Within and between Individual Variability of Exposure to Work-Related Musculoskeletal Disorder Risk Factors
Abstract
:1. Introduction
2. Materials and Methods
2.1. The Context of the Study
2.2. Data Collection
- Repetition
- Posture including work posture, access-hidden assembly, clearance for hand-finger, workspace for hand, handgrip, surface area for pressure, component size, static back posture, static neck posture, static shoulder posture, wrist posture
- Material-handling including two-handed lifts and one-handed lifts
- Force including pushing/pulling (whole body force), pushing/pulling with the hand/arm, pushing/pulling with finger
- Energy consumption including movement (continuous steps), climbing/stepping over, and tightening torque.
3. Results
3.1. Variability between Operators
3.2. Within-Operator Variability
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Sultan-Taïeb, H.; Parent-Lamarche, A.; Gaillard, A.; Stock, S.; Nicolakakis, N.; Hong, Q.N.; Vezina, M.; Coulibaly, Y.; Vézina, N.; Berthelette, D. Economic evaluations of ergonomic interventions preventing work-related musculoskeletal disorders: A systematic review of organizational-level interventions. BMC Public Health 2017, 17, 935. [Google Scholar] [CrossRef] [PubMed]
- Driessen, M.T.; Proper, K.I.; Van Tulder, M.W.; Anema, J.R.; Bongers, P.M.; van der Beek, A.J. The effectiveness of physical and organisational ergonomic interventions on low back pain and neck pain: A systematic review. Occup. Environ. Med. 2010, 67, 277–285. [Google Scholar] [CrossRef] [PubMed]
- Stock, S.R.; Nicolakakis, N.; Vezina, N.; Vezina, M.; Gilbert, L.; Turcot, A.; Sultan-Taïeb, H.; Sinden, K.; Denis, M.-A.; Delga, C.; et al. Are work organization interventions effective in preventing or reducing work-related musculoskeletal disorders? A systematic review of the literature. Scand. J. Work Environ. Health 2017. [Google Scholar] [CrossRef] [PubMed]
- Mathiassen, S.E. Diversity and variation in biomechanical exposure: What is it, and why would we like to know? Appl. Ergon. 2006, 37, 419–427. [Google Scholar] [CrossRef] [PubMed]
- Rissén, D.; Melin, B.; Sandsjö, L.; Dohns, I.; Lundberg, U. Psychophysiological stress reactions, trapezius muscle activity, and neck and shoulder pain among female cashiers before and after introduction of job rotation. Work Stress 2002, 16, 127–137. [Google Scholar] [CrossRef]
- Luger, T.; Bosch, T.; Veeger, D.; De Looze, M. The influence of task variation on manifestation of fatigue is ambiguous—A literature review. Ergonomics 2014, 57, 162–174. [Google Scholar] [CrossRef] [PubMed]
- Luger, T.; Bosch, T.; Hoozemans, M.J.M.; Veeger, D.H.E.J.; de Looze, M.P. Is rotating between static and dynamic work beneficial for our fatigue state? J. Electromyogr. Kinesiol. 2016, 28, 104–113. [Google Scholar] [CrossRef] [PubMed]
- Leider, P.C.; Boschman, J.S.; Frings-Dresen, M.H.W.; Van Der Molen, H.F. Effects of job rotation on musculoskeletal complaints and related work exposures: A systematic literature review. Ergonomics 2015, 58, 18–32. [Google Scholar] [CrossRef] [PubMed]
- Srinivasan, D.; Mathiassen, S.E. Motor variability in occupational health and performance. Clin. Biomech. 2012, 27, 979–993. [Google Scholar] [CrossRef] [PubMed]
- Sandlund, J.; Srinivasan, D.; Heiden, M.; Mathiassen, S.E. Differences in motor variability among individuals performing a standardized short-cycle manual task. Hum. Mov. Sci. 2017, 51, 17–26. [Google Scholar] [CrossRef] [PubMed]
- Madeleine, P.; Voigt, M.; Mathiassen, S.E. The size of cycle-to-cycle variability in biomechanical exposure among butchers performing a standardized cutting task. Ergonomics 2008, 51, 1078–1095. [Google Scholar] [CrossRef] [PubMed]
- Gaudez, C.; Gilles, M.A.; Savin, J. Intrinsic movement variability at work. How long is the path from motor control to design engineering? Appl. Ergon. 2016, 53, 71–78. [Google Scholar] [CrossRef] [PubMed]
- Major, M.-E.; Vézina, N. Analysis of worker strategies: A comprehensive understanding for the prevention of work-related musculoskeletal disorders. Int. J. Ind. Ergon. 2015, 48, 149–157. [Google Scholar] [CrossRef]
- Coutarel, F.; Caroly, S.; Vézina, N.; Daniellou, F. Marge de manœuvre situationnelle et pouvoir d’agir: Des concepts à l’intervention ergonomique. Trav. Hum. 2015, 78, 9–29. [Google Scholar] [CrossRef]
- Vezina, N.; Durand, M.J.; Richard, M.-C.; Calvet, B. Comprendre la marge de manœuvre situationnelle: Une question de retour durable au travail. Arch. Mal. Prof. Environ. 2016, 77, 362–363. [Google Scholar] [CrossRef]
- Major, M.E.; Vézina, N. Elaboration d’un cadre de reference pour l’etude des strategies: Analyse de l’activite et etude de cas multiples dans deux usines de crabe. Perspect. Interdiscip. sur le Travail et la Santé 2011, 13–22. [Google Scholar] [CrossRef]
- Koukoulaki, T. The impact of lean production on musculoskeletal and psychosocial risks: An examination of sociotechnical trends over 20 years. Appl. Ergon. 2014, 45, 198–212. [Google Scholar] [CrossRef] [PubMed]
- Zare, M.; Malinge-Oudenot, A.; Höglund, R.; Biau, S.; Roquelaure, Y. Evaluation of ergonomic physical risk factors in a truck manufacturing plant: Case study in SCANIA production angers. Ind. Health 2016, 54, 163–176. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Roquelaure, Y.; Malchaire, J.; Cock, N.; Martin, Y.H.; Piette, A.; Vergracht, S.; Chiron, H.; Leboulanger, M. Evaluation d’une méthode de quantification de l’activité gestuelle au cours des tâches répétitives de production de mass. Doc. pour le Médecin du Travail 2001, 86, 167–176. [Google Scholar]
- Srinivasan, D.; Rudolfsson, T.; Mathiassen, S.E. Between- and within-subject variance of motor variability metrics in females performing repetitive upper-extremity precision work. J. Electromyogr. Kinesiol. 2015, 25, 121–129. [Google Scholar] [CrossRef] [PubMed]
- Scholz, J.P.; Reisman, D.; Schöner, G. Effects of varying task constraints on solutions to joint coordination in a sit-to-stand task. Exp. Brain Res. 2001, 141, 485–500. [Google Scholar] [CrossRef] [PubMed]
- Norval, M.; Zare, M.; Brunet, R.; Coutarel, F.; Roquelaure, Y. Operational leeway in work situations: Do ergonomic risk assessment tools consider operational leeway for job analysis? Int. J. Occup. Saf. Ergon. 2018, 1–14. [Google Scholar] [CrossRef] [PubMed]
Workstation | Number of Tasks | Task Description | Truck Type | Occurrence Rate of the Truck (%) | Red 1 n (%) | Yellow 1 n (%) | Final Workstation Color | Principle Risk Factors |
---|---|---|---|---|---|---|---|---|
Preparation of Bumper | 17 | Bumper pre-assembly near the line | Standard | 80 | 4 (20) | 7 (35) | Green | Force exertion, awkward posture |
Mounting Selective Catalytic Reduction (SCR) Tank | 38 | SCR Tank assembly preparation of lighting box | Standard | 65 | 7 (35) | 8 (40) | Red | Force exertion, heavy material handling, repetitions |
Age (years) | Experience in the Current Job (years) | Height (cm) | Number of Assessment | Assessment Day | |
---|---|---|---|---|---|
«Mounting Selective Catalytic Reduction (SCR) Tank» workstation | |||||
Operator 1 | 43 | 22 | 168 | 7 | Monday, Tuesday, Wednesday |
Operator 2 | 34 | 4 | 171 | 8 | Tuesday, Friday |
Operator 3 | 27 | 2 | 180 | 2 | Monday |
Operator 4 | 31 | 3 | 169 | 2 | Tuesday |
«Preparation of Bumper» workstation | |||||
Operator 1 | 50 | 11 | 181 | 5 | Tuesday |
Operator 2 | 35 | 8 | 175 | 4 | Wednesday |
Operator 3 | 31 | 12 | 170 | 2 | Wednesday |
Risk Factors | OP * [18] | OP1 | OP2 | OP3 | OP4 |
---|---|---|---|---|---|
Repetition | |||||
Work posture | |||||
Access, hidden assembly ** | |||||
Clearance for hand, finger | |||||
Workspace for hands | |||||
Hand Grip | |||||
Surface area for pressure ** | |||||
Component size | |||||
Static back posture | |||||
Static neck posture ** | |||||
Static shoulder posture ** | |||||
Wrist posture | |||||
Two-handed lifts ** | |||||
One-handed lifts | |||||
Pushing/Pulling Force—Whole Body | |||||
Pushing/pulling with the hand, arm ** | |||||
Pushing/pulling fingers | |||||
Movement (continuous steps) ** | |||||
Climbing/stepping over | |||||
Tightening torque | |||||
Total number of Yellow | 7 | 8 | 4 | 3 | 7 |
Total number of Red | 8 | 8 | 13 | 12 | 8 |
Risk Factors | OP * [18] | OP1 | OP2 | OP3 |
---|---|---|---|---|
Repetition | ||||
Work posture | ||||
Access, hidden assembly ** | ||||
Clearance for hand, finger or tool ** | ||||
Workspace for hands | ||||
Hand Grip | ||||
Surface area for pressure | ||||
Component size | ||||
Static back posture | ||||
Static neck posture ** | ||||
Static shoulder posture | ||||
Wrist posture | ||||
Two-handed lifts | ||||
One-handed lifts ** | ||||
Pushing/Pulling Force—Whole Body | ||||
Pushing/pulling with the hand, arm | ||||
Pushing/pulling fingers | ||||
Movement (continuous steps) | ||||
Climbing/stepping over | ||||
Tightening torque | ||||
Total number of Yellow | 7 | 7 | 5 | 8 |
Total number of Red | 4 | 6 | 6 | 4 |
Operator 1 | ||||||||
Consecutive Assessment Day | Monday | Tuesday | Wednesday | |||||
Repeated Cycle Time | CT1 | CT2 | CT3 | CT4 | CT5 | CT6 | CT7 | |
Access, hidden assembly | ||||||||
Static back posture | ||||||||
Static shoulder posture | ||||||||
Pushing/pulling with the hand, arm | ||||||||
Movement (continuous steps) | ||||||||
Operator 2 | ||||||||
Consecutive Assessment Day | Tuesday | Friday | ||||||
Repeated Cycle Time | CT1 | CT2 | CT3 | CT4 | CT5 | CT6 | CT7 | CT8 |
Access, hidden assembly | ||||||||
Surface area for pressure | ||||||||
Static shoulder posture | ||||||||
Pushing/pulling with the hand, arm | ||||||||
Pushing/pulling fingers | ||||||||
Movement (continuous steps) | ||||||||
Operator 3 | ||||||||
Consecutive Assessment Day | Monday | |||||||
Repeated Cycle Time | CT1 | CT2 | ||||||
Access, hidden assembly | ||||||||
Static shoulder posture | ||||||||
Pushing/pulling with the hand, arm | ||||||||
Operator 4 | ||||||||
Consecutive Assessment Day | Tuesday | |||||||
Repeated Cycle Time | CT1 | CT2 | ||||||
Static back posture | ||||||||
Pushing/pulling with the hand, arm |
Operator 1 | |||||
Consecutive Assessment Day | Tuesday | ||||
Repeated Cycle Time | CT1 | CT2 | CT3 | CT4 | CT5 |
Access, hidden assembly | |||||
Clearance for hand, finger or tool | |||||
Static neck posture | |||||
Operator 2 | |||||
Consecutive Assessment Day | Wednesday | ||||
Repeated Cycle Time | CT1 | CT2 | CT3 | CT4 | |
One-handed lifts | |||||
Pushing/Pulling Force—Whole Body | |||||
Operator 3 | |||||
Consecutive Assessment Day | Wednesday | ||||
Repeated Cycle Time | CT1 | CT2 | |||
Access, hidden assembly | |||||
Static back posture |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zare, M.; Sagot, J.-C.; Roquelaure, Y. Within and between Individual Variability of Exposure to Work-Related Musculoskeletal Disorder Risk Factors. Int. J. Environ. Res. Public Health 2018, 15, 1003. https://doi.org/10.3390/ijerph15051003
Zare M, Sagot J-C, Roquelaure Y. Within and between Individual Variability of Exposure to Work-Related Musculoskeletal Disorder Risk Factors. International Journal of Environmental Research and Public Health. 2018; 15(5):1003. https://doi.org/10.3390/ijerph15051003
Chicago/Turabian StyleZare, Mohsen, Jean-Claude Sagot, and Yves Roquelaure. 2018. "Within and between Individual Variability of Exposure to Work-Related Musculoskeletal Disorder Risk Factors" International Journal of Environmental Research and Public Health 15, no. 5: 1003. https://doi.org/10.3390/ijerph15051003
APA StyleZare, M., Sagot, J.-C., & Roquelaure, Y. (2018). Within and between Individual Variability of Exposure to Work-Related Musculoskeletal Disorder Risk Factors. International Journal of Environmental Research and Public Health, 15(5), 1003. https://doi.org/10.3390/ijerph15051003