Chemical and Microbial Quality of Groundwater in Siloam Village, Implications to Human Health and Sources of Contamination
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Methods
3. Results
3.1. Groundwater Quality and Implications to Human Health
3.2. ANOVA and Correlations
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- André, L.; Franceschi, M.; Pouchan, P.; Atelia, O. Using geochemical data and modelling to enhance the understanding of groundwater flow in a regional deep aquifer, Aquitaine Basin, South-West of France. J. Hydrol. 2005, 305, 40–62. [Google Scholar] [CrossRef]
- Sherman, H.M. The Assessment of Groundwater Quality in Rural Communities: Two Case Studies from KwaZulu-Natal. Master’s Thesis, University of Natal, Durban, South Africa, 1998. [Google Scholar]
- Esterhuizen, L.; Fossey, A.; Potgieter, E. Groundwater quality on dairy farms in central South Africa. Water SA 2015, 41, 194–198. [Google Scholar] [CrossRef]
- Ncube, E.J. The Distribution of Fluoride in South African Groundwater and the Impact There of on Dental Health. Master’s Thesis, University of Pretoria, Pretoria, South Africa, 2006. [Google Scholar]
- Dedzo, M.G.; Tsozué, D.; Mimba, M.E.; Tedd, F.; Nembungwe, R.M.; Linida, S. Importance of rocks and their weathering products on groundwater quality in Central-East Cameroon. Hydrology 2017, 4, 23. [Google Scholar] [CrossRef]
- Basavarajappa, H.T.; Manjunatha, M.C.; Pushpavathi, K.N. Rock-water interaction and chemical quality analysis of groundwater in hard rock terrain of Chamrajanagara District, Karnataka, India using geoinformatics. J. Org. Inorg. Chem. 2015, 1, 1–11. [Google Scholar]
- DWA. Groundwater Strategy 2010; Department of Water Affairs: Pretoria, South Africa, 2010; p. 64.
- Graham, J.P.; Matthew, L.P. Pit latrines and their impacts on groundwater quality: A systematic review. Environ. Health Perspect. 2013, 121, 521–530. [Google Scholar] [CrossRef] [PubMed]
- Holland, M. Hydrogeological Characterisation of Crystalline Basement Aquifers within the Limpopo Province, South Africa. Ph.D. Thesis, University of Pretoria, Pretoria, South Africa, 2011. [Google Scholar]
- Potgieter, N.; Mudau, L.S.; Maluleke, F.R.S. Microbiological quality of groundwater sources used by rural communities in Limpopo Province, South Africa. Water Sci. Technol. 2006, 54, 371–377. [Google Scholar] [CrossRef] [PubMed]
- Dzwairo, B.; Hoko, Z.; Love, D.; Guzha, E. Assessment of the impacts of pit latrines on groundwater quality in rural areas: A case study from Marondera district, Zimbabwe. Phys. Chem. Earth 2006, 31, 779–788. [Google Scholar] [CrossRef]
- Adekunle, I.M.; Adetunji, M.T.; Gbadebo, A.M.; Banjoko, O.B. Assessment of groundwater quality in a typical rural settlement in Southwest Nigeria. Int. J. Environ. Res. Public Health 2007, 4, 307–318. [Google Scholar] [CrossRef] [PubMed]
- Sorensen, J.P.R.; Sadhu, A.; Sampath, G.; Sugden, S.; Gupta, S.D.; Lapworth, D.J.; Marchant, B.P.; Pedley, S. Are sanitation interventions a threat to drinking water supplies in rural India? An application of tryptophan-like fluorescence. Water Res. 2016, 88, 923–932. [Google Scholar] [CrossRef] [PubMed]
- Mzuga, J.M.; Tole, M.P.; Ucakuwun, E.K. The impact of geology and pit latrines on groundwater quality in Kwale District. In Dunes, Groundwater, Mangroves and Birdlife in Coastal Kenya; Hoorweg, J., Ed.; Acts Press: Nairobi, Kenya, 1998; pp. 85–96. ISBN 9966-41-101-1. [Google Scholar]
- Odiyo, J.O.; Makungo, R. Water Quality Problems and Management in Rural Areas of Limpopo Province, South Africa, Water Pollution XI; WIT Transactions on Ecology and the Environment: Southampton, UK, 2012; Volume 164, pp. 135–146. [Google Scholar]
- Odiyo, J.O.; Makungo, R. Fluoride concentrations in groundwater and human health impact in Siloam Village, Limpopo Province, South Africa. Water SA 2012, 38, 731–736. [Google Scholar] [CrossRef]
- Patel, J.Y.; Vaghani, M.V. Correlation study for assessment of water quality and its parameters of par river Valsad, Gujarat, India. IJIERE 2015, 2, 150–156. [Google Scholar]
- Ashton, P.; Love, D.; Mahachi, H.; Dirks, P. An Overview of the Impacts of Mining and Mineral Processing Operations on Water Resources and Water Quality in the Zambezi, Limpopo and Olifants Catchments in Southern Africa; MMSD Southern Africa Research Reports, Report No. ENV-P-C 2001-042; International Institute for Environment and Development: London, UK, 2001; p. 336. [Google Scholar]
- Du Toit, W.H.; Mulin, H.; Jonck, F. 1:500,000 Hydrogeological Map Series of the Republic of South Africa, Messina 2230, 1st ed.; DWAF: Pretoria, South Africa, 2002. [Google Scholar]
- Busari, O. Groundwater in the Limpopo Basin: Occurrence, use and impact. Environ. Dev. Sustain. 2008, 10, 943–957. [Google Scholar] [CrossRef]
- DWAF; DoH; WRC. Volume 1: Assessment Guide. In Quality of Domestic Water Supplies, 2nd ed.; Water Research Commission No: TT 101/98; DWAF: Pretoria, South Africa, 1998. [Google Scholar]
- DWAF; DoH; WRC. Volume 2: Sampling Guide. In Quality of Domestic Water Supplies, 1st ed.; Water Research Commission No: TT 117/99; DWAF: Pretoria, South Africa, 2000. [Google Scholar]
- DWAF. Volume 1: Domestic water use. In South African Water Quality Guidelines, 2nd ed.; DWAF: Pretoria, South Africa, 1996; p. 216. [Google Scholar]
- Reza, R.; Singh, S. Groundwater quality status with respect to fluoride contamination in industrial area of Angul District Orissa India. Indian J. Sci. Res. Technol. 2013, 1, 54–61. [Google Scholar]
- Alagumuthu, G.; Rajan, M. Monitoring of fluoride concentration in groundwater of Kadayam Block of Tirunelveli District, India: Correlation with physico-chemical parameters. Rasayan J. Chem. 2008, 1, 920–928. [Google Scholar]
- Mudau, T.C. Effects of Pit Latrines Location on Groundwater of Nzhelele Village within Limpopo Province. Ph.D. Thesis, University of Venda, Thohoyandou, South Africa, 2011. [Google Scholar]
- Misi, A. 2016 Assessment of Groundwater Potential and Vulnerability in the Upper Manyame Sub-Catchment of Zimbabwe. Master’s Thesis, University of Zimbabwe, Harare, Zimbabwe, 2016. [Google Scholar]
- Sharma, R.; Shah, S.; Mahanta, C. Hydrochemical study of groundwater fluoride. Asian J. Water Environ. Pollut. 2005, 2, 47–54. [Google Scholar]
- Chakrabarty, S.; Sarma, H.P. Fluoride geochemistry of groundwater in parts of Brahmaputra flood plain in Kamrup district, Assam, India. Arch. Appl. Sci. Res. 2011, 3, 37–44. [Google Scholar]
- Chakraborti, D.; Chanda, C.R.; Samanta, G.; Chowdhury, U.K.; Mukherjee, S.C.; Pal, A.B. Fluorosis in Assam, India. Curr. Sci. 2000, 78, 1421–1423. [Google Scholar]
- Dutta, J.; Nath, M.; Chetia, M.; Misra, A.K. Monitoring of fluoride concentration in ground water of Small Tea Gardens in Sonitpur District, Assam, India: Correlation with physico-chemical parameters. Int. J. ChemTech Res. 2010, 2, 1199–1208. [Google Scholar]
- Avtar, A.; Kumar, P.; Surjan, A.; Gupta, L.N.; Roychowdhury, K. Geochemical processes regulating groundwater chemistry with special reference to nitrate and fluoride enrichment in Chhatarpur area, Madhya Pradesh, India. Environ. Earth Sci. 2013, 70, 1699–1708. [Google Scholar] [CrossRef]
- Liu, M.; Mande, S.-L.A.-S.; Zhang, Y.; Chen, H. Geochemical evaluation and nitrate in groundwater: A case study from Qinkenpao area, Daqing, China. Afr. J. Agric. Res. 2014, 2, 2992–3000. [Google Scholar]
- Dobaradaran, S.; Mahvi, A.M.; Dehdashti, S.; Dobaradaran, S.; Shoara, R. Correlation of fluoride with some inorganic constituents in groundwater of Dashtestan, Iran. Fluoride 2009, 42, 50–53. [Google Scholar]
- Umarani, P.; Ramu, A. Fluoride contamination status of groundwater in East Coastal area in Tamilnadu, India. IJIRSET 2014, 3, 10045–10051. [Google Scholar]
- Nephalama, A.; Muzerengi, C. Assessment of the influence of coal mining on groundwater quality: Case of Masisi Village in the Limpopo Province of South Africa. In Proceedings of the Freiberg/Germany, Mining Meets Water—Conflicts and Solutions (IMWA 2016), Leipzig, Germany, 11–15 July 2016; pp. 430–438. [Google Scholar]
- Alvi, S.K.; Khan, F.A.; Siddiqui, I.U.; Usmani, T.H.; Mahmood, S.N. Nitrate/nitrate contamination in groundwater of Karachi and its correlation with other physicochemical parameters. J. Chem. Soc. Pak. 2005, 27, 490–495. [Google Scholar]
- Mukhumo, V. Investigating Suitability of Groundwater for Domestic Use in Siloam Village. Honours Dissertation, University of Venda, Thohoyandou, South Africa, 2014. [Google Scholar]
- Xu, Y.; Braune, E. Minimum distance as an important concept for borehole source protection in South Africa. In Proceedings of the Ground Water 1995 Conference, Midrand, South Africa, 26–28 September 1995. [Google Scholar]
- Bessong, P.O.; Odiyo, J.O.; Musekene, N.J.; Tessema, A. Spatial distribution of diarrhoea and microbial quality of domestic water during an outbreak of diarrhoea in the Tshikuwi Community in Venda, South Africa. J. Health Popul. Nutr. 2009, 27, 652–659. [Google Scholar] [CrossRef] [PubMed]
- Mpenyana-Monyatsi, L.; Onyango, M.S.; Momba, M.N.B. Groundwater quality in a South African rural community: A possible threat to public health. Pol. J. Environ. Stud. 2012, 21, 1349–1358. [Google Scholar]
- Palamuleni, L.; Akoth, M. Physico-chemical and microbial analysis of selected borehole water in Mahikeng, South Africa. Int. J. Environ. Res. Public Health 2015, 12, 8619–8630. [Google Scholar] [CrossRef] [PubMed]
Parameter | Descriptive Statistic | August 2013 | September 2013 | October 2013 | November 2013 | December 2013 | January 2014 | TWQR |
---|---|---|---|---|---|---|---|---|
pH | Min | 7.14 | 7.27 | 7.22 | 7.00 | 7.26 | 6.83 | 6–9 |
Max | 9.06 | 8.88 | 8.86 | 9.08 | 9.29 | 9.28 | ||
Mean | 7.68 | 7.87 | 7.75 | 7.83 | 7.88 | 7.86 | ||
STDEV | 0.53 | 0.54 | 0.69 | 0.83 | 0.64 | 0.89 | ||
Turbidity (NTU) | Min | 0.00 | 0.00 | 0.01 | 0.00 | 0.00 | 0.00 | 1 |
Max | 25.91 | 0.89 | 0.55 | 0.47 | 0.69 | 11.85 | ||
Mean | 2.54 | 0.17 | 0.18 | 0.09 | 0.19 | 1.80 | ||
STDEV | 7.77 | 0.27 | 0.23 | 0.15 | 0.26 | 3.97 | ||
EC (mS/m) | Min | 34.90 | 36.60 | 43.80 | 36.10 | 23.68 | 30.10 | 70 |
Max | 141.80 | 156.60 | 158.80 | 141.00 | 151.70 | 139.90 | ||
Mean | 81.96 | 90.83 | 86.02 | 84.68 | 85.63 | 90.33 | ||
STDEV | 38.10 | 43.07 | 40.94 | 33.95 | 43.77 | 42.27 | ||
Fluoride (mg/L) | Min | 0.00 | 1.40 | 1.52 | 1.51 | 1.17 | 1.34 | 1 |
Max | 6.74 | 5.41 | 5.85 | 5.84 | 6.16 | 5.89 | ||
Mean | 3.82 | 3.69 | 4.60 | 4.01 | 3.82 | 4.16 | ||
STDEV | 2.41 | 1.64 | 1.59 | 1.92 | 2.01 | 1.64 | ||
Chloride (mg/L) | Min | 5.73 | 0.00 | 0.00 | 0.00 | 24.89 | 0.00 | 100 |
Max | 1177.40 | 223.58 | 223.13 | 198.22 | 296.27 | 410.86 | ||
Mean | 198.01 | 83.40 | 99.61 | 87.84 | 134.12 | 160.56 | ||
STDEV | 332.66 | 69.43 | 83.88 | 67.23 | 95.93 | 145.55 | ||
Min | 0.22 | 6.77 | 10.10 | 2.66 | 6.10 | 7.92 | ||
Sulphate (mg/L) | Max | 188.36 | 64.18 | 365.36 | 313.79 | 174.58 | 404.01 | 200 |
Mean | 34.45 | 24.07 | 80.20 | 43.75 | 44.99 | 70.12 | ||
STDEV | 53.14 | 20.33 | 140.29 | 95.30 | 54.39 | 126.57 | ||
Nitrate (mg/L) | Min | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 6 |
Max | 137.04 | 409.93 | 65.51 | 209.94 | 596.42 | 543.27 | ||
Mean | 40.96 | 88.69 | 34.43 | 45.57 | 99.99 | 107.63 | ||
STDEV | 48.36 | 129.86 | 25.76 | 64.61 | 193.17 | 175.59 |
Parameter | Descriptive Statistic | August 2013 | September 2013 | October 2013 | November 2013 | December 2013 | January 2014 | TWQR |
---|---|---|---|---|---|---|---|---|
Magnesium (mg/L) | Min | 0.33 | 0.33 | 5.46 | 0.09 | 0.54 | 1.08 | 30 |
Max | 10.86 | 11.19 | 11.26 | 11.22 | 10.57 | 11.27 | ||
Mean | 7.98 | 8.35 | 9.29 | 8.32 | 8.34 | 8.14 | ||
STDEV | 3.64 | 3.82 | 2.07 | 3.61 | 3.20 | 3.96 | ||
Manganese (mg/L) | Min | 0.01 | 0.01 | 0.00 | 0.01 | 0.01 | 0.01 | 0.05 |
Max | 0.04 | 0.56 | 0.10 | 0.14 | 0.27 | 0.23 | ||
Mean | 0.02 | 0.09 | 0.02 | 0.04 | 0.06 | 0.05 | ||
STDEV | 0.01 | 0.17 | 0.04 | 0.05 | 0.09 | 0.07 | ||
Potassium (mg/L) | Min | 0.30 | 0.38 | 0.45 | 0.34 | 0.00 | 0.76 | 50 |
Max | 4.67 | 5.84 | 3.94 | 7.70 | 8.67 | 7.30 | ||
Mean | 2.01 | 2.12 | 1.78 | 2.89 | 2.36 | 2.77 | ||
STDEV | 1.48 | 1.95 | 1.27 | 2.70 | 2.96 | 2.04 | ||
Copper (mg/L) | Min | 0.00 | 0.00 | 0.01 | 0.01 | 0.00 | 0.01 | 1 |
Max | 0.02 | 0.02 | 0.09 | 0.04 | 0.01 | 0.21 | ||
Mean | 0.01 | 0.00 | 0.02 | 0.02 | 0.01 | 0.03 | ||
STDEV | 0.01 | 0.01 | 0.03 | 0.01 | 0.00 | 0.07 | ||
Zinc (mg/L) | Min | 0.00 | 0.00 | 0.01 | 0.00 | 0.00 | 0.01 | 3 |
Max | 0.05 | 0.30 | 0.84 | 0.37 | 1.00 | 0.88 | ||
Mean | 0.01 | 0.06 | 0.16 | 0.08 | 0.15 | 0.22 | ||
STDEV | 0.01 | 0.09 | 0.33 | 0.12 | 0.33 | 0.30 | ||
Calcium (mg/L) | Min | 0.03 | 0.00 | 0.05 | 0.07 | 0.00 | 0.02 | 32 |
Max | 4.12 | 1.89 | 5.25 | 4.67 | 3.26 | 5.59 | ||
Mean | 0.78 | 0.38 | 1.40 | 1.44 | 0.77 | 1.35 | ||
STDEV | 1.20 | 0.67 | 2.01 | 1.59 | 1.17 | 1.94 | ||
Iron (mg/L) | Min | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.1 |
Max | 0.00 | 0.01 | 0.00 | 0.06 | 0.14 | 0.17 | ||
Mean | 0.00 | 0.00 | 0.00 | 0.01 | 0.02 | 0.02 | ||
STDEV | 0.00 | 0.00 | 0.00 | 0.02 | 0.05 | 0.06 |
Parameter | p-Value | Statistical Significance |
---|---|---|
pH | 6.69444 × 10−12 | Yes |
EC | 4.1007 × 10−19 | Yes |
Turbidity | 3.03 × 10−2 | Yes |
Fluoride | 7.98306 × 10−15 | Yes |
Chloride | 0.5255362 | No |
Sulphate | 6.17901 × 10−10 | Yes |
Nitrate | 1.28 × 10−4 | Yes |
Manganese | 6.46 × 10−3 | Yes |
Potassium | 1.94 × 10−7 | Yes |
Copper | 0.2159 | No |
Zinc | 0.1658 | No |
Iron | 1.05 × 10−2 | Yes |
Site | Calcuim | pH | Fluoride Ranges |
---|---|---|---|
BH1 | 0.14 | 0.68 | 4.38–6.74 |
BH2 | −0.31 | −0.75 | 5.03–6.40 |
BH3 | −0.94 | −0.94 | 1.70–4.76 |
BH4 | 0.06 | 0.77 | 1.34–1.66 |
BH5 | −0.55 | −0.31 | 1.17–1.57 |
BH6 | 0.12 | −0.15 | 1.46–1.55 |
BH7 | −0.29 | −0.04 | 5.40–5.78 |
BH8 | −0.30 | 0.04 | 4.81–5.89 |
BH9 | −0.39 | 0.11 | 2.69–4.81 |
BH10 | −0.96 | −0.70 | 0.00–2.79 |
BH11 | 0.63 | 0.34 | 4.20–5.77 |
Site | Chloride | Potassium | Distance between Pit Latrines and Boreholes |
---|---|---|---|
BH1 | −0.17 | 0.64 | 35 |
BH2 | −0.61 | 0.01 | 40 |
BH3 | 0.46 | −0.68 | 24, 38, 46 * |
BH4 | 0.99 | −0.02 | 24 |
BH5 | −0.06 | 0.01 | 18 |
BH6 | 0.67 | −0.18 | 47 |
BH7 | 0.99 | 0.48 | 34 |
BH8 | 0.84 | −0.31 | 27 |
BH9 | −0.36 | −0.30 | 45 |
BH10 | −0.35 | −0.42 | 30 |
BH11 | 0.84 | −0.31 | 23.3 |
Site | Sampling Date | Total Coliform | Heterotrophic Bacteria | E. coli | Faecal Coliform |
---|---|---|---|---|---|
TWQR | 0–5 | 0–100 | 0 | 0 | |
BH12 | 14 September 2009 | 211 | NM | 0 | NM |
16 October 2009 | 0 | NM | 71 | NM | |
9 March 2010 | 121 | 365 | 120 | 22 | |
7 April 2010 | 219 | 370 | 130 | 34 | |
BH13 | 14 September 2009 | 54 | NM | 0 | NM |
16 October 2009 | 0 | NM | 0 | NM | |
9 March 2010 | 68 | 249 | 21 | 50 | |
7 April 2010 | 50 | 403 | 11 | 44 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Odiyo, J.O.; Makungo, R. Chemical and Microbial Quality of Groundwater in Siloam Village, Implications to Human Health and Sources of Contamination. Int. J. Environ. Res. Public Health 2018, 15, 317. https://doi.org/10.3390/ijerph15020317
Odiyo JO, Makungo R. Chemical and Microbial Quality of Groundwater in Siloam Village, Implications to Human Health and Sources of Contamination. International Journal of Environmental Research and Public Health. 2018; 15(2):317. https://doi.org/10.3390/ijerph15020317
Chicago/Turabian StyleOdiyo, John Ogony, and Rachel Makungo. 2018. "Chemical and Microbial Quality of Groundwater in Siloam Village, Implications to Human Health and Sources of Contamination" International Journal of Environmental Research and Public Health 15, no. 2: 317. https://doi.org/10.3390/ijerph15020317
APA StyleOdiyo, J. O., & Makungo, R. (2018). Chemical and Microbial Quality of Groundwater in Siloam Village, Implications to Human Health and Sources of Contamination. International Journal of Environmental Research and Public Health, 15(2), 317. https://doi.org/10.3390/ijerph15020317