Monitoring of Waterborne Parasites in Two Drinking Water Treatment Plants: A Study in Sarawak, Malaysia
Abstract
:1. Introduction
2. Experimental Section
2.1. Study Background, Design and Sampling Sites
2.2. Measurement of Water (Physical and Chemical) Parameters
2.3. Collection and Filtration of Water Samples
2.4. Detection of Giardia and Cryptosporidium (Oo)cysts
2.5. Detection of Other Parasites (from IMS Supernatant)
2.6. Cultivation of Acanthamoeba and Naegleria on Solid Agar
2.7. Detection of Acanthamoeba and Naegleria Species by Molecular Analysis
2.8. Isolation of Fecal Coliform
2.9. Statistical Analysis
3. Results
3.1. Overall Occurrence of Parasites Detected via Microscopy at Each Drinking Water Treatment Plant and the Distribution Systems
3.2. Occurrence and Concentration of Giardia Cysts and Cryptosporidium Oocysts at Each Treatment Plant
3.3. Detection of Other Parasites at Each Treatment Plant
3.4. Microscopic Observation and Molecular Analysis of Amoebae Isolates
3.5. Parasites Detected in the Distribution Systems
3.6. Fecal Coliform Counts
3.7. Physical and Chemical Parameters of Each Treatment Plant and the Distribution Systems
3.8. Statistical Analysis
4. Discussion
4.1. Occurrence of (Oo)cysts and Other Parasites
4.2. Occurrence of Free-Living Amoebae
4.3. Parasites Detected in Distribution System Site
4.4. Fecal Coliform Count
4.5. Statistical Analysis
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- WHO/UNICEF Joint Statement. Clinical Management of Acute Diarrhoea, 2004. Geneva and New York: World Health Organization, Department of Child and Adolescent Health and Development, and United Nations Children’s Fund, Programme Division (WHO/FCH/CAH/04.07). Available online: apps.who.int/iris/bitstream/10665/68627/1/WHO_FCH_CAH_04.7.pdf (accessed on 23 July 2015).
- Young, M.; Wolfheim, C.; Marsh, D.R.; Hammamy, D. World Health Organization/United Nations Children’s Fund Joint Statement on Integrated Community Case Management: An Enquity-Focused Strategy to Improve Access to Essential Treatment Services for Children. Am. J. Trop. Med. Hyg. 2012, 87, 6–10. [Google Scholar] [CrossRef] [PubMed]
- Clasen, T.; Bastable, A. Fecal contamination of drinking water during collection and household storage: The need to extend protection to the point of use. J. Water Health 2003, 1, 109–115. [Google Scholar] [PubMed]
- Geldreich, E.E. Waterborne pathogen invasions: A case for water quality protection in distribution. In Microbial Quality of Water Supply in Distribution Systems; Geldreich, E.E., Ed.; CRC Press: New York, NY, USA, 1996; pp. 359–410. [Google Scholar]
- Nagdeve, D.A. Population and land use in Maharashtra. Bhartiya Samajik Chintan Kolkata 2003, 2, 43–49. [Google Scholar]
- Butchart, S.H.M.; Stattersfield, A.J.; Baillie, J.; Bennun, L.A.; Stuart, S.N.; Akcakaya, H.R.; Hilton-Taylor, C.; Mace, G.M. Using Red List Indices to measure progress towards the 2010 target and beyond. Philos. Trans. R. Soc. 2005, 1454, 255–268. [Google Scholar] [CrossRef] [PubMed]
- Khatri, K.B.; Vairavamoorthy, K. Challenges for Urban Water and Sanitation in the Developing Countries; Discussion Paper for the Session on Urbanization; Institute of Water Education, UNESCO-IHE: Delft, The Netherlands, 2007. [Google Scholar]
- Karanis, P.; Kourenti, C.; Smith, H. Waterborne transmission of protozoan parasites: A worldwide review of outbreaks and lessons learnt. J. Water Health 2007, 5, 1–38. [Google Scholar] [CrossRef] [PubMed]
- Fayer, R.; Morgan, U.; Upton, S.J. Epidemiology of Cryptosporidium: Transmission, detection and identification. Int. J. Parasitol. 2000, 30, 1305–1322. [Google Scholar] [CrossRef]
- Slifko, T.R.; Smith, H.V.; Rose, J.B. Emerging parasite zoonoses associated with water and food. Int. J. Parasitol. 2000, 30, 1379–1393. [Google Scholar] [CrossRef]
- Thompson, R.C.A. Giardiasis as a re-emerging infectious disease and its zoonotic potential. Int. J. Parasitol. 2000, 30, 1259–1267. [Google Scholar] [CrossRef]
- Coupe, C.; Delabre, K.; Pouillot, R.; Houdart, S.; Santillana-Hayat, M.; Derouin, F. Detection of Cryptosporidium, Giardia and Enterocytozoon bieneusi in surface water, including recreational areas: A one-year prospective study. FEMS Immunol. Med. Microbiol. 2006, 47, 351–359. [Google Scholar] [CrossRef] [PubMed]
- Graczyk, T.; Sunderland, D.; Awantang, G.; Mashinski, Y.; Lucy, F.; Graczyk, Z.; Chomicz, L.; Breysse, P. Relationships among bather density, levels of human waterborne pathogens, and fecal coliform counts in marine recreational beach water. Parasitol. Res. 2010, 106, 1103–1108. [Google Scholar] [CrossRef] [PubMed]
- Mason, B.W.; Chalmers, R.M.; Carnicer-Pont, D.; Casemore, D.P. A Cryptosporidium hominis outbreak in north-west Wales associated with low oocyst counts in treated drinking water. J. Water Health 2010, 8, 299–210. [Google Scholar] [CrossRef] [PubMed]
- Yoder, J.; Beach, M. Cryptosporidium surveillance and risk factors in the United States. Exp. Parasitol. 2010, 124, 31–39. [Google Scholar] [CrossRef] [PubMed]
- Webb, L.M. Giardiasis Outbreak Associated with Travel to Mexico—Kansas. January 2015. Available online: http://www.kdheks.gov/epi/download/KS_FEB15_Mexico_Giardia.pdf (accessed on 10 January 2015). [Google Scholar]
- Gertler, M.; Durr, M.; Renner, P.; Poppert, S.; Askar, M.; Breidenbach, J.; Frank, C.; Preußel, K.; Schielke, A.; Werber, D.; et al. Outbreak of Cryptosporidium hominis following river flooding in the city of Halle (Saale), Germany, August 2013. BMC Infect. Dis. 2015, 15, 88. [Google Scholar] [CrossRef] [PubMed]
- Amer, A.S. Monitoring for the presence of parasitic protozoa and free-living amoebae in drinking water plants. J. Nat. Res. Dev. 2012, 2, 15–21. [Google Scholar]
- Trabelsi, H.; Dendana, F.; Sellami, A.; Sellami, H.; Cheikhrouhou, F.; Neji, S.; Makni, F.; Ayadi, A. Pathogenic free-living amoebae: Epidemiology and clinical review. Pathol. Biol. 2012, 60, 399–405. [Google Scholar] [CrossRef] [PubMed]
- Por, Y.M.; Mehta, J.S.; Chua, J.L.L.; Koh, T.-H.; Khor, W.B.; Fong, A.C.Y.; Lim, J.W.K.; Heng, W.J.; Loh, R.S.K.; Lim, L.; et al. Acanthamoeba keratitis associated with contact lens wear in Singapore. Am. J. Ophthalmol. 2009, 148, 1879–1891. [Google Scholar] [CrossRef] [PubMed]
- Verani, J.R.; Lorick, S.A.; Yoder, J.S.; Beach, M.J.; Braden, C.R.; Roberts, J.M.; Conover, C.S.; Chen, S.; McConnell, K.A.; Chang, D.C.; et al. National outbreak of Acanthamoeba keratitis associated with use of a contact lens solution, United States. Emerg. Infect. Dis. 2009, 15, 1236–1242. [Google Scholar] [CrossRef] [PubMed]
- Marciano-Cabral, F.; Cabral, G. Acanthamoeba spp. as agents of disease in humans. Clin. Microbiol. Rev. 2003, 16, 273–307. [Google Scholar] [CrossRef] [PubMed]
- Shakoor, S.; Beg, M.A.; Mahmood, S.F.; Bandea, R.; Sriram, R.; Noman, F.; Ali, F.; Visvesvara, G.A.; Zafar, A. Primary amebic meningoencephalitis caused by Naegleria fowleri, Karachi, Pakistan. Emerg. Infect. Dis. 2011, 17, 258–261. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, R.A.; Lee, E.; Tan, I.T.L.; Mohamad-Kamel, A.G. Occurrence of Giardia cysts and Cryptosporidium oocysts in raw and treated water from two water treatment plants in Selangor, Malaysia. Water Res. 1997, 31, 3132–3136. [Google Scholar] [CrossRef]
- Tan, I.T.L. Pengesanan Protozoa Pathogen di Tiga Buah Loji Pembersihan Air di Negeri Sembilan. Master’s Thesis, Universiti Kebangsaan Malaysia (UKM), Bangi, Malaysia, 29 October 1997. [Google Scholar]
- State Government of Sarawak. 2012 Publication, Sarawak: Facts and Figures. Available online: http://www.sarawak.gov.my/ebook/Fact_and_Figures_2012 (accessed on 13 February 2016).
- Department of Statistics Malaysia. Population and Housing Census of Malaysia; Preliminary Count Report; Department of Statistics Malaysia: Putrajaya, Malaysia, 2010; pp. 1–45.
- Kuok, K.K.; Sobri, H.; Po-Chan, C. A review of integrated river basin management for Sarawak River. Am. J. Environ. Sci. 2011, 7, 276–285. [Google Scholar] [CrossRef]
- KWB (Kuching Water Board) Annual Report Year 2014. Available online: http://www.kwb.gov.my/modules/web/pages.php?mod=publication&sub=publication_show&id=2 (accessed on 1 May 2016).
- USEPA (United States Environmental Protection Agency). 2012 Method 1623.1: Cryptosporidium and Giardia in Water by Filtration/IMS.FA. Available online: http://water.epa.gov/scitech/drinkingwater/labcert/upload/epa816r12001.pdf (accessed on 15 June 2014).
- Init, I.; Lau, Y.L.; Arine, A.F.; Foead, A.I.; Neilson, R.S.; Nissapatorn, V. Detection of free-living amoebae, Acanthamoeba and Naegleria, in swimming pools, Malaysia. Trop. Biomed. 2010, 27, 566–577. [Google Scholar] [PubMed]
- Schroeder, J.M.; Booton, G.C.; Hay, J.; Niszl, I.A.; Seal, D.V.; Markus, M.B.; Fuerst, P.A.; Byers, T.J. Use of subgenic 18S ribosomal DNA PCR and sequencing for genus and genotype identification of Acanthamoebae from humans with keratitis and from sewage sludge. J. Clin. Microbiol. 2001, 39, 1903–1911. [Google Scholar] [CrossRef] [PubMed]
- Pelandakis, M.; Pernin, P. Use of multiplex PCR and PCR restriction enzyme analysis for detection and exploration of the variability in the free-living amoeba Naegleria in the environment. Appl. Environ. Microbiol. 2002, 68, 2061–2065. [Google Scholar] [CrossRef] [PubMed]
- Altschul, S.F.; Gish, W.; Miller, W.; Myers, E.W.; Lipman, D.J. Basic local alignment search tool. J. Mol. Biol. 1990, 215, 403–410. [Google Scholar] [CrossRef]
- Tamura, K.; Stecher, G.; Peterson, D.; Filipski, A.; Kumar, S. MEGA6: Molecular evolutionary genetics analysis version 6.0. Mol. Biol. Evol. 2013, 30, 2725–2729. [Google Scholar] [CrossRef] [PubMed]
- Helmi, M.J. Experimental Study on the Factor Affecting Coagulation and Flocculation. Bachelor’s Thesis, Universiti Malaysia Sarawak (UNIMAS), Kota Samarahan, Malaysia, 5 May 2005. [Google Scholar]
- Razzolini, M.T.P.; da Silva Santos, T.F.; Bastos, V.K. Detection of Giardia and Cryptosporidium cysts/oocysts in watersheds and drinking water sources in Brazil urban areas. J. Water Health 2010, 8, 399–404. [Google Scholar] [CrossRef] [PubMed]
- Horman, A.; Rimhanen-Finne, R.; Maunula, L.; von Bonsdorff, C.H.; Torvela, N.; Heikinheimo, A.; Hanninen, M.L. Campylobacter spp., Giardia spp., Cryptosporidium spp., noroviruses, and indicator organisms in surface water in southwestern Finland, 2000–2001. Appl. Environ. Microbiol. 2004, 70, 87–95. [Google Scholar] [CrossRef] [PubMed]
- Rimhanen-Finne, R.; Vuorinen, A.; Marmo, S.; Malmberg, S.; Hanninen, M.-L. Comparative analysis of Cryptosporidium, Giardia and indicator bacteria during sewage sludge hygienization. Lett. Appl. Microbiol. 2004, 38, 301–305. [Google Scholar] [CrossRef] [PubMed]
- Brianesco, R.; Bonadonna, L. An Italian study of Cryptosporidium and Giardia in wastewater, fresh water and treated water. Environ. Monit. Asses. 2005, 104, 445–457. [Google Scholar] [CrossRef]
- Lee, S.C.; Ngui, R.; Tan, T.K.; Muhammad Aidil, R.; Init, I.; Lim, Y.A.L. Aquatic biomonitoring of Giardia cysts and Cryptosporidium oocysts in Peninsular Malaysia. Environ. Sci. Pollut. Res. 2014, 21, 445–453. [Google Scholar] [CrossRef] [PubMed]
- Lim, Y.A.L.; Ahmad, R.A. Occurrence of Giardia cysts and Cryptosporidium oocysts in the Temuan Orang Asli (Aborigine) river system. Southeast Asian J. Trop. Med. 2004, 35, 801–810. [Google Scholar]
- Smith, H.V.; Robertson, L.J.; Gilmour, R.A.; Morris, G.P.; Girdwood, R.W.A.; Smith, P.G. The occurrence and viability of Giardia cysts in Scottish raw and final waters. Water Environ. J. 1993, 7, 632–635. [Google Scholar] [CrossRef]
- Carmena, D.; Aguinagalde, X.; Zigorraga, C.; Fernandez-Crespo, J.C.; Ocio, J.A. Presence of Giardia cysts and Cryptosporidium oocysts in drinking water supplies in northern Spain. J. Appl. Microbiol. 2007, 102, 619–629. [Google Scholar] [CrossRef] [PubMed]
- States, S.M.; Stadterman, K.; Ammon, L.; Vogel, P.; Baldizar, J.; Wright, D.; Conley, L.; Sykora, J. Protozoa in river water: Sources, occurrence, and treatment. J. AWWA 1997, 89, 74–83. [Google Scholar]
- Farizawati, S.; Lim, Y.A.L.; Ahmad, R.A.; Fatimah, C.T.N.I.; Siti-Nor, Y. Contribution of cattle farms towards river contamination with Giardia cysts and Cryptosporidium oocysts in Sungai Langat Basin. Trop. Biomed. 2005, 22, 89–98. [Google Scholar] [PubMed]
- Bakir, B.; Tanyuksel, M.; Saylam, F.; Tanriverdi, S.; Araz, R.E.; Hacim, A.K.; Hasde, M. Investigation of waterborne parasites in drinking water sources of Ankara, Turkey. J. Microbiol. 2003, 41, 148–151. [Google Scholar]
- Al-Morshidy, K.A.H.; Al-Amari, M.J.Y. Detection of parasitic contamination in Hilla city drinking water/Babylon province/Iraq. Adv. Nat. Appl. Sci. 2015, 9, 80–84. [Google Scholar]
- Brooker, S. Spatial epidemiology of human schistosomiasis in Africa: Risk models, transmission dynamics and control. Trans. R. Soc. Trop. Med. Hyg. 2007, 101, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Khan, N.A. Acanthamoeba: Biology and increasing importance in human health. FEMS Microbiol. Rev. 2006, 30, 564–595. [Google Scholar] [CrossRef] [PubMed]
- Hoffmann, R.; Michel, R. Distribution of free-living amoebae (FLA) during preparation and supply of drinking water. Int. J. Hyg. Environ. Health 2001, 203, 215–219. [Google Scholar] [CrossRef]
- Coskun, K.A.; Ozcelik, S.; Tutar, L.; Elaldi, N.; Tutar, Y. Isolation and identification of free-living amoebae from tap water in Sivas, Turkey. BioMed. Res. Int. 2013, 2013. [Google Scholar] [CrossRef] [PubMed]
- Scheikl, U.; Tsao, H.-F.; Horn, M.; Indra, A.; Walochnik, J.F. Free-living amoebae and their associated bacteria in Austrian cooling towers: A 1-year routine screening. Parasitol. Res. 2016, 5, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Leonska-Duniec, A.; Adamska, M.; Skotarczak, B. Molecular identification of free-living amoebae isolated from artificial water bodies located in Poland. Acta Protozool. 2015, 54, 77–84. [Google Scholar]
- Hassan, A.; Farouk, H.; Hassanein, F.; Abdul-Ghani, R.; Abdelhady, A.H. Acanthamoeba contamination of hemodialysis and dental units in Alexandria, Egypt: A neglected potential source of infection. J. Infect. Public Health 2012, 5, 304–310. [Google Scholar] [CrossRef] [PubMed]
- Thomas, V.K.; Herrera-Rimann, K.; Blanc, D.S.; Greub, G. Biodiversity of amoebae and amoebae-resisting bacteria in a hospital water network. Appl. Environ. Microbiol. 2006, 72, 2428–2438. [Google Scholar] [CrossRef] [PubMed]
- Muchesa, P.; Barnard, T.G.; Bartie, C. The prevalence of free-living amoebae in a South African hospital water distribution system. S. Afr. J. Sci. 2015, 111, 1–3. [Google Scholar] [CrossRef]
- Thomas, J.M.; Ashbolt, N.J. Do free-living amoebae in treated drinking water systems present an emerging health risk? Environ. Sci. Technol. 2011, 45, 860–869. [Google Scholar] [CrossRef] [PubMed]
- Schuster, F.L.; Visvesvara, G.S. Free-living amoebae as opportunistic and non-opportunistic pathogens of humans and animals. Int. J. Parasitol. 2004, 34, 1001–1027. [Google Scholar] [CrossRef] [PubMed]
- Visvesvara, G.S.; Moura, H.; Schuster, F.L. Pathogenic and opportunistic free-living amoebae: Acanthamoeba spp., Balamuthia mandrillaris, Naegleria fowleri, and Sappinia diploidea. FEMS Immunol. Med. Microbiol. 2007, 50, 1–26. [Google Scholar] [CrossRef] [PubMed]
- Fuerst, P.A.; Booton, G.C.; Crary, M. Phylogenetic analysis and the evolution of the 18S rRNA gene typing system of Acanthamoeba. J. Eukaryot. Microbiol. 2015, 62, 69–84. [Google Scholar] [CrossRef] [PubMed]
- Ledee, D.R.; Hay, J.; Byers, T.J.; Seal, D.V.; Kirkness, C.M. Acanthamoeba griffini. Molecular characterization of a new corneal pathogen. Investig. Opthalmol. Vis. Sci. 1996, 37, 544–550. [Google Scholar]
- Stothard, D.R.; Schroeder-Diedrich, J.M.; Awwad, M.H.; Gast, R.J.; Ledee, D.R.; Rodriguez-Zaragoza, S.; Dean, C.L.; Fuerst, P.A.; Byers, T.J. The evolutionary history of the genus Acanthamoeba and the identification of eight new 18S rRNA gene sequence types. J. Eukaryot. Microbiol. 1998, 45, 45–54. [Google Scholar] [CrossRef] [PubMed]
- Walochnik, J.; Haller-Schober, E.M.; Kolli, H.; Picher, O.; Obwaller, A.; Aspock, H. Discrimination between clinically relevant and nonrelevant Acanthamoeba strains isolated from contact lens wearing keratitis patients in Austria. J. Clin. Microbiol. 2000, 38, 3932–3936. [Google Scholar] [PubMed]
- Booton, G.C.; Kelly, D.J.; Chu, Y.W.; Seal, D.V.; Houang, E.; Lam, D.S.; Byers, T.J.; Fuerst, P.A. 18S ribosomal DNA typing and tracking of Acanthamoeba species isolates from corneal scrape specimens, contact lenses, lens cases and home water supplies of Acanthamoeba keratitis patients in Hong Kong. J. Clin. Microbiol. 2002, 40, 1621–1625. [Google Scholar] [CrossRef] [PubMed]
- Khan, N.A.; Jarroll, E.L.; Paget, T.A. Molecular and physiological differentiation between pathogenic and non-pathogenic Acanthamoeba. Curr. Microbiol. 2002, 45, 197–202. [Google Scholar] [CrossRef] [PubMed]
- De Jonckheere, J.F. Epidemiological typing of Acanthamoeba strains isolated from keratitis cases in Belgium. Bull. Soc. Belge Ophtalmol. 2003, 287, 27–33. [Google Scholar] [PubMed]
- Maghsood, A.H.; Sissons, J.; Rezaian, M.; Nolder, D.; Warhurst, D.; Khan, N.A. Acanthamoeba genotype T4 from the UK and Iran and isolation of the T2 genotype from clinical isolates. J. Med. Microbiol. 2005, 54, 755–759. [Google Scholar] [CrossRef] [PubMed]
- Ledee, D.R.; Iovieno, A.; Miller, D.; Mandal, N.; Diaz, M.; Fell, J.; Fini, M.E.; Alfonso, E.C. Molecular identification of T4 and T5 genotypes in Acanthamoeba keratitis patients. J. Clin. Microbiol. 2009, 47, 1458–1462. [Google Scholar] [CrossRef] [PubMed]
- Risler, A.; Coupat-Goutaland, B.; Pelandakis, M. Genotyping and phylogenetic analysis of Acanthamoeba isolates associated with keratitis. Parasitol. Res. 2013, 112, 3807–3816. [Google Scholar] [CrossRef] [PubMed]
- Booton, G.C.; Visvesvara, G.S.; Byers, T.J.; Kelly, D.J.; Fuerst, P.A. Identification and distribution of Acanthamoeba species genotypes associated with nonkeratitis infections. J. Clin. Microbiol. 2005, 43, 1689–1693. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Masters, S.; Hong, Y. Effect of disinfectant, water age, and pipe material on occurrence and persistence of Legionella, mycobacteria, Pseudomonas aeruginosa, and two amoebas. Environ. Sci. Technol. 2012, 46, 11566–11574. [Google Scholar] [CrossRef] [PubMed]
- Niyyati, M.; Lasgerdi, Z.; Lorenzo-Morales, J. Pathogenic free-living amoebae from water sources in Kish Island, Southern Iran. Microbiol. Insights 2015, 8, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Behniafar, H.; Niyyati, M.; Lasjerdi, Z. Molecular characterization of pathogenic Acanthamoeba isolated from drinking and recreational water in East Azerbaijan, Northwest Iran. Environ. Health Insights 2015, 9, 7–12. [Google Scholar] [PubMed]
- Kao, P.M.; Hsu, B.M.; Chen, N.H.; Huang, K.H.; Huang, S.W.; King, K.L.; Chiu, Y.C. Isolation and identification of Acanthamoeba species from thermal spring environments in southern Taiwan. Exp. Parasitol. 2012, 130, 354–358. [Google Scholar] [CrossRef] [PubMed]
- De Jonckheere, J.F. The isolation of Naegleria italica from Peru indicates that this potentially pathogenic species occurs worldwide. Parasitol. Int. 2005, 54, 173–175. [Google Scholar] [CrossRef] [PubMed]
- Ithoi, I.; Ahmad, A.F.; Nissapatorn, V.; Lau, Y.L.; Mahmud, R.; Mak, J.W. Detection of Naegleria species in environmental samples from Peninsular Malaysia. PLoS ONE 2011, 6, 324–327. [Google Scholar] [CrossRef] [PubMed]
- Rompre, A.; Servais, P.; Baudart, J.; de-Roubin, M.-R.; Laurent, P. Detection and enumeration of coliforms in drinking water: Current methods and emerging approaches. J. Microbiol. Methods 2002, 49, 31–54. [Google Scholar] [CrossRef]
- Mahto, B.; Goel, S. Bacterial survival and regrowth in drinking water systems. J. Environ. Sci. Eng. 2008, 50, 33–40. [Google Scholar] [PubMed]
- Ahmed, I.; Rafique, T.; Hasan, S.K.; Khan, N.; Khan, M.H.; Usmani, T.H. Correlation of fluoride in drinking water with urine, blood plasma, and serum fluoride levels of people consuming high and low fluoride drinking water in Pakistan. Fluoride 2012, 45, 384–388. [Google Scholar]
- Firempong, C.K.; Nsiah, K.; Awunyo-Vitor, D.; Dongsogo, J. Soluble fluoride levels in drinking water—A major risk factor of dental fluorosis among children in Bongo community of Ghana. Ghana Med. J. 2013, 47, 16–23. [Google Scholar] [PubMed]
- Kocher, D.K.; Gupta, A.; Sahota, P.P. Incidence of water borne protozoans and their correlation with faecal indicator bacteria in drinking water. Indian J. Appl. Res. 2014, 4, 645–646. [Google Scholar] [CrossRef]
- Azman, J.; Init, I.; Wan-Yusoff, W.S. Occurrence of Giardia and Cryptosporidium (oo)cysts in the river water of two recreational areas in Selangor, Malaysia. Trop. Biomed. 2009, 26, 289–302. [Google Scholar] [PubMed]
Location | Parasites | |||||||
---|---|---|---|---|---|---|---|---|
Giardia | Cryptosporidium | Other Parasites | Amoebae | |||||
+/N | % | +/N | % | +/N | % | +/N | % | |
Subdivision A-1 | 6/30 | 20.0 | 5/30 | 16.7 | 12/30 | 40.0 | 18/18 | 100.0 |
Subdivision A-2 | 13/30 | 43.3 | 6/30 | 20.0 | 9/30 | 30.0 | 18/18 | 100.0 |
Plant B | 9/18 | 50.0 | 4/18 | 22.2 | 6/18 | 3.3 | 18/18 | 100.0 |
DS | 0/7 | 0 | 1/7 | 14.3 | 0/7 | 0 | 1/7 | 14.3 |
Total Positive | 28/85 | 32.9 | 16/85 | 18.8 | 27/85 | 31.8 | 55/61 | 90.2 |
Plant A | |||
Location | Site | Giardia (cysts/L) a | Cryptosporidium (oocysts/L) a |
Subdivision A-1 | Raw | 0.18 ± 0.35 | 0.02 ± 0.04 |
Coagulation | 0.06 ± 0.05 | 0.04 ± 0.09 | |
Flocculation | 0.02 ± 0.04 | 0.02 ± 0.04 | |
Sedimentation | 0 | 0.06 ± 0.09 | |
Filtration | 0 | 0 | |
Treated | 0 | 0 | |
Overall mean ± SD | 0.04 ± 0.15 | 0.02 ± 0.06 | |
Range of concentration | 0–0.80 | 0–0.20 | |
Subdivision A-2 | Raw | 0.44 ± 0.53 | 0.04 ± 0.05 |
Coagulation | 0.14 ± 0.11 | 0.14 ± 0.19 | |
Flocculation | 0.18 ± 0.20 | 0.04 ± 0.05 | |
Sedimentation | 0.06 ± 0.13 | 0 | |
Filtration | 0 | 0 | |
Treated | 0.02 ± 0.04 | 0 | |
Overall mean ± SD | 0.14 ± 0.27 | 0.04 ± 0.09 | |
Range of concentration | 0–1.20 | 0–0.40 | |
Plant B | |||
Location | Site | Giardia (cysts/L) a | Cryptosporidium (oocysts/L) a |
Plant B | Raw-1 | 0.17 ± 0.29 | 0.03 ± 0.06 |
Raw-2 | 0.17 ± 0.12 | 0 | |
Raw-3 | 0.17 ± 0.21 | 0.07 ± 0.06 | |
Sedimentation | 0.03 ± 0.06 | 0.03 ± 0.06 | |
Filtration | 0.03 ± 0.06 | 0 | |
Treated | 0.13 ± 0.23 | 0 | |
Overall mean ± SD | 0.12 ± 0.17 | 0.02 ± 0.04 | |
Range of concentration | 0–0.50 | 0–0.10 |
Plant A | ||
Location | Site | Fecal Coliforms (CFU/100 mL) (Mean ± SD) |
Subdivision A-1 | Raw | 13.33 ± 15.28 |
Coagulation | 13.33 ± 5.77 | |
Flocculation | 0 | |
Sedimentation | 0 | |
Filtration | 0 | |
Treated | 0 | |
Overall mean ± SD | 4.44 ± 8.56 | |
Range of concentration | 0–30 | |
Subdivision A-2 | Raw | 26.00 ± 21.63 |
Coagulation | 13.33 ± 5.77 | |
Flocculation | 10.00 ± 10.00 | |
Sedimentation | 0 | |
Filtration | 0 | |
Treated | 0 | |
Overall mean ± SD | 8.22 ± 12.94 | |
Range of concentration | 0–50 | |
Plant B | ||
Location | Site | Fecal coliforms (CFU/100 mL) (Mean ± SD) |
Plant B | Raw-1 | 15.00 ± 21.21 |
Raw-2 | 5.00 ± 7.07 | |
Raw-3 | 15.00 ± 7.07 | |
Sedimentation | 5.00 ± 7.07 | |
Filtration | 0 | |
Treated | 0 | |
Overall mean ± SD | 6.67 ± 9.85 | |
Range of concentration | 0–30 |
Parameter | Subdivision A-1 a | Subdivision A-2 a | Plant B a | DS a |
---|---|---|---|---|
Physical | ||||
Temperature (°C) | 25.41 ± 0.99 | 26.32 ± 0.93 | 27.19 ± 0.84 | 26.55 ± 0.75 |
Conductivity (ms/cm) | 0.076 ± 0.016 | 0.075 ± 0.015 | 0.021 ± 0.010 | 0.051 ± 0.022 |
Total dissolved solids (TDS g/L) | 0.050 ± 0.010 | 0.050 ± 0.013 | 0.030 ± 0.027 | 0.047 ± 0.018 |
SAL (ppt) | 0.030 ± 0.007 | 0.030 ± 0.008 | 0.010 ± 0.008 | 0.020 ± 0.011 |
Dissolved oxygen (%) | 3.543 ± 0.604 | 3.507 ± 0.804 | 2.300 ± 0.692 | 2.65 ± 0.292 |
pH | 6.11 ± 0.363 | 6.14 ± 0.211 | 6.12 ± 0.022 | 6.13 ± 0.261 |
ORP (mv) | 50.73 ± 22.31 | 39.56 ± 11.12 | 40.72 ± 1.12 | 29.06 ± 0.959 |
Turbidity (NTU) | 18.19 ± 21.55 | 16.57 ± 12.39 | 1.25 ± 1.34 | 0.673 ± 0.403 |
Chemical | ||||
Ammonia (NH3, mg/L) | 0.224 ± 0.102 | 0.216 ± 0.122 | 0.174 ± 0.111 | 0.211 ± 0.089 |
Chlorine (CI2, mg/L) | 0.310 ± 0.647 | 0.356 ± 0.763 | 0.286 ± 0.620 | 0.963 ± 0.296 |
Nitrite (NO2−, mg/L) | 0.019 ± 0.047 | 0.004 ± 0.005 | 0.005 ± 0.006 | 0.003 ± 0.001 |
Nitrate (NO3−, mg/L) | 0.061 ± 0.085 | 0.028 ± 0.022 | 0.022 ± 0.016 | 0.099 ± 0.021 |
Fluoride (F−, mg/L) | 0.301 ± 0.188 | 0.288 ± 0.161 | 0.237 ± 0.117 | 0.250 ± 0.059 |
Parameter | Giardia | Cryptosporidium |
---|---|---|
Physical | ||
Temperature, °C | 0.133 | 0.193 |
Conductivity, ms/cm | −0.158 | 0.033 |
Total dissolved solids (g/L) | −0.083 | 0.088 |
SAL (ppt) | −0.283 | −0.138 |
Dissolved oxygen (%) | −0.36 | −0.117 |
pH | 0.232 | 0.111 |
ORP (mv) | −0.288 | 0.056 |
Turbidity (NTU) | 0.333 | 0.36 |
Chemical | ||
Ammonia (NH3, mg/L) | −0.052 | 0.169 |
Chlorine (Cl2, mg/L) | −0.225 | −0.351 |
Nitrate (NO3⁻, mg/L) | −0.105 | −0.115 |
Nitrite (NO2⁻, mg/L) | −0.197 | 0.015 |
Fluoride (F⁻, mg/L) | 0.611 ** | 0.478 * |
Biological | ||
Fecal coliforms (CFU/100 mL) | 0.855 ** | 0.536 * |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Richard, R.L.; Ithoi, I.; Abd Majid, M.A.; Wan Sulaiman, W.Y.; Tan, T.C.; Nissapatorn, V.; Lim, Y.A.L. Monitoring of Waterborne Parasites in Two Drinking Water Treatment Plants: A Study in Sarawak, Malaysia. Int. J. Environ. Res. Public Health 2016, 13, 641. https://doi.org/10.3390/ijerph13070641
Richard RL, Ithoi I, Abd Majid MA, Wan Sulaiman WY, Tan TC, Nissapatorn V, Lim YAL. Monitoring of Waterborne Parasites in Two Drinking Water Treatment Plants: A Study in Sarawak, Malaysia. International Journal of Environmental Research and Public Health. 2016; 13(7):641. https://doi.org/10.3390/ijerph13070641
Chicago/Turabian StyleRichard, Reena Leeba, Init Ithoi, Mohamad Azlan Abd Majid, Wan Yusoff Wan Sulaiman, Tian Chye Tan, Veeranoot Nissapatorn, and Yvonne Ai Lian Lim. 2016. "Monitoring of Waterborne Parasites in Two Drinking Water Treatment Plants: A Study in Sarawak, Malaysia" International Journal of Environmental Research and Public Health 13, no. 7: 641. https://doi.org/10.3390/ijerph13070641