Temporal Trends in Satellite-Derived Erythemal UVB and Implications for Ambient Sun Exposure Assessment
Abstract
:1. Introduction
2. Materials and Methods
Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Lucas, R.; Norval, M.; Neale, R.; Young, A.; de Gruijl, F.; Takizawa, Y.; van der Leun, J. The consequences for human health of stratospheric ozone depletion in association with other environmental factors. Photochem. Photobiol. Sci. 2015, 14, 53–87. [Google Scholar] [CrossRef]
- Fears, T.R.; Scotto, J.; Schneiderman, M.A. Skin cancer, melanoma, and sunlight. Am. J. Public Health 1976, 66, 461–464. [Google Scholar] [CrossRef] [PubMed]
- Lea, C.S.; Scotto, J.A.; Buffler, P.A.; Fine, J.; Barnhill, R.L.; Berwick, M. Ambient UVB and melanoma risk in the United States: A case-control analysis. Ann. Epidemiol. 2007, 17, 447–453. [Google Scholar] [CrossRef] [PubMed]
- King, L.; Xiang, F.; Swaminathan, A.; Lucas, R.M. Measuring sun exposure in epidemiological studies: Matching the method to the research question. J. Photochem. Photobiol. B 2015, 153, 373–379. [Google Scholar] [CrossRef] [PubMed]
- Alexandri, G.; Georgoulias, A.; Zanis, P.; Katragkou, E.; Tsikerdekis, A.; Kourtidis, K.; Meleti, C. On the ability of RegCM4 regional climate model to simulate surface solar radiation patterns over Europe: An assessment using satellite-based observations. Atmos. Chem. Phys. 2015, 15, 13195–13216. [Google Scholar] [CrossRef]
- Armstrong, B.K.; Kricker, A. The epidemiology of UV induced skin cancer. J. Photochem. Photobiol. B 2001, 63, 8–18. [Google Scholar] [CrossRef]
- McKinlay, A.; Diffey, B. A reference action spectrum for ultraviolet induced erythema in human skin. CIE J. 1987, 6, 17–22. [Google Scholar]
- Cockburn, M.; Hamilton, A.; Mack, T. Recall bias in self-reported melanoma risk factors. Am. J. Epidemiol. 2001, 153, 1021–1026. [Google Scholar] [CrossRef] [PubMed]
- Elwood, J.M.; Jopson, J. Melanoma and sun exposure: An overview of published studies. Int. J. Cancer 1997, 73, 198–203. [Google Scholar] [CrossRef]
- Alonso, A.; Hernán, M.A. Temporal trends in the incidence of multiple sclerosis: A systematic review. Neurology 2008, 71, 129–135. [Google Scholar] [CrossRef] [PubMed]
- Hogancamp, W.E.; Rodriguez, M.; Weinshenker, B.G. The epidemiology of multiple sclerosis. Mayo Clin. Proc. 1997, 72, 871–878. [Google Scholar] [CrossRef] [PubMed]
- Simpson, S.; Blizzard, L.; Otahal, P.; Van der Mei, I.; Taylor, B. Latitude is significantly associated with the prevalence of multiple sclerosis: A meta-analysis. J. Neurol. Neurosurg. Psychiatry 2011, 82, 1132–1141. [Google Scholar] [CrossRef]
- Erdmann, F.; Lortet-Tieulent, J.; Schüz, J.; Zeeb, H.; Greinert, R.; Breitbart, E.W.; Bray, F. International trends in the incidence of malignant melanoma 1953–2008—Are recent generations at higher or lower risk? Int. J. Cancer 2013, 132, 385–400. [Google Scholar] [CrossRef] [PubMed]
- Levine, H.; Afek, A.; Shamiss, A.; Derazne, E.; Tzur, D.; Astman, N.; Keinan-Boker, L.; Mimouni, D.; Kark, J.D. Country of origin, age at migration and risk of cutaneous melanoma: A migrant cohort study of 1,100,000 Israeli men. Int. J. Cancer 2013, 133, 486–494. [Google Scholar] [CrossRef] [PubMed]
- Lomas, A.; Leonardi-Bee, J.; Bath-Hextall, F. A systematic review of worldwide incidence of nonmelanoma skin cancer. Br. J. Dermatol. 2012, 166, 1069–1080. [Google Scholar] [CrossRef] [PubMed]
- Schuurman, N.; Amram, O.; Saeedi, J.; Rieckmann, P.; Yee, I.; Tremlett, H. A proposed methodology to estimate the cumulative life-time UVB exposure using geographic information systems: An application to multiple sclerosis. Mult. Scler. Relat. Disord. 2013, 2, 29–35. [Google Scholar] [CrossRef] [PubMed]
- Wilcox, S. National Solar Radiation Database 1991–2005 Update: User’s Manual; National Renewable Energy Laboratory (NREL): Golden, CO, USA, 2007.
- Wilcox, S.; Anderberg, M.; George, R.; Marion, W.; Myers, D.; Renne, D.; Lott, N.; Whitehurst, T.; Beckman, W.; Gueymard, C. Completing Production of the Updated National Solar Radiation Database for the United States; National Renewable Energy Laboratory (NREL): Golden, CO, USA, 2007.
- Zelenka, A.; Perez, R.; Seals, R.; Renné, D. Effective accuracy of satellite-derived hourly irradiances. Theor. Appl. Clim. 1999, 62, 199–207. [Google Scholar] [CrossRef]
- Tatalovich, Z.; Wilson, J.P.; Cockburn, M. A comparison of thiessen polygon, kriging, and spline models of potential UV exposure. Cartogr. Geogr. Inf. Sci. 2006, 33, 217–231. [Google Scholar] [CrossRef]
- Cust, A.E.; Jenkins, M.A.; Goumas, C.; Armstrong, B.K.; Schmid, H.; Aitken, J.F.; Giles, G.G.; Kefford, R.F.; Hopper, J.L.; Mann, G.J. Early-life sun exposure and risk of melanoma before age 40 years. Cancer Causes Control 2011, 22, 885–897. [Google Scholar] [CrossRef] [PubMed]
- Kricker, A.; Armstrong, B.K.; Goumas, C.; Litchfield, M.; Begg, C.B.; Hummer, A.J.; Marrett, L.D.; Theis, B.; Millikan, R.C.; Thomas, N. Ambient UV, personal sun exposure and risk of multiple primary melanomas. Cancer Causes Control 2007, 18, 295–304. [Google Scholar] [CrossRef] [PubMed]
- Solomon, C.C.; White, E.; Kristal, A.R.; Vaughan, T. Melanoma and lifetime UV radiation. Cancer Causes Control 2004, 15, 893–902. [Google Scholar] [CrossRef] [PubMed]
- Boscoe, F.P.; Schymura, M.J. Solar ultraviolet-B exposure and cancer incidence and mortality in the United States, 1993–2002. BMC Cancer 2006, 6, 264. [Google Scholar] [CrossRef] [PubMed]
- Chang, N.-B.; Feng, R.; Gao, Z.; Gao, W. Skin cancer incidence is highly associated with ultraviolet-B radiation history. Int. J. Hyg. Environ. Health 2010, 213, 359–368. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.; Clements, M.; Rahman, B.; Zhang, S.; Qiao, Y.; Armstrong, B.K. Relationship between cancer mortality/incidence and ambient ultraviolet B irradiance in China. Cancer Causes Control 2010, 21, 1701–1709. [Google Scholar] [CrossRef] [PubMed]
- Freedman, D.M.; Rajaraman, P.; Fuhrman, B.; Hoffbeck, R.; Alexander, B.H. Sunlight, hormone replacement status and colorectal cancer risk in postmenopausal women. Int. J. Cancer 2010, 126, 1997–2001. [Google Scholar] [CrossRef] [PubMed]
- Lin, S.W.; Wheeler, D.C.; Park, Y.; Cahoon, E.K.; Hollenbeck, A.R.; Freedman, D.M.; Abnet, C.C. Prospective study of ultraviolet radiation exposure and risk of cancer in the United States. Int. J. Cancer 2012, 131, E1015–E1023. [Google Scholar] [CrossRef] [PubMed]
- Tran, B.; Jordan, S.J.; Lucas, R.; Webb, P.M.; Neale, R. Association between ambient ultraviolet radiation and risk of epithelial ovarian cancer. Cancer Prev. Res. 2012, 5, 1330–1336. [Google Scholar] [CrossRef] [PubMed]
- Tran, B.; Lucas, R.; Kimlin, M.; Whiteman, D.; Neale, R. Association between ambient ultraviolet radiation and risk of esophageal cancer. Am. J. Gastroenterol. 2012, 107, 1803–1813. [Google Scholar] [CrossRef] [PubMed]
- Hughes, A.M.; Lucas, R.M.; Ponsonby, A.L.; Chapman, C.; Coulthard, A.; Dear, K.; Dwyer, T.; Kilpatrick, T.J.; McMichael, A.J.; Pender, M.P. The role of latitude, ultraviolet radiation exposure and vitamin D in childhood asthma and hayfever: An Australian multicenter study. Pediatr. Allergy Immunol. 2011, 22, 327–333. [Google Scholar] [CrossRef] [PubMed]
- Sloka, S.; Grant, M.; Newhook, L.A. The geospatial relation between UV solar radiation and type 1 diabetes in Newfoundland. Acta Diabetol. 2010, 47, 73–78. [Google Scholar] [CrossRef] [PubMed]
- Grant, W.B. An estimate of premature cancer mortality in the US due to inadequate doses of solar ultraviolet-B radiation. Cancer 2002, 94, 1867–1875. [Google Scholar] [CrossRef] [PubMed]
- Lin, S.-W.; Wheeler, D.C.; Park, Y.; Spriggs, M.; Hollenbeck, A.R.; Freedman, D.M.; Abnet, C.C. Prospective study of ultraviolet radiation exposure and mortality risk in the United States. Am. J. Epidemiol. 2013, 178, 521–533. [Google Scholar] [CrossRef] [PubMed]
- Ialongo, I.; Arola, A.; Kujanpää, J.; Tamminen, J. Use of satellite erythemal UV products in analysing the global UV changes. Atmos. Chem. Phys. 2011, 11, 9649–9658. [Google Scholar] [CrossRef] [Green Version]
- Autier, P. Influence of sun exposures during childhood and during adulthood on melanoma risk. Int. J. Cancer 1998, 77, 533–537. [Google Scholar] [CrossRef]
- Islam, T.; Gauderman, W.J.; Cozen, W.; Mack, T.M. Childhood sun exposure influences risk of multiple sclerosis in monozygotic twins. Neurology 2007, 69, 381–388. [Google Scholar] [CrossRef]
- Van der Mei, I.; Ponsonby, A.; Dwyer, T.; Blizzard, L.; Simmons, R.; Taylor, B.; Butzkueven, H.; Kilpatrick, T. Past exposure to sun, skin phenotype, and risk of multiple sclerosis: Case-control study. BMJ 2003, 327, 316. [Google Scholar] [CrossRef] [PubMed]
- Weinstock, M.A.; Colditz, G.A.; Willett, W.C.; Stampfer, M.J.; Bronstein, B.A.; Mihm, M.C.; Speizer, F.E. Nonfamilial cutaneous melanoma incidence in women associated with sun exposure before 20 years of age. Pediatrics 1989, 84, 199–204. [Google Scholar] [PubMed]
- International Research Institute. NASA GSFC Total Ozone Mapping Spectrometer. Available online: http://iridl.ldeo.columbia.edu/SOURCES/.NASA/.GSFC/.TOMS/ (accessed on 17 September 2015).
- National Aeronautics and Space Administration. Ozone Monitoring Instrument Data. Available online: http://mirador.gsfc.nasa.gov/cgi-bin/mirador/collectionlist.pl?keyword=omuvbd (accessed on 17 September 2015).
- Kleipool, Q.; Dobber, M.; de Haan, J.; Levelt, P. Earth surface reflectance climatology from 3 years of OMI data. J. Geophys. Res. Atmos. 2008. [Google Scholar] [CrossRef]
- Tanskanen, A. Lambertian surface albedo climatology at 360 nm from TOMS data using moving time-window technique. In Proceedings of the 20th Quadrennial Ozone Symposium, Kos, Greece, 1–8 June 2004.
- International Organization for Standardization (ISO). ISO 17166:1999 (CIE S 007/E:1998): Erythema Reference Action Spectrum and Standard Erythema Dose; ISO: Geneva, Switzerland, 1999. [Google Scholar]
- Wellemeyer, C.G.; Bhartia, P.K.; Taylor, S.L.; Qin, W.; Ahn, C. Version 8 Total Ozone Mapping Spectrometer (TOMS) algorithm. In Proceedings of the 20th Quadrennial Ozone Symposium, Kos, Greece, 1–8 June 2004.
- Cabrera, S.; Ipiña, A.; Damiani, A.; Cordero, R.R.; Piacentini, R.D. UV index values and trends in Santiago, Chile (33.5° S) based on ground and satellite data. J. Photochem. Photobiol. B 2012, 115, 73–84. [Google Scholar] [CrossRef]
- Gao, Z.; Gao, W.; Chang, N.-B. Comparative analyses of the ultraviolet-B flux over the continental United State based on the NASA total ozone mapping spectrometer data and USDA ground-based measurements. J. Appl. Remote Sens. 2010, 4, 043547. [Google Scholar] [CrossRef]
- Fioletov, V.E.; Kerr, J.B.; Wardle, D.I.; Krotkov, N.; Herman, J.R. Comparison of Brewer ultraviolet irradiance measurements with total ozone mapping spectrometer satellite retrievals. Opt. Eng. 2002, 41, 3051–3061. [Google Scholar] [CrossRef]
- Zempila, M.-M.; Koukouli, M.-E.; Bais, A.; Fountoulakis, I.; Arola, A.; Natalia, K.; Balis, D. OMI/Aura UV product validation using NILU-UV ground-based measurements in Thessaloniki, Greece. Atmos. Environ. 2016, 140, 283–297. [Google Scholar] [CrossRef]
- Tanskanen, A.; Lindfors, A.; Määttä, A.; Krotkov, N.; Herman, J.; Kaurola, J.; Koskela, T.; Lakkala, K.; Fioletov, V.; Bernhard, G. Validation of daily erythemal doses from Ozone Monitoring Instrument with ground-based UV measurement data. J. Geophys. Res. Atmos. 2007. [Google Scholar] [CrossRef]
- Muyimbwa, D.; Dahlback, A.; Ssenyonga, T.; Chen, Y.-C.; Stamnes, J.J.; Frette, Ø.; Hamre, B. Validation of ozone monitoring instrument ultraviolet index against ground-based UV index in Kampala, Uganda. Appl. Opt. 2015, 54, 8537–8545. [Google Scholar] [CrossRef] [PubMed]
- McKenzie, R.; Seckmeyer, G.; Bais, A.; Kerr, J.; Madronich, S. Satellite retrievals of erythemal UV dose compared with ground-based measurements at northern and southern. J. Geophys. Res. 2001, 106, 24051–24062. [Google Scholar] [CrossRef]
- Stolwijk, A.; Straatman, H.; Zielhuis, G. Studying seasonality by using sine and cosine functions in regression analysis. J. Epidemiol. Community Health 1999, 53, 235–238. [Google Scholar] [CrossRef] [PubMed]
- Woodhouse, P.; Khaw, K.; Plummer, M.; Meade, T.; Foley, A. Seasonal variations of plasma fibrinogen and factor VII activity in the elderly: Winter infections and death from cardiovascular disease. Lancet 1994, 343, 435–439. [Google Scholar] [CrossRef]
- Weatherhead, E.C.; Reinsel, G.C.; Tiao, G.C.; Meng, X.-L.; Choi, D.; Cheang, W.-K.; Keller, T.; DeLuisi, J.; Wuebbles, D.J.; Kerr, J.B. Factors affecting the detection of trends: Statistical considerations and applications to environmental data. J. Geophys. Res. 1998, 103, 17149–117161. [Google Scholar] [CrossRef]
- Damiani, A.; Cordero, R.; Cabrera, S.; Laurenza, M.; Rafanelli, C. Cloud cover and UV index estimates in Chile from satellite-derived and ground-based data. Atmos. Res. 2014, 138, 139–151. [Google Scholar] [CrossRef]
- Bernhard, G.; Arola, A.; Dahlback, A.; Fioletov, V.; Heikkilä, A.; Johnsen, B.; Koskela, T.; Lakkala, K.; Svendby, T.; Tamminen, J. Comparison of OMI UV observations with ground-based measurements at high northern latitudes. Atmos. Chem. Phys. 2015, 15, 7391–7412. [Google Scholar] [CrossRef]
- Wilks, D.S. Statistical Methods in the Atmospheric Sciences; Academic Press: Cambridge, MA, USA, 2011. [Google Scholar]
- Van der Mei, I.A.; Ponsonby, A.-L.; Blizzard, L.; Dwyer, T. Regional variation in multiple sclerosis prevalence in Australia and its association with ambient ultraviolet radiation. Neuroepidemiology 2001, 20, 168–174. [Google Scholar] [CrossRef] [PubMed]
- Horneck, G.; Rettberg, P.; Rabbow, E.; Strauch, W.; Seckmeyer, G.; Facius, R.; Reitz, G.; Strauch, K.; Schott, J.-U. Biological dosimetry of solar radiation for different simulated ozone column thicknesses. J. Photochem. Photobiol. B 1996, 32, 189–196. [Google Scholar] [CrossRef]
- Kane, R. Ozone depletion, related UVB changes and increased skin cancer incidence. Int. J. Climatol. 1998, 18, 457–472. [Google Scholar] [CrossRef]
- Dijk, A.; Slaper, H.; den Outer, P.N.; Morgenstern, O.; Braesicke, P.; Pyle, J.A.; Garny, H.; Stenke, A.; Dameris, M.; Kazantzidis, A. Skin Cancer Risks Avoided by the Montreal Protocol—Worldwide Modeling Integrating Coupled Climate-Chemistry Models with a Risk Model for UV. Photochem. Photobiol. 2013, 89, 234–246. [Google Scholar] [CrossRef] [PubMed]
- Bais, A.; Tourpali, K.; Kazantzidis, A.; Akiyoshi, H.; Bekki, S.; Braesicke, P.; Chipperfield, M.; Dameris, M.; Eyring, V.; Garny, H. Projections of UV radiation changes in the 21st century: Impact of ozone recovery and cloud effects. Atmos. Chem. Phys. 2011, 11, 7533–7545. [Google Scholar] [CrossRef] [Green Version]
- Arola, A.; Kazadzis, S.; Krotkov, N.; Bais, A.; Gröbner, J.; Herman, J.R. Assessment of TOMS UV bias due to absorbing aerosols. J. Geophys. Res. Atmos. 2005, 110, D23211. [Google Scholar] [CrossRef]
- Arola, A.; Kazadzis, S.; Lindfors, A.; Krotkov, N.; Kujanpää, J.; Tamminen, J.; Bais, A.; Di Sarra, A.; Villaplana, J.; Brogniez, C. A new approach to correct for absorbing aerosols in OMI UV. Geophys. Res. Lett. 2009. [Google Scholar] [CrossRef]
- Brogniez, C.; Houët, M.; Siani, A.M.; Weihs, P.; Allaart, M.; Lenoble, J.; Cabot, T.; de La CasinièRe, A.; Kyrö, E. Ozone column retrieval from solar UV measurements at ground level: Effects of clouds and results from six European sites. J. Geophys. Res. Atmos. 2005. [Google Scholar] [CrossRef]
- Ialongo, I.; Buchard, V.; Brogniez, C.; Casale, G.; Siani, A. Aerosol Single Scattering Albedo retrieval in the UV range: An application to OMI satellite validation. Atmos. Chem. Phys. 2010, 10, 331–340. [Google Scholar] [CrossRef]
- Kazadzis, S.; Bais, A.; Arola, A.; Krotkov, N.; Kouremeti, N.; Meleti, C. Ozone Monitoring Instrument spectral UV irradiance products: Comparison with ground based measurements at an urban environment. Atmos. Chem. Phys. 2009, 9, 585–594. [Google Scholar] [CrossRef]
- Calbó, J.; Pagès, D.; González, J.-A. Empirical studies of cloud effects on UV radiation: A review. Rev. Geophys. 2005. [Google Scholar] [CrossRef]
- Bugliaro, L.; Mayer, B.; Meerkötter, R.; Verdebout, J. Potential and limitations of space-based methods for the retrieval of surface UV-B daily doses: A numerical study. J. Geophys. Res. Atmos. 2006, 111, 1–15. [Google Scholar] [CrossRef]
- Martin, T.; Gardiner, B.; Seckmeyer, G. Uncertainties in satellite-derived estimates of surface UV doses. J. Geophys. Res. Atmos. 2000, 105, 27005–27011. [Google Scholar] [CrossRef]
- Fioletov, V.E.; Kimlin, M.G.; Krotkov, N.; McArthur, L.; Kerr, J.B.; Wardle, D.I.; Herman, J.R.; Meltzer, R.; Mathews, T.W.; Kaurola, J. UV index climatology over the United States and Canada from ground-based and satellite estimates. J. Geophys. Res. Atmos. 2004. [Google Scholar] [CrossRef]
- McKenzie, R.L.; Björn, L.O.; Bais, A.; Ilyasd, M. Changes in biologically active ultraviolet radiation reaching the Earth’s surface. Photochem. Photobiol. Sci. 2003, 2, 5–15. [Google Scholar] [CrossRef] [PubMed]
- Krotkov, N.; Bhartia, P.; Herman, J.; Fioletov, V.; Kerr, J. Satellite estimation of spectral surface UV irradiance in the presence of tropospheric aerosols: 1. Cloud-free case. J. Geophys. Res. Atmos. 1998, 103, 8779–8793. [Google Scholar] [CrossRef]
- Chubarova, N. Influence of aerosol and atmospheric gases on ultraviolet radiation in different optical conditions including smoky mist of 2002. Dokl. Earth Sci. 2004, 394, 62–67. [Google Scholar]
- Gandini, S.; Sera, F.; Cattaruzza, M.S.; Pasquini, P.; Picconi, O.; Boyle, P.; Melchi, C.F. Meta-analysis of risk factors for cutaneous melanoma: II. Sun exposure. Eur. J. Cancer 2005, 41, 45–60. [Google Scholar] [CrossRef] [PubMed]
- Cahoon, E.K.; Wheeler, D.C.; Kimlin, M.G.; Kwok, R.K.; Alexander, B.H.; Little, M.P.; Linet, M.S.; Freedman, D.M. Individual, environmental, and meteorological predictors of daily personal ultraviolet radiation exposure measurements in a United States cohort study. PLoS ONE 2013, 8, e54983. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baczynska, K.A.; Pearson, A.J.; O’Hagan, J.B.; Heydenreich, J. Effect of altitude on solar UVR and spectral and spatial variations of UV irradiances measured in Wagrain, Austria in winter. Radiat. Prot. Dosim. 2013, 154, 497–504. [Google Scholar] [CrossRef] [PubMed]
- Santos, J.B.; Villán, D.M.; Castrillo, A.D.M. Analysis and cloudiness influence on UV total irradiation. Int. J. Climatol. 2011, 31, 451–460. [Google Scholar] [CrossRef]
- Beckmann, M.; Václavík, T.; Manceur, A.M.; Šprtová, L.; Wehrden, H.; Welk, E.; Cord, A.F. glUV: A global UV-B radiation data set for macroecological studies. Methods Ecol. Evol. 2014, 5, 372–383. [Google Scholar] [CrossRef]
- Freedman, D.M.; Kimlin, M.G.; Hoffbeck, R.W.; Alexander, B.H.; Linet, M.S. Multiple indicators of ambient and personal ultraviolet radiation exposure and risk of non-Hodgkin lymphoma (United States). J. Photochem. Photobiol. B 2010, 101, 321–325. [Google Scholar] [CrossRef] [PubMed]
- Tatalovich, Z.; Wilson, J.P.; Mack, T.; Yan, Y.; Cockburn, M. The objective assessment of lifetime cumulative ultraviolet exposure for determining melanoma risk. J. Photochem. Photobiol. B 2006, 85, 198–204. [Google Scholar] [CrossRef] [PubMed]
- Wu, S.; Han, J.; Vleugels, R.; Puett, R.; Laden, F.; Hunter, D.; Qureshi, A. Cumulative ultraviolet radiation flux in adulthood and risk of incident skin cancers in women. Br. J. Cancer 2014, 110, 1855–1861. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Seckmeyer, G.; Schrempf, M.; Wieczorek, A.; Riechelmann, S.; Graw, K.; Seckmeyer, S.; Zankl, M. A novel method to calculate solar UV exposure relevant to vitamin D production in humans. Photochem. Photobiol. 2013, 89, 974–983. [Google Scholar] [CrossRef] [PubMed]
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Langston, M.; Dennis, L.; Lynch, C.; Roe, D.; Brown, H. Temporal Trends in Satellite-Derived Erythemal UVB and Implications for Ambient Sun Exposure Assessment. Int. J. Environ. Res. Public Health 2017, 14, 176. https://doi.org/10.3390/ijerph14020176
Langston M, Dennis L, Lynch C, Roe D, Brown H. Temporal Trends in Satellite-Derived Erythemal UVB and Implications for Ambient Sun Exposure Assessment. International Journal of Environmental Research and Public Health. 2017; 14(2):176. https://doi.org/10.3390/ijerph14020176
Chicago/Turabian StyleLangston, Marvin, Leslie Dennis, Charles Lynch, Denise Roe, and Heidi Brown. 2017. "Temporal Trends in Satellite-Derived Erythemal UVB and Implications for Ambient Sun Exposure Assessment" International Journal of Environmental Research and Public Health 14, no. 2: 176. https://doi.org/10.3390/ijerph14020176