Identifying and Classifying Pollution Hotspots to Guide Watershed Management in a Large Multiuse Watershed
Abstract
:1. Introduction
1.1. Water Quality Impacting Factors in Watersheds
1.2. Assessing and Managing Methods of Water Quality Impacting Factors
1.3. Managing on a Small Watershed Scale
2. Materials and Methods
2.1. Study Area
2.2. Evaluation Index Development
2.3. The Weight of Evaluation Indexes
- 1.
- Standardization of index data matrix
- 2.
- Defining the entropy
- 3.
- Defining the entropy weight
- 4.
- The composite score of each small watershed is calculated by the synthetical index method, based on data of the weight.
3. Results
3.1. The Weight of Factors Affecting Water Quality
3.2. Small Watershed Evaluation Results
3.3. Small Watershed Classification
- 1.
- Urgent management area
- 2.
- Suspended management area
- 3.
- Preserved status area
4. Discussion
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Schuster, S.; Grismer, M.E. Evaluation of water quality projects in the Lake Tahoe Basin. Environ. Monit. Assess. 2004, 90, 225–242. [Google Scholar] [CrossRef] [PubMed]
- Castaldelli, G.; Soana, E.; Racchetti, E.; Pierobon, E.; Mastrocicco, M.; Tesini, E.; Fano, E.A.; Bartoli, M. Nitrogen budget in a lowland coastal area within the Po River basin (northern Italy): Multiple evidences of equilibrium between sources and internal sinks. Environ. Manag. 2013, 52, 567–580. [Google Scholar] [CrossRef] [PubMed]
- Magner, J.A.; Brooks, K.N. Integrating sentinel watershed-systems into the monitoring and assessment of Minnesota’s (USA) waters quality. Environ. Monit. Assess. 2008, 138, 149–158. [Google Scholar] [CrossRef] [PubMed]
- Shen, Z.; Qiu, J.; Hong, Q.; Chen, L. Simulation of spatial and temporal distributions of non-point source pollution load in the Three Gorges Reservoir Region. Sci. Total Environ. 2014, 493, 138–146. [Google Scholar] [CrossRef] [PubMed]
- Lefebvre, S.; Clément, J.C.; Pinay, G.; Thenail, C.; Durand, P.; Marmonier, P. 15N-Nitrate signature in low-order streams: Effects of land cover and agricultural practices. Ecol. Appl. 2007, 17, 2333–2346. [Google Scholar] [CrossRef] [PubMed]
- Verstraeten, G.; Poesen, J. Regional scale variability in sediment and nutrient delivery from small agricultural watersheds. J. Environ. Qual. 2002, 31, 870–879. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.; Zhan, J.; Yan, H.; Wu, F.; Deng, X. Evaluation of the impacts of land use on water quality: A case study in the Chaohu Lake Basin. Sci. World J. 2013. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Lai, S.; Gao, X.; Xu, L. Potential impacts of climate change on water quality in a shallow reservoir in China. Environ. Sci. Pollut. Res. 2015, 22, 14971–14982. [Google Scholar] [CrossRef] [PubMed]
- Xu, H.; Zheng, H.; Chen, X. Relationships between river water quality and landscape factors in Haihe River Basin, China: Implications for environmental management. Chin. Geogr. Sci. 2016, 26, 197–207. [Google Scholar] [CrossRef]
- Tezcanli Guyer, G.; Ilhan, E.G. Assessment of pollution profile in Buyukcekmece Watershed, Turkey. Environ. Monit. Assess. 2011, 173, 211–220. [Google Scholar] [CrossRef] [PubMed]
- Zablotowicz, R.M.; Locke, M.A.; Krutz, L.J.; Lerch, R.N.; Lizotte, R.E.; Knight, S.S.; Gordon, R.E.; Steinriede, R.W. Influence of watershed system management on herbicide concentrations in Mississippi Delta oxbow lakes. Sci. Total Environ. 2006, 370, 552–560. [Google Scholar] [CrossRef] [PubMed]
- Corsi, S.R.; Borchardt, M.A.; Spencer, S.K.; Hughes, P.E.; Baldwin, A.K. Human and bovine viruses in the Milwaukee River watershed: Hydrologically relevant representation and relations with environmental variables. Sci. Total Environ. 2014, 490, 849–860. [Google Scholar] [CrossRef]
- Karpuzcu, M.E.; Fairbairn, D.; Arnold, W.A.; Barber, B.L.; Kaufenberg, E.; Koskinen, W.C.; Novak, P.J.; Rice, P.J.; Swackhamer, D.L. Identifying sources of emerging organic contaminants in a mixed use watershed using principal components analysis. Environ. Sci. Process. Impacts 2014, 16, 2390–2399. [Google Scholar] [CrossRef] [PubMed]
- Coskun, H.G.; Alparslan, E. Environmental modelling of Omerli catchment area in Istanbul, Turkey using remote sensing and GIS techniques. Environ. Monit. Assess. 2009, 153, 323–332. [Google Scholar] [CrossRef] [PubMed]
- Poor, C.J.; Ullman, J.L. Using regression tree analysis to improve predictions of low-flow nitrate and chloride in Willamette River Basin watersheds. Environ. Manag. 2010, 46, 771–780. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Liu, L.; Ji, X. Modeling the relationship between landscape characteristics and water quality in a typical highly intensive agricultural small watershed, Dongting lake basin, south central China. Environ. Monit. Assess. 2015, 187, 129. [Google Scholar] [CrossRef] [PubMed]
- Cai, Y.; Zhao, D.; Xu, D. Influences of land use on sediment pollution across multiple spatial scales in Taihu Basin. Clean Soil Air Water 2015, 43, 1616–1622. [Google Scholar] [CrossRef]
- Pilgrim, C.M.; Mikhailova, E.A.; Post, C.J.; Hains, J.J. Spatial and temporal analysis of land cover changes and water quality in the Lake Issaqueena watershed, South Carolina. Environ. Monit. Assess. 2014, 186, 7617–7630. [Google Scholar] [CrossRef] [PubMed]
- Bishop, P.L.; Hively, W.D.; Stedinger, J.R.; Rafferty, M.R.; Lojpersberger, J.L.; Bloomfield, J.A. Multivariate analysis of paired watershed data to evaluate agricultural best management practice effects on stream water phosphorus. J. Environ. Qual. 2005, 34, 1087–1101. [Google Scholar] [CrossRef] [PubMed]
- Djodjic, F.; Montas, H.; Shirmohammadi, A.; Bergström, L.; Ulén, B. A decision support system for phosphorus management at a watershed scale. J. Environ. Qual. 2002, 31, 937–945. [Google Scholar] [CrossRef]
- Dodds, W.K.; Oakes, R.M. Headwater influences on downstream water quality. Environ. Manag. 2008, 41, 367–377. [Google Scholar] [CrossRef] [PubMed]
- Bormann, F.H.; Likens, G.E. Nutrient cycling. Science 1967, 155, 424–429. [Google Scholar] [CrossRef] [PubMed]
- Driscoll, C.T.; Johnson, C.E.; Likens, G.E. Patterns in the biogeochemistry at the Hubbard Brook experimental forest, New Hampshire, USA. In Responses of Forest Ecosystems to Environmental Changes; Elsevier Applied Science: New York, NY, USA, 1992; pp. 244–255. [Google Scholar]
- Natural Resources Conservation Service North Dakota. Available online: http://www.nrcs.usda.gov/wps/portal/nrcs/detail/nd/programs/?cid=nrcs141p2_001682 (accessed on 7 February 2014).
- Water and Soil Conservation Bureau of Liaoning Province. Dahuofang Reservoir Water Body Eutrophication Survey Soil and Water Conservation. Available online: http://www.cystbc.com/jcyb/173.html (accessed on 6 May 2014).
- Liu, F.; Liu, J.-C.; Qi, Y.-X.; Dong, R.; Zhao, J.; Zuo, Y. Evaluation on ecosystem management capacity dynamic of Jiajiyu catchment in upper reaches of the Yellow River. Acta Ecol. Sin. 2009, 29, 2675–2685. [Google Scholar]
- Seaty, T.L. The Analytic Hievarcky Process; MCGraw-Hill: New York, NY, USA, 1980. [Google Scholar]
- Dai, Q.H.; Liu, G.B.; Liu, M.Y.; Wang, Y.B. An evaluation on sustainable development of eco-economic system in small watershed in hilly area of northeast China. Acta Geogr. Sin. 2005, 60, 209–218. [Google Scholar]
- Cheng, T.; Zhang, C.X. Application of fuzzy AHP based on entropy weight to site selection of solid sanitary landfill. Environ. Sanit. Eng. 2003, 12, 64–67. (In Chinese) [Google Scholar]
- Li, X.H.; Li, Y.M.; Gu, Z.H.; Yang, W.D. Competitive situation analysis of regional logistics development based on AHP and entropy weight. J. Southeast Univ. 2004, 34, 398–401. (In Chinese) [Google Scholar]
- Xu, S.Q.; Hu, Z.G.; Liu, Q.; Huang, H.; Pu, J.P. Multi-objective decision analysis of diversion standards based on entropy. China Rural Water Hydropower 2004, 8, 45–47. (In Chinese) [Google Scholar]
- Meng, Q.S. Information Theory; Xi’an Jiaotong University Press: Xi’an, China, 1989; pp. 19–36. (In Chinese) [Google Scholar]
- Wu, J.L.; Sun, Y.L.; Ma, Y.; Wu, X.L.; Liu, Z. Application of variable Fuzzy Set Theory method based on entropy weight to evaluation water pollution. Math. Pract. Theory 2012, 42, 65–73. [Google Scholar]
- Chen, Q. Key pasture, seasonal grazing and sustainable development of grassland animal husbandry production in China. Acta Pratacult. Sin. 2005, 14, 29–34. [Google Scholar]
- Chen, Q.-G. Grassland deterioration in the source region of the Yangtze-Yellow Rivers and integrated control of the ecological environment. Acta Pratacult. Sin. 2007, 16, 10–15. [Google Scholar]
- Yi, Q. Blind source separation by weighted K-means clustering. J. Syst. Eng. Electron. 2008, 19, 882–887. [Google Scholar]
- Andrada, M.F.; Vega-Hissi, E.G.; Estrada, M.R.; Martinez, J.C.G. Application of K-means clustering, linear discriminant analysis and multivariate linear regression for the development of a predictive QSAR model on 5-lipoxygenase inhibitors. Chemom. Intell. Lab. Syst. 2015, 143, 122–129. [Google Scholar] [CrossRef]
Water quality effecting factors | Classification | Parameters | Value | Unit |
Non-point source pollution (A) | Paddy fields (X1) | 8152.14 | hm2 | |
Dry land (X2) | 34,768.3 | hm2 | ||
Compound Fertilizer (X3) | 14,742.64 | t | ||
Nitrogen Fertilizer (X4) | 18,572.16 | t | ||
Phosphorus Fertilizer (X5) | 4189.54 | t | ||
Pesticide (X6) | 571.57 | t | ||
Organic Fertilizer-N (X7) | 9597.42 | t | ||
Organic Fertilizer-P (X8) | 4238.89 | t | ||
Environmental bearing (B) | Farm (X9) | 356 | - | |
Large Livestock (X10) | 40,148 | - | ||
Pig (X11) | 138,051 | - | ||
Sheep (X12) | 82,000 | - | ||
Poultry (X13) | 11,703,976 | - | ||
population (X14) | 368,414 | - | ||
Point source pollution (C) | Industry Outfall (X15) | 60 | - | |
RDW (X16) | 115 | - | ||
Soil erosion (D) | Erosion (X17) | 1,843,418.01 | t |
The Target Layer | The Criterion Layer | The Index Layer | The Index Weight |
---|---|---|---|
Small watershed partition | Non-point source pollution (A) | Paddy fields (X1) | 0.0653 |
Dry land (X2) | 0.0296 | ||
Compound Fertilizer (X3) | 0.0433 | ||
Nitrogen Fertilizer (X4) | 0.0588 | ||
Phosphorus Fertilizer (X5) | 0.0750 | ||
Pesticide (X6) | 0.0386 | ||
Organic fertilizer-N (X7) | 0.0358 | ||
Organic fertilizer-P (X8) | 0.0624 | ||
Total | 0.4087 | ||
Environmental bearing (B) | Farm (X9) | 0.0443 | |
Large livestock (X10) | 0.0477 | ||
Pig (X11) | 0.0525 | ||
Sheep (X12) | 0.1013 | ||
Poultry (X13) | 0.0699 | ||
population (X14) | 0.0368 | ||
Total | 0.3525 | ||
Point source pollution (C) | Industry outfall (X15) | 0.1207 | |
RDW (X16) | 0.0710 | ||
Total | 0.1917 | ||
Soil erosion (D) | Erosion (X17) | 0.0463 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Su, F.; Kaplan, D.; Li, L.; Li, H.; Song, F.; Liu, H. Identifying and Classifying Pollution Hotspots to Guide Watershed Management in a Large Multiuse Watershed. Int. J. Environ. Res. Public Health 2017, 14, 260. https://doi.org/10.3390/ijerph14030260
Su F, Kaplan D, Li L, Li H, Song F, Liu H. Identifying and Classifying Pollution Hotspots to Guide Watershed Management in a Large Multiuse Watershed. International Journal of Environmental Research and Public Health. 2017; 14(3):260. https://doi.org/10.3390/ijerph14030260
Chicago/Turabian StyleSu, Fangli, David Kaplan, Lifeng Li, Haifu Li, Fei Song, and Haisheng Liu. 2017. "Identifying and Classifying Pollution Hotspots to Guide Watershed Management in a Large Multiuse Watershed" International Journal of Environmental Research and Public Health 14, no. 3: 260. https://doi.org/10.3390/ijerph14030260