.7855 | 0.1028 |
Dorsi | 0.0174 | 0.5979 | 0.9840 | 0.0103 | 0.0004 | 0.4223 | 0.0013 | 0.4807 | 0.2020 | ||
120 | Plantar | 0.0007 | 0.8600 | 0.0441 | 0.7284 | 0.0003 | 0.9315 | 0.0467 | 0.8812 | 0.5822 | |
Dorsi | 0.0182 | 0.6687 | 0.2452 | 0.0015 | 0.0306 | 0.5223 | 0.0014 | 0.2385 | 0.0775 | ||
Peak TQ/BM | 60 | Plantar | 0.0005 | 0.4311 | 0.0162 | 0.9253 | 0.0000 | 0.0030 | 0.0169 | 0.9387 | 0.0769 |
Dorsi | 0.0220 | 0.5963 | 0.6500 | 0.0286 | 0.0003 | 0.3621 | 0.0011 | 0.4712 | 0.2616 | ||
120 | Plantar | 0.0023 | 0.9722 | 0.0391 | 0.6876 | 0.0012 | 0.7965 | 0.1801 | 0.7279 | 0.3903 | |
Dorsi | 0.0128 | 0.8667 | 0.1817 | 0.0048 | 0.0204 | 0.7254 | 0.0070 | 0.2287 | 0.1410 | ||
Total Work | 60 | Plantar | 0.0002 | 0.2795 | 0.0242 | 0.3220 | 0.0000 | 0.0024 | 0.0446 | 0.1584 | 0.1522 |
Dorsi | 0.0079 | 0.5332 | 0.9562 | 0.0003 | 0.0002 | 0.0744 | 0.0048 | 0.3203 | 0.1673 | ||
120 | Plantar | 0.3648 | 0.0228 | 0.0440 | 0.9425 | 0.0001 | 0.3418 | 0.9425 | 0.0390 | 0.2065 | |
Dorsi | 0.0034 | 0.4779 | 0.7787 | 0.0009 | 0.0007 | 0.2262 | 0.0100 | 0.5893 | 0.0315 | ||
Avg Power | 60 | Plantar | 0.2710 | 0.3146 | 0.0420 | 0.6785 | 0.0000 | 0.0002 | 0.0121 | 0.6885 | 0.0577 |
Dorsi | 0.6477 | 0.0271 | 0.6842 | 0.0193 | 0.0003 | 0.2804 | 0.0000 | 0.0462 | 0.0585 | ||
120 | Plantar | 0.6973 | 0.0580 | 0.1324 | 0.7257 | 0.0003 | 0.0224 | 0.1291 | 0.7357 | 0.3388 | |
Dorsi | 0.9246 | 0.1147 | 0.6606 | 0.0078 | 0.0550 | 0.6535 | 0.0000 | 0.1226 | 0.0029 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Skomudek, A.; Waz, G.; Rozek-Piechura, K. Does CABG with Saphenous Vein Grafting and Standard Cardiac Rehabilitation Affect Lower Limb Function? A Clinical Study. Int. J. Environ. Res. Public Health 2019, 16, 1903. https://doi.org/10.3390/ijerph16111903
Skomudek A, Waz G, Rozek-Piechura K. Does CABG with Saphenous Vein Grafting and Standard Cardiac Rehabilitation Affect Lower Limb Function? A Clinical Study. International Journal of Environmental Research and Public Health. 2019; 16(11):1903. https://doi.org/10.3390/ijerph16111903
Chicago/Turabian StyleSkomudek, Aleksandra, Grzegorz Waz, and Krystyna Rozek-Piechura. 2019. "Does CABG with Saphenous Vein Grafting and Standard Cardiac Rehabilitation Affect Lower Limb Function? A Clinical Study" International Journal of Environmental Research and Public Health 16, no. 11: 1903. https://doi.org/10.3390/ijerph16111903
APA StyleSkomudek, A., Waz, G., & Rozek-Piechura, K. (2019). Does CABG with Saphenous Vein Grafting and Standard Cardiac Rehabilitation Affect Lower Limb Function? A Clinical Study. International Journal of Environmental Research and Public Health, 16(11), 1903. https://doi.org/10.3390/ijerph16111903