Toxicity of Naphthalene and Benzene on Tribollium castaneum Herbst
Abstract
:1. Introduction
2. Materials and Methods
2.1. Beetle Cultures
2.2. Mortality Assessments
2.3. Analysis of Naphthalin Balls by Gas Chromatography-Mass Spectrometry (GC-MS)
2.4. Analysis of T. Castaneum by GC-MS
2.5. Gene Expression Assays
2.6. Statistical Analysis
3. Results
3.1. Mortality Assessment
3.2. Gene Expression Analysis
4. Discussion
5. Conclusions
Supplementary Materials
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Stohs, S.J.; Ohia, S.; Bagchi, D. Naphthalene toxicity and antioxidant nutrients. Toxicology 2002, 180, 97–105. [Google Scholar] [CrossRef]
- Wang, Y.; Zeng, Z.; Liu, M. Analysis of naphthalene residues in textile samples by GC-FID using sol-gel-derived SPME fiber. J. Chromatogr. Sci. 2011, 49, 29–34. [Google Scholar] [CrossRef]
- Kokel, D.; Li, Y.; Qin, J.; Xue, D. The nongenotoxic carcinogens naphthalene and para-dichlorobenzene suppress apoptosis in Caenorhabditis elegans. Nat. Chem. Biol. 2006, 2, 338–345. [Google Scholar] [CrossRef] [PubMed]
- Kong, Q.; Zhu, L.; Shen, X. Effect of nutrient conditions on the toxicity of naphthalene to Chlorella pyrenoidosa. J. Environ. Sci. 2011, 23, 307–314. [Google Scholar] [CrossRef]
- Holovská, K., Jr.; Sobeková, A.; Holovská, K.; Lenártová, V.; Javorský, P.; Legáth, J.; Legáth, L.U.; Maretta, M. Antioxidant and detoxifying enzymes in the liver of rats after subchronic inhalation of the mixture of cyclic hydrocarbons. Exp. Toxicol. Pathol. 2005, 56, 377–383. [Google Scholar] [CrossRef] [PubMed]
- Singh, M.P.; Ravi Ram, K.; Mishra, M.; Shrivastava, M.; Saxena, D.K.; Chowdhuri, D.K. Effects of co-exposure of benzene, toluene and xylene to Drosophila melanogaster: Alteration in hsp70, hsp60, hsp83, hsp26, ROS generation and oxidative stress markers. Chemosphere 2010, 79, 577–587. [Google Scholar] [CrossRef] [PubMed]
- U.S. Environmental Protection Agency (EPA). Integrated Risk Information System (IRIS) on Benzene; National Center for Environmental Assessment, Office of Research and Development: Washington, DC, USA. Available online: https://cfpub.epa.gov/ncea/iris/iris_documents/documents/subst/0276_summary.pdf (accessed on 12 May 2016).
- Altincicek, B.; Knorr, E.; Vilcinskas, A. Beetle immunity: Identification of immune-inducible genes from the model insect Tribolium castaneum. Dev. Comp. Immunol. 2008, 32, 585–595. [Google Scholar] [CrossRef] [PubMed]
- Goodman, C.; Stanley, D.; Ringbauer, J., Jr.; Beeman, R.; Silver, K.; Park, Y. A cell line derived from the red flour beetle Tribolium castaneum (Coleoptera: Tenebrionidae). In Vitro Cell Dev. Biol. Anim. 2012, 48, 426–433. [Google Scholar] [CrossRef] [PubMed]
- Tribolium Genome Sequencing Consortium (TGSC). The genome of the model beetle and pest Tribolium castaneum. Nature 2008, 452, 949–955. [Google Scholar]
- Wang, L.; Wang, S.; Li, Y.; Paradesi, M.S.R.; Brown, S.J. BeetleBase: The model organism database for Tribolium castaneum. Nucleic Acid. Res. 2007, 35, D476–D479. [Google Scholar] [CrossRef] [PubMed]
- Brown, S.J.; Shippy, T.D.; Miller, S.; Bolognesi, R.; Beeman, R.W.; Lorenzen, M.D.; Bucher, G.; Wimmer, E.A.; Klingler, M. The Red Flour Beetle, Tribolium castaneum (Coleoptera): A Model for Studies of Development and Pest Biology. Cold Spring Harb. Protoc. 2009, 2009. [Google Scholar] [CrossRef] [PubMed]
- Guilhermino, L.; Diamantino, T.; Silva, C.M.; Soares, A. Acute Toxicity Test with Daphnia magna: An Alternative to Mammals in the Prescreening of Chemical Toxicity? Ecotoxicol. Environ. Saf. 2000, 46, 357–362. [Google Scholar] [CrossRef] [PubMed]
- Caballero-Gallardo, K.; Pino-Benitez, N.; Pajaro-Castro, N.; Stashenko, E.; Olivero-Verbel, J. Plants cultivated in Choco, Colombia, as source of repellents against Tribolium castaneum (Herbst). J. Asia. Pac. Entomol. 2014, 17, 753–759. [Google Scholar] [CrossRef]
- Hernandez-Lambraño, R.; Pajaro-Castro, N.; Caballero-Gallardo, K.; Stashenko, E.; Olivero-Verbel, J. Essential oils from plants of the genus Cymbopogon as natural insecticides to control stored product pests. J. Stored Prod. Res. 2015, 62, 81–83. [Google Scholar] [CrossRef]
- Liu, Z.L.; Goh, S.H.; Ho, S.H. Screening of chinese medicinal herbs for bioactivity against Sitophilus zeamais Motschulsky and Tribolium castaneum (Herbst). J. Stored Prod. Res. 2007, 43, 290–296. [Google Scholar] [CrossRef]
- Negahban, M.; Moharramipour, S.; Sefidkon, F. Fumigant toxicity of essential oil from Artemisia sieberi Besser against three stored-product insects. J. Stored Prod. Res. 2007, 43, 123–128. [Google Scholar] [CrossRef]
- Suthisut, D.; Fields, P.G.; Chandrapatya, A. Fumigant toxicity of essential oils from three Thai plants (Zingiberaceae) and their major compounds against Sitophilus zeamais, Tribolium castaneum and two parasitoids. J. Stored Prod. Res. 2011, 47, 222–230. [Google Scholar] [CrossRef]
- Zapata, N.; Smagghe, G. Repellency and toxicity of essential oils from the leaves and bark of Laurelia sempervirens and Drimys winteri against Tribolium castaneum. Ind. Crops Prod. 2010, 32, 405–410. [Google Scholar] [CrossRef]
- Abbott, W.S. A method of computing the effectiveness of an insecticide. J. Econ. Entomol. 1925, 18, 265–267. [Google Scholar] [CrossRef]
- Parthasarathy, R.; Tan, A.; Sun, Z.; Chen, Z.; Rankin, M.; Palli, S.R. Juvenile hormone regulation of male accessory gland activity in the red flour beetle, Tribolium castaneum. Mech. Dev. 2009, 126, 563–579. [Google Scholar] [CrossRef] [PubMed]
- Vuerinckx, K.; Verlinden, H.; Lindemans, M.; Broeck, J.V.; Huybrechts, R. Characterization of an allatotropin-like peptide receptor in the red flour beetle, Tribolium castaneum. Insect Biochem. Mol. Biol. 2011, 41, 815–822. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.; Tan, A.; Palli, S.R. The function of nuclear receptors in regulation of female reproduction and embryogenesis in the red flour beetle, Tribolium castaneum. J. Insect Physiol. 2010, 56, 1471–1480. [Google Scholar] [CrossRef] [PubMed]
- Lu, Y.; Pang, Y.-P.; Park, Y.; Gao, X.; Yao, J.; Zhang, X.; Zhu, K.Y. Genome organization, phylogenies, expression patterns, and three-dimensional protein models of two acetylcholinesterase genes from the red flour beetle. PLoS ONE 2012, 7, e32288. [Google Scholar] [CrossRef] [PubMed]
- Arya, M.; Shergill, I.S.; Williamson, M.; Gommersall, L.; Arya, N.; Patel, H.R. Basic principles of real-time quantitative PCR. Expert Rev. Mol. Diagn. 2005, 5, 209–219. [Google Scholar] [CrossRef] [PubMed]
- Valasek, M.A.; Repa, J.J. The power of real-time PCR. Adv. Physiol. Educ. 2005, 29, 151–159. [Google Scholar] [CrossRef] [PubMed]
- Wang, F.; Wang, J.; Liu, D.; Su, Y. Normalizing genes for real-time polymerase chain reaction in epithelial and nonepithelial cells of mouse small intestine. Anal. Biochem. 2010, 399, 211–217. [Google Scholar] [CrossRef] [PubMed]
- Edokpolo, B.; Yu, Q.J.; Connell, D. Health risk assessment for exposure to benzene in petroleum refinery environments. Int. J. Environ. Res. Public Health 2015, 12, 595–610. [Google Scholar] [CrossRef] [PubMed]
- The Risk Assessment Information System (RAIS). Formal Toxicity Summary for Naphthalene. Available online: http://rais.ornl.gov/tox/profiles/naphthalene_f_V1.html (accessed on 29 April 2016).
- Gervais, J.L.B.; Buhl, K.; Stone, D. Naphthalene Technical Fact Sheet; National Pesticide Information Center, Oregon State University Extension Services. Available online: http://npic.orst.edu/factsheets/archive/naphtech.html (accessed on 19 May 2017).
- Program, N.T. Toxicology and carcinogenesis studies of naphthalene (CAS No. 91-20-3) in B6C3F1 mice (inhalation studies). Natl. Toxicol. Program Tech. Rep. Ser. 1992, 410, 1–172. [Google Scholar]
- World Health Organization (WHO). Exposure to Benzene: A Major Public Health Concern. Available online: http://www.who.int/ipcs/features/benzene.pdf (accessed on 4 April 2016).
- United States Environmental Protection Agency (EPA). Benzene. Available online: https://www.epa.gov/sites/production/files/2016-09/documents/benzene.pdf (accessed on 15 January 2017).
- Fukami, T.; Katoh, M.; Yamazaki, H.; Yokoi, T.; Nakajima, M. Human cytochrome P450 2A13 efficiently metabolizes chemicals in air pollutants: Naphthalene, styrene, and toluene. Chem. Res. Toxicol. 2008, 21, 720–725. [Google Scholar] [CrossRef] [PubMed]
- Chung, P.P.; Ballard, J.W.O.; Hyne, R.V. Differential survival and reproductive performance across three mitochondrial lineages in Melita plumulosa following naphthalene exposure. Chemosphere 2013, 93, 1064–1069. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Wei, Y.; van Winkle, L.; Zhang, Q.-Y.; Zhou, X.; Hu, J.; Xie, F.; Kluetzman, K.; Ding, X. Generation and characterization of a Cyp2f2-null mouse and studies on the role of CYP2F2 in naphthalene-induced toxicity in the lung and nasal olfactory mucosa. J. Pharmacol. Exp. Ther. 2011, 339, 62–71. [Google Scholar] [CrossRef] [PubMed]
- Lin, C.-Y.; Huang, F.-P.; Ling, Y.S.; Liang, H.-J.; Lee, S.-H.; Hu, M.-Y.; Tsao, P.-N. Use of nuclear magnetic resonance-based metabolomics to characterize the biochemical effects of naphthalene on various organs of tolerant mice. PLoS ONE 2015, 10, e0120429. [Google Scholar] [CrossRef] [PubMed]
- Mukherjee, K.; Twyman, R.M.; Vilcinskas, A. Insects as models to study the epigenetic basis of disease. Prog. Biophys. Mol. Biol. 2015, 118, 69–78. [Google Scholar] [CrossRef] [PubMed]
- Savard, J.; Tautz, D.; Lercher, M.J. Genome-wide acceleration of protein evolution in flies (Diptera). BMC Evol. Biol. 2006, 6, 7. [Google Scholar] [CrossRef] [PubMed]
- United States Environmental Protection Agency (EPA). Health Effects Support Document for Naphthalene. Available online: https://www.epa.gov/sites/production/files/2014-09/documents/support_cc1_naphthalene_healtheffects.pdf (accessed on 20 May 2016).
- McHale, C.M.; Zhang, L.; Lan, Q.; Vermeulen, R.; Li, G.; Hubbard, A.E.; Porter, K.E.; Thomas, R.; Portier, C.J.; Shen, M.; et al. Global gene expression profiling of a population exposed to a range of benzene levels. Environ. Health Perspect 2011, 119, 628–640. [Google Scholar] [CrossRef] [PubMed]
- Heijne, W.H.M.; Jonker, D.; Stierum, R.H.; Ommen, B.V.; Groten, J.P. Toxicogenomic analysis of gene expression changes in rat liver after a 28-day oral benzene exposure. Mutat. Res. Fund. Mol. Mutagen. 2005, 575, 85–101. [Google Scholar] [CrossRef] [PubMed]
- Rana, S.V.S.; Verma, Y. Biochemical toxicity of benzene. J. Environ. Biol. 2005, 26, 157–168. [Google Scholar] [PubMed]
- Agency for Toxic Substances and Disease Registry (ATSDR). Benzene Toxicity. Available online: http://www.atsdr.cdc.gov/HEC/CSEM/benzene/docs/benzene.pdf (accessed on 4 April 2016).
- Hsieh, G.C.; Parker, R.D.R.; Sharma, R.P. Subclinical effects of groundwater contaminants. II. Alteration of regional brain monoamine neurotransmitters by benzene in CD-1 mice. Arch. Environ. Contam. Toxicol. 1988, 17, 799–805. [Google Scholar] [CrossRef] [PubMed]
Naphthalene | Naphthalin | Benzene | Positive Control Terpinen-4-ol | |
---|---|---|---|---|
Exposure Time (h) | LC50 (µL/L Air) | |||
(95% CL) * | ||||
4 | >175.4 | >175.4 | 158.9 (151.8–166.4) [9.7 ± 0.1; 22.5] | >240 |
8 | >175.4 | >175.4 | 134.3 (129.4–139.3) [12.1 ± 0.1; 23.9] | >240 |
24 | >175.4 | 49.9 (44.0–56.4) [2.5 ± 0.1; 1.33] | 118.6 (113.8–123.6) [10.8 ± 0.0; 12.9] | 40.4 (25.4–64.2) [1.0 ± 0.1; 0.043] |
48 | 63.6 (55.4–73.0) * [2.3 ± 0.0; 0.04] ** | 20.0 (17.4–22.9) [2.3 ± 0.1; 1.89] | 115.9 (111.1–120.8) [10.6 ± 0.1; 4.62] | <40.0 [<37] *** |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pajaro-Castro, N.; Caballero-Gallardo, K.; Olivero-Verbel, J. Toxicity of Naphthalene and Benzene on Tribollium castaneum Herbst. Int. J. Environ. Res. Public Health 2017, 14, 667. https://doi.org/10.3390/ijerph14060667
Pajaro-Castro N, Caballero-Gallardo K, Olivero-Verbel J. Toxicity of Naphthalene and Benzene on Tribollium castaneum Herbst. International Journal of Environmental Research and Public Health. 2017; 14(6):667. https://doi.org/10.3390/ijerph14060667
Chicago/Turabian StylePajaro-Castro, Nerlis, Karina Caballero-Gallardo, and Jesus Olivero-Verbel. 2017. "Toxicity of Naphthalene and Benzene on Tribollium castaneum Herbst" International Journal of Environmental Research and Public Health 14, no. 6: 667. https://doi.org/10.3390/ijerph14060667
APA StylePajaro-Castro, N., Caballero-Gallardo, K., & Olivero-Verbel, J. (2017). Toxicity of Naphthalene and Benzene on Tribollium castaneum Herbst. International Journal of Environmental Research and Public Health, 14(6), 667. https://doi.org/10.3390/ijerph14060667