A Meta-Prediction of Methylenetetrahydrofolate-Reductase Polymorphisms and Air Pollution Increased the Risk of Ischemic Heart Diseases Worldwide
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Selection and Data Extraction
2.2. Quality Assessment
2.3. Data Synthesis and Analysis
3. Results
3.1. Sample Characteristics and Genotype Frequency
3.2. Pooled Meta-Analysis
3.3. Subgroup Analysis by Ethnicity and Countries
3.4. Subgroup Analysis by IHD Subtypes
3.5. Heterogeneous Findings by GIS Map
3.6. Meta-Prediction: MTHFR Polymorphisms and Air Pollution Associated with Risk of IHD
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Go, A.S.; Mozaffarian, D.; Roger, V.L.; Benjamin, E.J.; Berry, J.D.; Blaha, M.J.; Dai, S.; Ford, E.S.; Fox, C.S.; Franco, S.; et al. Executive summary: Heart disease and stroke statistics—2014 update: A report from the American Heart Association. Circulation 2014, 129, 399–410. [Google Scholar] [CrossRef] [PubMed]
- Nichols, M.; Townsend, N.; Scarborough, P.; Rayner, M. Cardiovascular disease in Europe 2014: Epidemiological update. Eur. Heart J. 2014, 35, 2950–2959. [Google Scholar] [CrossRef] [PubMed]
- Nabel, E.G.; Braunwald, E. A tale of coronary artery disease and myocardial infarction. N. Engl. J. Med. 2012, 366, 54–63. [Google Scholar] [CrossRef] [PubMed]
- Benjamin, E.J.; Blaha, M.J.; Chiuve, S.E.; Cushman, M.; Das, S.R.; Deo, R.; de Ferranti, S.D.; Floyd, J.; Fornage, M.; Gillespie, C.; et al. Heart disease and stroke statistics—2017 update: A report from the American Heart Association. Circulation 2017, 135, e146–e603. [Google Scholar] [CrossRef] [PubMed]
- Finegold, J.A.; Asaria, P.; Francis, D.P. Mortality from ischaemic heart disease by country, region, and age: Statistics from World Health Organisation and United Nations. Int. J. Cardiol. 2013, 168, 934–945. [Google Scholar] [CrossRef] [PubMed]
- Abubakar, I.I.; Tillmann, T.; Banerjee, A. Global, regional, and national age-sex specific all-cause and cause-specific mortality for 240 causes of death, 1990–2013: A systematic analysis for the global burden of disease study 2013. Lancet 2015, 385, 117–171. [Google Scholar] [CrossRef]
- Peng, H.Y.; Man, C.F.; Xu, J.; Fan, Y. Elevated homocysteine levels and risk of cardiovascular and all-cause mortality: A meta-analysis of prospective studies. J. Zhejiang Univ. Sci. B 2015, 16, 78–86. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.; Je, Y. Dietary fiber intake and total mortality: A meta-analysis of prospective cohort studies. Am. J. Epidemiol. 2014, 180, 565–573. [Google Scholar] [CrossRef] [PubMed]
- Zhang, D.; Sun, X.; Liu, J.; Xie, X.; Cui, W.; Zhu, Y. Homocysteine accelerates senescence of endothelial cells via DNA hypomethylation of human telomerase reverse transcriptase. Arterioscler. Thromb. Vasc. Biol. 2015, 35, 71–78. [Google Scholar] [CrossRef] [PubMed]
- Kones, R. Molecular sources of residual cardiovascular risk, clinical signals, and innovative solutions: Relationship with subclinical disease, undertreatment, and poor adherence: Implications of new evidence upon optimizing cardiovascular patient outcomes. Vasc. Health Risk Manag. 2013, 9, 617–670. [Google Scholar] [CrossRef] [PubMed]
- Krishna, S.M.; Dear, A.; Craig, J.M.; Norman, P.E.; Golledge, J. The potential role of homocysteine mediated DNA methylation and associated epigenetic changes in abdominal aortic aneurysm formation. Atheroscler. 2013, 228, 295–305. [Google Scholar] [CrossRef] [PubMed]
- Gil Nunez, A.C. Homocysteine: Vascular risk factor? Neurologia 2004, 19, 1–4. [Google Scholar] [PubMed]
- Luo, H.; Liu, B.; Hu, J.; Wang, X.; Zhan, S.; Kong, W. Hyperhomocysteinemia and methylenetetrahydrofolate reductase polymorphism in cervical artery dissection: A meta-analysis. Cerebrovasc. Dis. 2014, 37, 313–322. [Google Scholar] [CrossRef] [PubMed]
- Yadav, S.; Hasan, N.; Marjot, T.; Khan, M.S.; Prasad, K.; Bentley, P.; Sharma, P. Detailed analysis of gene polymorphisms associated with ischemic stroke in south Asians. PLoS ONE 2013, 8, e57305. [Google Scholar] [CrossRef] [PubMed]
- Klerk, M.; Verhoef, P.; Clarke, R.; Blom, H.J.; Kok, F.J.; Schouten, E.G. Mthfr 677c→t polymorphism and risk of coronary heart disease: A meta-analysis. JAMA 2002, 288, 2023–2031. [Google Scholar] [CrossRef] [PubMed]
- Langrish, J.P.; Li, X.; Wang, S.; Lee, M.M.; Barnes, G.D.; Miller, M.R.; Cassee, F.R.; Boon, N.A.; Donaldson, K.; Li, J.; et al. Reducing personal exposure to particulate air pollution improves cardiovascular health in patients with coronary heart disease. Environ. Health Perspect. 2012, 120, 367–372. [Google Scholar] [CrossRef] [PubMed]
- Gan, W.Q.; Koehoorn, M.; Davies, H.W.; Demers, P.A.; Tamburic, L.; Brauer, M. Long-term exposure to traffic-related air pollution and the risk of coronary heart disease hospitalization and mortality. Environ. Health Perspect. 2011, 119, 501–507. [Google Scholar] [CrossRef] [PubMed]
- Brook, R.D.; Rajagopalan, S.; Pope, C.A., 3rd; Brook, J.R.; Bhatnagar, A.; Diez-Roux, A.V.; Holguin, F.; Hong, Y.; Luepker, R.V.; Mittleman, M.A.; et al. Particulate matter air pollution and cardiovascular disease: An update to the scientific statement from the American Heart Association. Circulation 2010, 121, 2331–2378. [Google Scholar] [CrossRef] [PubMed]
- Brook, R.D.; Franklin, B.; Cascio, W.; Hong, Y.; Howard, G.; Lipsett, M.; Luepker, R.; Mittleman, M.; Samet, J.; Smith, S.C.; et al. Air pollution and cardiovascular disease: A statement for healthcare professionals from the expert panel on population and prevention science of the American Heart Association. Circulation 2004, 109, 2655–2671. [Google Scholar] [CrossRef] [PubMed]
- Dominici, F.; Peng, R.D.; Bell, M.L.; Pham, L.; McDermott, A.; Zeger, S.L.; Samet, J.M. Fine particulate air pollution and hospital admission for cardiovascular and respiratory diseases. JAMA 2006, 295, 1127–1134. [Google Scholar] [CrossRef] [PubMed]
- Ruckerl, R.; Ibald-Mulli, A.; Koenig, W.; Schneider, A.; Woelke, G.; Cyrys, J.; Heinrich, J.; Marder, V.; Frampton, M.; Wichmann, H.E.; et al. Air pollution and markers of inflammation and coagulation in patients with coronary heart disease. Am. J. Respir. Crit. Care Med. 2006, 173, 432–441. [Google Scholar] [CrossRef] [PubMed]
- Peters, A.; Dockery, D.W.; Muller, J.E.; Mittleman, M.A. Increased particulate air pollution and the triggering of myocardial infarction. Circulation 2001, 103, 2810–2815. [Google Scholar] [CrossRef] [PubMed]
- Van Meurs, J.B.; Pare, G.; Schwartz, S.M.; Hazra, A.; Tanaka, T.; Vermeulen, S.H.; Cotlarciuc, I.; Yuan, X.; Mälarstig, A.; Bandinelli, S.; et al. Common genetic loci influencing plasma homocysteine concentrations and their effect on risk of coronary artery disease. Am. J. Clin. Nutr. 2013, 98, 668–676. [Google Scholar] [CrossRef] [PubMed]
- Wald, D.S.; Morris, J.K.; Wald, N.J. Reconciling the evidence on serum homocysteine and ischaemic heart disease: A meta-analysis. PLoS ONE 2011, 6, e16473. [Google Scholar] [CrossRef] [PubMed]
- Clarke, R.; Bennett, D.A.; Parish, S.; Verhoef, P.; Dötsch-Klerk, M.; Lathrop, M.; Xu, P.; Nordestgaard, B.G.; Holm, H.; Hopewell, J.C.; et al. Homocysteine and coronary heart disease: Meta-analysis of MTHFR case-control studies, avoiding publication bias. PLoS Med. 2012, 9, e1001177. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Liu, L.; Hong, K.; Hu, J.; Cheng, X. Three genetic polymorphisms of homocysteine-metabolizing enzymes and risk of coronary heart disease: A meta-analysis based on 23 case-control studies. DNA Cell Biol. 2012, 31, 238–249. [Google Scholar] [CrossRef] [PubMed]
- Jee, S.H.; Beaty, T.H.; Suh, I.; Yoon, Y.; Appel, L.J. The methylenetetrahydrofolate reductase gene is associated with increased cardiovascular risk in Japan, but not in other populations. Atherosclerosis 2000, 153, 161–168. [Google Scholar] [CrossRef]
- Moher, D.; Liberati, A.; Tetzlaff, J.; Altman, D.G. Preferred reporting items for systematic reviews and meta-analyses: The prisma statement. J. Clin. Epidemiol. 2009, 62, 1006–1012. [Google Scholar] [CrossRef] [PubMed]
- Sagoo, G.S.; Little, J.; Higgins, J.P. Systematic reviews of genetic association studies. Human genome epidemiology network. PLoS Med. 2009, 6, e28. [Google Scholar] [CrossRef] [PubMed]
- Girelli, D.; Friso, S.; Trabetti, E.; Olivieri, O.; Russo, C.; Pessotto, R.; Faccini, G.; Pignatti, P.F.; Mazzucco, A.; Corrocher, R. Methylenetetrahydrofolate reductase C677T mutation, plasma homocysteine, and folate in subjects from northern Italy with or without angiographically documented severe coronary atherosclerotic disease: Evidence for an important genetic-environmental interaction. Blood 1998, 91, 4158–4163. [Google Scholar] [PubMed]
- Morita, H.; Taguchi, J.I.; Kurihara, H.; Kitaoka, M.; Kaneda, H.; Kurihara, Y.; Maemura, K.; Minamino, T.; Ohno, M.; Yamaoki, K.; et al. Genetic polymorphism of 5,10-methylenetetrahydrofolate reductase (MTHFR) as a risk factor for coronary artery disease. Circulation 1997, 95, 2032–2036. [Google Scholar] [CrossRef] [PubMed]
- Shiao, S.P.K.; Yu, C.H. Meta-prediction of MTHFR gene polymorphism mutations and associated risk for colorectal cancer. Biol. Res. Nurs. 2016, 18, 357–369. [Google Scholar] [CrossRef] [PubMed]
- Deeks, J.J.; Higgins, J.; Altman, D.G. Analysing data and undertaking meta-analyses. In Cochrane Handbook for Systematic Reviews of Interventions: Cochrane Book Series; Green, S., Higgins, J., Eds.; John Wiley & Sons, Ltd.: Chichester, UK, 2008; pp. 243–296. [Google Scholar]
- Duval, S.; Tweedie, R. Trim and fill: A simple funnel-plot-based method of testing and adjusting for publication bias in meta-analysis. Biometrics 2000, 56, 455–463. [Google Scholar] [CrossRef] [PubMed]
- Egger, M.; Davey Smith, G.; Schneider, M.; Minder, C. Bias in meta-analysis detected by a simple, graphical test. BMJ 1997, 315, 629–634. [Google Scholar] [CrossRef] [PubMed]
- Speybroeck, N. Classification and regression trees. Int. J. Pub. Health 2012, 57, 243–246. [Google Scholar] [CrossRef] [PubMed]
- Jaccard, J.; Becker, M.A.; Wood, G. Pairwise multiple comparison procedures: A review. Psychol. Bull. 1984, 96, 589. [Google Scholar] [CrossRef]
- Albrecht, J. Key Concepts and Techniques in GIS; Sage: Thousand Oaks, CA, USA, 2007. [Google Scholar]
- Breiman, L.; Friedman, J.H.; Olshen, R.A.; Stone, C.J. Classification and Regression Trees; Chapman and Hall/CRC: Boca Raton, FL, USA, 1984. [Google Scholar]
- Bala, M.; Agrawal, R.K. Statistical measures to determine optimal structure of decision tree: One versus one support vector machine. Def. Sci. J. 2010, 60, 399–404. [Google Scholar] [CrossRef]
- Akaike, H. Akaike's Information Criterion; Springer: Berlin/Heidelberg, Germany, 2011. [Google Scholar]
- Akaike, H. Information theory and an extension of the maximum likelihood principle. In International Symposium on Information Theory; Petrov, B., Csaki, F., Eds.; Akademia Kiado: Budapest, Hungary, 1973; pp. 267–281. [Google Scholar]
- Symonds, M.R.; Moussalli, A. A brief guide to model selection, multimodel inference and model averaging in behavioural ecology using Akaike’s information criterion. Behav. Ecol. Sociobiol. 2011, 65, 13–21. [Google Scholar] [CrossRef]
- Kenworthy, J.; Laube, F. Urban transport patterns in a global sample of cities & their linkages to transport infrastructure, land use, economics & environment. World Transp. Policy Prac. 2002, 8, 5–20. [Google Scholar]
- World Health Organization. The Urban Environment. 2015. Available online: http://www.who.int/heli/risks/urban/urbanenv/en/ (accessed on 27 February 2018).
- US Environmental Protection Agency. Air Quality Index Basics. Available online: https://www.airnow.gov/index.cfm?action=aqibasics.aqi (accessed on 2 January 2018).
- World Health Organization. Deaths Attributable to Urban Air Pollution. 2004. Available online: http://www.who.int/heli/risks/urban/en/uapmap.1.pdf?ua¼1 (accessed on 2 January 2018).
- World Health Organization. Global Health Risks. 2009. Available online: http://www.who.int/healthinfo/global_burden_disease/GlobalHealthRisks_report_full.pdf (accessed on 2 January 2018).
- World Health Organization. Global Health Risks. 2012. Available online: https://commons.wikimedia.org/wiki/File:Deaths_from_air_pollution.png (accessed on 2 January 2018).
- American Institute for Cancer Research. How AICR Recommendations Cuts Colorectal Cancer Risk for Both Men and Women. Available online: http://www.aicr.org/cancer-research-update/2016/11_02/cru-how-AICR-recommendations-cuts-colorectal-cancer-risk-for-men-and-women.html (accessed on 16 March 2018).
- Viera, A.J. Odds ratios and risk ratios: What’s the difference and why does it matter? South Med. J. 2008, 101, 730–734. [Google Scholar] [CrossRef] [PubMed]
- Scott, I. Interpreting risks and ratios in therapy trials. Aust. Prescr. 2008, 31, 12–16. [Google Scholar] [CrossRef]
- Team, Q.D.; Quantum GIS Geographic Information System. Open Source Geospatial Foundation Project. 2012. Available online: http://qgis.osgeo.org (accessed on 2 January 2018).
- Bentley, P.; Peck, G.; Smeeth, L.; Whittaker, J.; Sharma, P. Causal relationship of susceptibility genes to ischemic stroke: Comparison to ischemic heart disease and biochemical determinants. PLoS ONE 2010, 5, e9136. [Google Scholar] [CrossRef] [PubMed]
- Drenos, F.; Whittaker, J.C.; Humphries, S.E. The use of meta-analysis risk estimates for candidate genes in combination to predict coronary heart disease risk. Ann. Hum. Genet. 2007, 71, 611–619. [Google Scholar] [CrossRef] [PubMed]
- Hou, X.; Chen, X.; Shi, J. Genetic polymorphism of MTHFR C677T and premature coronary artery disease susceptibility: A meta-analysis. Gene 2015, 565, 39–44. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.L.; Yang, H.L.; Shiao, S.P. Meta-prediction of MTHFR gene polymorphisms and air pollution on the risk of hypertensive disorders in pregnancy worldwide. Int. J. Environ. Res. Public Health 2018, 15, E326. [Google Scholar] [CrossRef] [PubMed]
- Wu, S.M.; Chen, Z.F.; Young, L.; Shiao, S.P.K. Meta-prediction of the effects of methylenetetrahydrofolate reductase gene polymorphisms and air pollution on risk of Alzheimer’s disease. Int. J. Environ. Res. Public Health 2017, 14, E63. [Google Scholar] [CrossRef] [PubMed]
- Gonzales, M.C.; Yu, P.J.; Shiao, S.P.K. Meta-prediction of MTHFR gene polymorphism-mutations and air pollution as risk factors for breast cancer. Nurs. Res. 2017, 66, 152–163. [Google Scholar] [CrossRef] [PubMed]
- Lien, S.Y.A.; Young, L.; Gau, B.S.; Shiao, S.P.K. Meta-prediction of MTHFR gene polymorphism-mutations, air pollution, and risks of leukemia among world populations. Oncotarget 2017, 8, 4387–4398. [Google Scholar] [CrossRef] [PubMed]
- Lu, Y.; Fang, T.B. Examining personal air pollution exposure, intake, and health danger zone using time geography and 3D geovisualization. ISPRS Int. J. Geo-Inf. 2015, 4, 32–46. [Google Scholar] [CrossRef]
- Leclerc, D.; Sibani, S.; Rozen, R. Molecular Biology of Methylenetetrahydrofolate Reductase (MTHFR) and Overview of Mutations/Polymorphisms. In MTHFR Polymorphisms and Disease; CRC Press: Boca Raton, FL, USA, 2005; pp. 15–34. [Google Scholar]
- Lee, B.J.; Kim, B.; Lee, K. Air pollution exposure and cardiovascular disease. Toxicol. Res. 2014, 30, 71–75. [Google Scholar] [CrossRef] [PubMed]
- Packard, G. Review article: On the use of log-transformation vs. nonlinear regression for analyzing biological power laws. Biol. J. Linn. Soc. 2014, 113, 1167–1178. [Google Scholar] [CrossRef]
- Xiao, X.; White, E.P.; Hooten, M.B.; Durham, S.L. On the use of log-transformation vs. nonlinear regression for analyzing biological power laws. Ecology 2011, 92, 1887–1894. [Google Scholar] [CrossRef] [PubMed]
- Yu, C.H.; Lee, H.S.; Gan, S.; Brown, E. Nonlinear modeling with big data in SAS and JMP. In Proceedings of the Western Users of SAS Software Conference, Long Beach, CA, USA, 20–22 September 2017. [Google Scholar]
- Choi, I.H.; Noh, J.S.; Han, J.S.; Kim, H.J.; Han, E.S.; Song, Y.O. Kimchi, a fermented vegetable, improves serum lipid profiles in healthy young adults: Randomized clinical trial. J. Med. Food. 2013, 16, 223–229. [Google Scholar] [CrossRef] [PubMed]
- Delgado-Lista, J.; Perez-Martinez, P.; Garcia-Rios, A.; Alcala-Diaz, J.F.; Perez-Caballero, A.I.; Gomez-Delgado, F.; Fuentes, F.; Quintana-Navarro, G.; Lopez-Segura, F.; Ortiz-Morales, A.M.; et al. CORonary Diet Intervention with Olive oil and cardiovascular PREVention study (the CORDIOPREV study): Rationale, methods, and baseline characteristics: A clinical trial comparing the efficacy of a Mediterranean diet rich in olive oil versus a low-fat diet on cardiovascular disease in coronary patients. Am. Heart J. 2016, 177, 42–50. [Google Scholar] [CrossRef] [PubMed]
MTHFR 677 | IHD | CAD | MI |
---|---|---|---|
(n Case/n Control) | (n Case/n Control) | (n Case/n Control) | |
123 Studies (29,697/31,028) | 93 Studies (22,994/20,221) | 30 Studies (6709/10,807) | |
Overall | Risk Type: TT, CT | Risk Type: TT, CT | |
Protective: CC | Protective: CC | Protective: CC | |
Subgroups | |||
Caucasian | 60 Studies | 47 Studies | 13 Studies |
(22,042/14,925) | (13,817/10,702) | (2850/4223) | |
Risk trend: TT | Risk Type: TT | NS | |
Protective trend: CC | Protective: CC | ||
East Asian | 32 Studies | 25 Studies | 7 Studies |
(7112/9471) | (4855/4931) | (2257/4540) | |
Risk Type: TT | Risk Type: TT | Risk Type: TT | |
Protective: CC | Protective: CC | ||
South Asian | 13 Studies | 8 Studies | 5 Studies |
(2475/2763) | (1447/1621) | (1028/1142) | |
Risk Type: TT, CT | Risk Type: TT, CT | NS | |
Protective: CC | Protective: CC | ||
Mixed group | 3 Studies | 2 Studies | 1 Study |
(951/852) | (882/514) | (69/338) | |
NS | NS | -- | |
Middle Eastern | 7 Studies | 6 Studies | 1 Study |
(1265/1723) | (1169/1623) | (99/100) | |
Risk Type: TT, CT | Risk Type: TT, CT | -- | |
Protective: CC | Protective: CC | ||
Hispanic | 2 Studies | -- | 2 Studies |
(353/364) | (353/364) | ||
NS | NS | ||
African | 6 Studies | 5 Studies | 1 Study |
(874/930) | (824/648) | (50/282) | |
Risk Type: TT | Risk Type: TT, CT | -- |
Genotype per Ethnicity (n Studies) | IHD Cases (n = 29,697) n (%) | Controls (n = 31,028) n (%) | Test of Heterogeneity | Test of Association | |||||
---|---|---|---|---|---|---|---|---|---|
Q | p * | I2 | Risk Ratio (95% CI) | p | |||||
TT (123) | 3812 | (12.84) | 3330 | (10.73) | 238.56 | <0.0001 | 48.9% | 1.23 [1.14, 1.33] | <0.0001 |
Caucasian (60) | 1850 | (11.10) | 1479 | (9.91) | 59.38 | 0.4615 | 0.6% | 1.07 [1.00, 1.14] | 0.0528 |
East Asian (32) | 1439 | (20.23) | 1443 | (15.24) | 60.75 | 0.0011 | 49% | 1.31 [1.17, 1.47] | <0.0001 |
South Asian (13) | 93 | (3.76) | 71 | (2.57) | 20.19 | 0.0635 | 40.6% | 1.51 [1.13, 2.01] | 0.0048 |
Mixed Group (3) | 93 | (9.78) | 88 | (10.33) | 0.05 | 0.9771 | 0% | 0.86 [0.63, 1.17] | 0.33 |
Middle Eastern (7) | 130 | (10.28) | 89 | (5.17) | 27.38 | 0.0001 | 78.1% | 2.62 [1.37, 5.01] | 0.0034 |
Hispanic (2) | 102 | (28.90) | 106 | (29.12) | 1.50 | 0.2204 | 33.4% | 0.99 [0.79, 1.25] | 0.94 |
African (6) | 105 | (12.01) | 54 | (5.81) | 2.03 | 0.8454 | 0% | 2.14 [1.56, 2.94] | <0.0001 |
CT (123) | 12,777 | (43.02) | 12,815 | (41.30) | 174.49 | 0.0013 | 30.1% | 1.04 [1.01, 1.07] | 0.0028 |
Caucasian (60) | 7402 | (44.41) | 6448 | (43.20) | 47.63 | 0.8555 | 0% | 1.01 [0.98, 1.04] | 0.48 |
East Asian (32) | 3338 | (46.93) | 4439 | (46.87) | 53.81 | 0.0067 | 42.4% | 1.03 [0.98, 1.09] | 0.27 |
South Asian (13) | 634 | (25.62) | 531 | (19.22) | 27.60 | 0.0063 | 56.5% | 1.32 [1.12, 1.57] | 0.0011 |
Mixed Group (3) | 415 | (43.64) | 327 | (38.38) | 1.44 | 0.4874 | 0% | 1.02 [0.90, 1.15] | 0.78 |
Middle Eastern (7) | 489 | (38.66) | 593 | (34.42) | 5.67 | 0.4607 | 0% | 1.18 [1.07, 1.30] | 0.0011 |
Hispanic (2) | 165 | (46.74) | 157 | (43.13) | 1.88 | 0.1709 | 46.7% | 1.08 [0.92, 1.27] | 0.34 |
African (6) | 334 | (38.22) | 320 | (34.41) | 9.31 | 0.0975 | 46.3% | 1.13 [1.00, 1.28] | 0.0547 |
CC (123) | 13,108 | (44.14) | 14,883 | (47.97) | 269.85 | <0.0001 | 54.8% | 0.91 [0.89, 0.94] | <0.0001 |
Caucasian (60) | 7415 | (44.49) | 6998 | (46.89) | 63.45 | 0.3225 | 7% | 0.98 [0.95, 1.00] | 0.058 |
East Asian (32) | 2335 | (32.83) | 3589 | (37.89) | 89.99 | <0.0001 | 65.6% | 0.84 [0.77, 0.91] | <0.0001 |
South Asian (13) | 1748 | (70.63) | 2161 | (78.21) | 44.14 | <0.0001 | 72.8% | 0.91 [0.86, 0.96] | 0.0011 |
Mixed Group (3) | 443 | (46.58) | 437 | (51.29) | 1.09 | 0.5804 | 0% | 1.02 [0.92, 1.12] | 0.76 |
Middle Eastern (7) | 646 | (51.07) | 1041 | (60.42) | 16.22 | 0.0126 | 63% | 0.76 [0.66, 0.87] | <0.0001 |
Hispanic (2) | 86 | (24.36) | 101 | (27.75) | 0.04 | 0.8487 | 0% | 0.88 [0.69, 1.13] | 0.31 |
African (6) | 435 | (49.77) | 556 | (59.78) | 11.88 | 0.0365 | 57.9% | 0.87 [0.76, 1.00] | 0.0501 |
TT + CT (123) | 16,589 | (55.86) | 16,145 | (52.03) | 283.27 | <0.0001 | 56.9% | 1.09 [1.06, 1.11] | <0.0001 |
CC + CT (123) | 25,885 | (87.16) | 27,698 | (89.27) | 304.35 | <0.0001 | 59.9% | 0.98 [0.97, 0.99] | <0.0001 |
T (123) | 10,200 | (34.35) | 9737 | (31.38) | 180.11 | 0.0005 | 32.3% | 1.11 [1.07, 1.14] | <0.0001 |
C (123) | 19,496 | (65.65) | 21,290 | (68.62) | 172.23 | 0.0019 | 29.2% | 0.96 [0.94, 0.97] | <0.0001 |
Subgroups | |||||||||
TT Risk > 1 (87) 1 | 18,032 | (60.72) | 22,413 | (72.23) | |||||
TT | 2515 | (13.95) | 2351 | (10.49) | 163.42 | <0.0001 | 47.4% | 1.40 [1.28, 1.53] | <0.0001 |
CT | 7720 | (42.81) | 9243 | (41.24) | 148.57 | <0.0001 | 42.1% | 1.05 [1.02, 1.09] | 0.0029 |
CC | 7797 | (43.24) | 10,819 | (48.27) | 208.20 | <0.0001 | 58.7% | 0.88 [0.85, 0.91] | <0.0001 |
TT + CT | 10,235 | (56.76) | 11,594 | (51.73) | 225.28 | <0.0001 | 61.8% | 1.13 [1.09, 1.17] | <0.0001 |
CC + CT | 15,517 | (86.05) | 20,062 | (89.51) | 267.73 | <0.0001 | 67.9% | 0.96 [0.95, 0.98] | <0.0001 |
T | 6375 | (35.35) | 6972 | (31.11) | 134.06 | 0.0007 | 35.8% | 1.17 [1.12, 1.22] | <0.0001 |
C | 11,657 | (64.65) | 15,440 | (68.89) | 128.35 | 0.0021 | 33% | 0.94 [0.92, 0.95] | <0.0001 |
TT Risk < 1 (12) 2 | 2731 | (9.20) | 2156 | (6.95) | |||||
TT | 322 | (11.79) | 299 | (13.87) | 7.89 | 0.7229 | 0% | 0.86 [0.75, 1.00] | 0.051 |
CT | 1151 | (42.15) | 848 | (39.33) | 8.71 | 0.6489 | 0% | 1.04 [0.97, 1.12] | 0.23 |
CC | 1258 | (46.06) | 1009 | (46.80) | 11.75 | 0.3828 | 6.4% | 1.00 [0.95, 1.06] | 0.90 |
TT + CT | 1473 | (53.94) | 1147 | (53.20) | 11.24 | 0.4235 | 2.1% | 1.00 [0.95, 1.05] | 0.90 |
CC + CT | 2409 | (88.21) | 1857 | (86.13) | 13.30 | 0.2745 | 17.3% | 1.02 [1.00, 1.04] | 0.052 |
T | 897.5 | (32.86) | 723 | (33.53) | 6.66 | 0.8262 | 0% | 0.97 [0.90, 1.05] | 0.44 |
C | 1833.5 | (67.14) | 1433 | (66.47) | 7.30 | 0.7742 | 0% | 1.02 [0.98, 1.06] | 0.44 |
TT Risk~1 (24) 3 | 8934 | (30.08) | 6459 | (20.82) | |||||
TT | 975 | (10.91) | 680 | (10.53) | 18.02 | 0.7562 | 0% | 0.99 [0.90, 1.09] | 0.86 |
CT | 3906 | (43.72) | 2724 | (42.17) | 16.19 | 0.8468 | 0% | 1.01 [0.97, 1.05] | 0.73 |
CC | 4053 | (45.37) | 3055 | (47.30) | 17.43 | 0.7875 | 0% | 1.00 [0.96, 1.03] | 0.81 |
TT + CT | 4881 | (54.63) | 3404 | (52.70) | 16.51 | 0.8325 | 0% | 1.00 [0.97, 1.04] | 0.81 |
CC + CT | 7959 | (89.09) | 5779 | (89.47) | 18.51 | 0.7295 | 0% | 1.00 [0.99, 1.01] | 0.86 |
T | 2928 | (32.77) | 2042 | (31.61) | 8.89 | 0.9963 | 0% | 1.00 [0.95, 1.05] | 0.95 |
C | 6006 | (67.23) | 4417 | (68.39) | 9.19 | 0.9953 | 0% | 1.00 [0.98, 1.02] | 0.95 |
Variable | Partition Tree | Tukey’s Test | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
AICc | AP Death Levels | Count | Mean | SD | Levels Compared | Difference | SE Difference | Lower CI | Upper CI | p | |
TT%ct | 802 | 2 | 34 | 6.6 | 7.0 | 4/2 | 5.1 | 1.4 | 1.8 | 8.4 | 0.0011 |
3 and 4 | 89 | 11 | 6.0 | 3/2 | 4.5 | 1.5 | 1.1 | 8.0 | 0.0064 | ||
4/3 | 0.6 | 1.3 | −2.6 | 3.7 | 0.91 | ||||||
TT%ca | 857 | 2 and 3 | 74 | 11 | 6.8 | 4/2 | 6.1 | 1.7 | 1.9 | 10 | 0.0019 |
4 | 49 | 16 | 9.0 | 4/3 | 4.4 | 1.7 | 0.5 | 9.3 | 0.0251 | ||
3/2 | 1.7 | 1.8 | −2.6 | 6.0 | 0.63 | ||||||
CT%ct | 894 | 2 | 34 | 32 | 13 | 3/2 | 11 | 2.1 | 6.3 | 16 | <0.0001 |
3 and 4 | 89 | 43 | 7.0 | 4/2 | 9.9 | 2.0 | 5.1 | 15 | <0.0001 | ||
3/4 | 1.4 | 1.9 | −3.2 | 6.0 | 0.75 | ||||||
CT%ca | 887 | 2 | 34 | 39 | 12 | 4/2 | 8.0 | 2.0 | 3.3 | 13 | 0.0002 |
3 and 4 | 89 | 44 | 6.9 | 3/2 | 6.9 | 2.1 | 2.0 | 12 | 0.0031 | ||
4/3 | 1.1 | 1.9 | −3.3 | 5.6 | 0.82 | ||||||
CC%ct | 983 | 2 | 34 | 61 | 18 | 2/3 | 16 | 3.0 | 8.6 | 23 | <0.0001 |
3 and 4 | 89 | 46 | 11 | 2/4 | 15 | 2.9 | 8.1 | 22 | <0.0001 | ||
4/3 | 0.8 | 2.8 | −5.7 | 7.4 | 0.95 | ||||||
CC%ca | 997 | 2 | 34 | 53 | 18 | 2/4 | 14 | 3.0 | 6.9 | 21 | <0.0001 |
3 and 4 | 89 | 42 | 12 | 2/3 | 8.6 | 3.2 | 1.1 | 16 | 0.0211 | ||
3/4 | 5.5 | 2.9 | −1.3 | 12 | 0.14 | ||||||
TT + CT%ct | 983 | 2 | 34 | 39 | 18 | 3/2 | 16 | 3.0 | 8.6 | 23 | <0.0001 |
3 and 4 | 89 | 54 | 11 | 4/2 | 15 | 2.9 | 8.1 | 22 | <0.0001 | ||
3/4 | 0.8 | 2.8 | −5.7 | 7.4 | 0.9499 | ||||||
TT + CT%ca | 997 | 2 | 34 | 47 | 18 | 4/2 | 14 | 3.0 | 6.9 | 21 | <0.0001 |
89 | 58 | 12 | 3/2 | 8.6 | 3.2 | 1.1 | 16 | 0.0211 | |||
4/3 | 5.5 | 2.9 | −1.3 | 12 | 0.1410 | ||||||
RRTT | 373 | 2 | 29 | 1.8 | 1.7 | 2/3 | 0.6 | 0.3 | −0.1 | 1.2 | 0.11 |
3 and 4 | 89 | 1.4 | 0.9 | 2/4 | 0.3 | 0.3 | −0.3 | 1.0 | 0.42 | ||
4/3 | 0.2 | 0.3 | −0.4 | 0.8 | 0.60 | ||||||
RRCT | 137 | 2 | 34 | 1.3 | 0.8 | 2/3 | 0.3 | 0.1 | 0.1 | 0.6 | 0.0031 |
3 and 4 | 89 | 1.1 | 0.2 | 2/4 | 0.3 | 0.1 | 0.03 | 0.5 | 0.0244 | ||
4/3 | 0.1 | 0.1 | −0.1 | 0.3 | 0.65 | ||||||
RRTT + CT | 156 | 2 | 34 | 1.4 | 0.8 | 2/3 | 0.4 | 0.1 | 0.2 | 0.6 | 0.0007 |
3 and 4 | 89 | 1.1 | 0.2 | 2/4 | 0.3 | 0.1 | 0.04 | 0.5 | 0.0200 | ||
4/3 | 0.1 | 0.1 | −0.1 | 0.4 | 0.40 | ||||||
RRCC | −84 | 2 and 3 | 74 | 0.9 | 0.2 | 3/4 | 0.2 | 0.04 | 0.1 | 0.2 | 0.0001 |
4 | 49 | 0.9 | 0.2 | 3/2 | 0.1 | 0.04 | 0.03 | 0.2 | 0.0041 | ||
2/4 | 0.02 | 0.04 | −0.1 | 0.1 | 0.81 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, Z.-F.; Young, L.; Yu, C.H.; Shiao, S.P.K. A Meta-Prediction of Methylenetetrahydrofolate-Reductase Polymorphisms and Air Pollution Increased the Risk of Ischemic Heart Diseases Worldwide. Int. J. Environ. Res. Public Health 2018, 15, 1453. https://doi.org/10.3390/ijerph15071453
Chen Z-F, Young L, Yu CH, Shiao SPK. A Meta-Prediction of Methylenetetrahydrofolate-Reductase Polymorphisms and Air Pollution Increased the Risk of Ischemic Heart Diseases Worldwide. International Journal of Environmental Research and Public Health. 2018; 15(7):1453. https://doi.org/10.3390/ijerph15071453
Chicago/Turabian StyleChen, Zhao-Feng, Lufei Young, Chong Ho Yu, and S. Pamela K. Shiao. 2018. "A Meta-Prediction of Methylenetetrahydrofolate-Reductase Polymorphisms and Air Pollution Increased the Risk of Ischemic Heart Diseases Worldwide" International Journal of Environmental Research and Public Health 15, no. 7: 1453. https://doi.org/10.3390/ijerph15071453
APA StyleChen, Z.-F., Young, L., Yu, C. H., & Shiao, S. P. K. (2018). A Meta-Prediction of Methylenetetrahydrofolate-Reductase Polymorphisms and Air Pollution Increased the Risk of Ischemic Heart Diseases Worldwide. International Journal of Environmental Research and Public Health, 15(7), 1453. https://doi.org/10.3390/ijerph15071453