Assessment of Environmental and Hereditary Influence on Development of Pituitary Tumors Using Dermatoglyphic Traits and Their Potential as Screening Markers
Abstract
:1. Introduction
2. Patients and Methods
2.1. Patients
2.2. Analysis of Dermatoglyphic Traits
2.3. Statistical Methods
3. Results
3.1. The Analysis of Quantitative Dermatoglyphic Traits
3.2. The Analysis of Qualitative Dermatoglyphic Traits
4. Discussion
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Drange, M.R.; Fram, N.R.; Herman-Bomert, V.; Melmed, S. Pituitary tumor registry: A novel clinical resource. J. Clin. Endocrinol. Metab. 2000, 85, 168–173. [Google Scholar] [CrossRef] [PubMed]
- Molitch, M.E. Pituitary incidentalomas. Endocrinol. Metab. Clin. North. Am. 1996, 26, 725–740. [Google Scholar] [CrossRef]
- Etxabe, J.; Vazquez, J.A. Morbidity and mortality in Cushing’s disease: An epidemiological approach. Clin. Endocrinol. 1994, 40, 479–484. [Google Scholar] [CrossRef]
- Melmed, S. Medical progress: Acromegaly. N Engl. J. Med. 2006, 355, 2558–2573. [Google Scholar] [CrossRef] [PubMed]
- Snyder, P.J. Gonadotroph and other clinically nonfunctioning pituitary adenomas. Cancer Treat. Res. 1997, 89, 57–72. [Google Scholar] [PubMed]
- Vance, M.L. Hypopituitarsm. N. Engl. J. Med. 1994, 330, 1651–1662. [Google Scholar] [CrossRef] [PubMed]
- Asa, S.L.; Ezzat, S. The pathogenesis of pituitary tumors. Nat. Rev. 2002, 2, 836–849. [Google Scholar] [CrossRef] [PubMed]
- Vandeva, S.; Jaffrain-Rea, M.L.; Daly, A.F.; Tichomirowa, M.; Zacharieva, S.; Beckers, A. The genetics of pituitary adenomas. J. Clin. Endocrinol. Metab. 2010, 24, 461–476. [Google Scholar] [CrossRef] [PubMed]
- Cummins, H.; Midlo, C. Fingerprints, Palms and Soles; Dover Publications: New York, NY, USA, 1961. [Google Scholar]
- Schaumann, B.; Alter, M. Dermatoglyphics in Medical Disorders; Springer-Verlag: New York, NY, USA, 1976. [Google Scholar]
- Chintamani, I.; Khandelwal, R.; Mittal, A.; Saijanani, S.; Tuteja, A.; Bansal, A.; Bhatnagar, D.; Saxena, S. Qualitative and quantitative dermatoglyphics traits in patients with breast cancer. BMC Cancer 2007, 13, 7–44. [Google Scholar]
- Rudic, M.; Milicic, J.; Lentic, D. Dermatoglyphics and larynx cancer. Coll. Antropol. 2005, 29, 179–183. [Google Scholar] [PubMed]
- Zivanović-Posilovic, G.; Milicic, J.; Bozicevic, D. Dermatoglyphics and gastric cancer. Coll. Antropol. 2003, 27, 213–219. [Google Scholar] [PubMed]
- Sariri, E.; Kashanian, M.; Vahdat, M.; Yari, S. Comparison of the dermatoglyphic characteristics of women with and without breast cancer. Eur. J. Obstet. Gynecol. Reprod. Biol. 2012, 160, 201–204. [Google Scholar] [CrossRef] [PubMed]
- Talhar, S.S.; Sontakke, B.R.; Waghmare, J.E.; Tarnekar, A.M.; Shende, M.R.; Pal, A.K. Dermatoglyphics and karyotype analysis in primary amenorrhoea. J. Clin. Diagn. Res. 2014, 8. [Google Scholar] [CrossRef] [PubMed]
- Xue, W.; Han, W.; Zhou, Z.S. ADAM33 polymorphisms are associated with asthma and a distinctive palm dermatoglyphic pattern. Mol. Med. Rep. 2013, 8, 1795–1800. [Google Scholar] [PubMed]
- Bukelo, M.J.; Kanchan, T.; Rau, A.T.; Unnikrishnan, B.; Bukelo, M.F.; Krishna, V.N. Palmar dermatoglyphics in children with acute lymphoblastic leukemia—A preliminary investigation. J. Forensic Leg Med. 2011, 18, 115–118. [Google Scholar] [CrossRef] [PubMed]
- Bukelo, M.J.; Kanchan, T.; Unnikrishnan, B.; Rekha, T.; Ashoka, B.; Rau, A.T. Study of finger print patterns in children with acute lymphoblastic leukemia. Forensic Sci. Med. Pathol. 2011, 7, 21–25. [Google Scholar] [CrossRef] [PubMed]
- Reed, T. Hypothesis: Association of the critical region of trisomy 18 and 18q2—Syndrome with dermatoglyphic findings and a growth suppressor (deleted in colon cancer) locus. Clin. Genet. 1991, 39, 391–395. [Google Scholar] [CrossRef] [PubMed]
- Pan, H.; Califano, J.; Ponte, J.F.; Russo, A.L.; Cheng, K.H.; Thiagalingam, A.; Nemani, P.; Sidransky, D.; Thiagalingam, S. Loss of heterozygosity patterns provide fingerprints for genetic heterogeneity in multistep cancer progression of tobacco smoke-induced non-small cell lung cancer. Cancer Res. 2005, 65, 1664–1669. [Google Scholar] [CrossRef] [PubMed]
- Milicic, J.; Pavicevic, R.; Halbauer, M.; Sarcevic, B. Analysis of Qualitative Dermatoglyphic Traits of the Digito-palmar Complex in Carcinomas. In The State of Dermatoglyphics: The Science of Finger and Palm Prints; Durham, N.M., Fox, K.M., Plato, C.C., Eds.; The Edwin Mallen Press: Lewinston, ME, USA, 2000; pp. 53–72. [Google Scholar]
- Penrose, L.S. Effects of additive genes at many loci compared with those of a set of alleles at one locus in parent, child and sib correlations. Ann. Hum. Genet. 1969, 33, 15. [Google Scholar] [CrossRef] [PubMed]
- Arrieta, M.I.; Criado, B.; Hauspie, R.; Martinez, B.; Lobato, N.; Lostao, C.M. Effects of genetic and enviromental factors on the a-b, b-c and c-d interdigital ridge counts. Hereditas 1992, 117, 189–194. [Google Scholar] [CrossRef] [PubMed]
- Medland, S.E.; Loesch, D.Z.; Mdzewski, B.; Zhu, G.; Montgomery, G.W.; Martin, N.G. Linkage analysis of a model quantitative trait in humans: Finger ridge count shows significant multivariate linkage to 5q14.1. PLoS Genet. 2007, 3, 1736–1749. [Google Scholar] [CrossRef] [PubMed]
- Hossein, R.N.; Nasser, M.S. Application of dermatoglyphic traits for diagnosis of diabetic type 1 patients. Inter. J. Environ. Sci. Develop. 2010, 1, 2718–2725. [Google Scholar]
- Kahn, H.S.; Graff, M.; Stein, A.D.; Lumey, L.H. A fingerprint marker from early gestation associated with diabetes in middle age: The Dutch hunger winter families study. Int. J. Epidemiol. 2009, 38, 101–109. [Google Scholar] [CrossRef] [PubMed]
- Kulic, J.V.; Milicic, J.; Lentinic, D.; Rahelić, D.; Zekanović, D. Dermatoglyphics in patients with hypothyreosis. Coll. Antropol. 2012, 36, 389–394. [Google Scholar] [PubMed]
Variable | Males | Females | ||
---|---|---|---|---|
F | p < 0.05 | F | p < 0.05 | |
Right hand | ||||
FRR1 | 0.349 | 0.706 | 0.658 | 0.519 |
FRR2 | 0.158 | 0.854 | 1.672 | 0.190 |
FRR3 | 1.928 | 0.148 | 1.413 | 0.245 |
FRR4 | 2.258 | 0.107 | 5.845 | * 0.003 |
FRR5 | 5.926 | * 0.003 | 5.103 | * 0.007 |
a–b rc R | 16.648 | * 0.000 | 31.573 | * 0.001 |
b–c rc R | 1.032 | 0.358 | 2.327 | 0.096 |
c–d rc R | 8.923 | * 0.000 | 11.064 | * 0.001 |
atd R | 3.378 | * 0.036 | 4.335 | * 0.014 |
Left hand | ||||
FRL1 | 0.139 | 0.870 | 0.103 | 0.903 |
FRL2 | 1.336 | 0.265 | 0.143 | 0.867 |
FRL3 | 0.198 | 0.821 | 1.930 | 0.147 |
FRL4 | 2.547 | 0.080 | 3.522 | * 0.031 |
FRL5 | 1.697 | 0.185 | 1.256 | 0.287 |
a–b rc L | 21.277 | * 0.000 | 26.045 | * 0.001 |
b–c rc L | 5.405 | * 0.005 | 4.574 | * 0.011 |
c–d rc L | 7.666 | * 0.001 | 7.460 | * 0.001 |
atd L | 7.914 | * 0.000 | 8.487 | * 0.001 |
Males | ||||||
---|---|---|---|---|---|---|
Functional vs. Non-Functional Tumors | Functional Tumors vs. Controls | Non-Functional Tumors vs. Controls | ||||
Diff. Mean | p < 0.05 | Diff. Mean | p < 0.05 | Diff. Mean | p < 0.05 | |
FRR5 | 0.183 | 0.992 | −2.685 | 0.068 | −2.868 | * 0.013 |
a–b rc R | 1.317 | 0.776 | −5.300 | * 0.003 | −6.617 | * 0.001 |
b–c rc R | −0.400 | 0.967 | −1.495 | 0.493 | −1.095 | 0.579 |
c–d rc R | −1.167 | 0.796 | −4.840 | * 0.003 | −3.673 | * 0.009 |
atd R | 1.583 | 0.767 | −2.175 | 0.469 | −3.758 | 0.041 |
a–b rc L | 0.033 | 0.999 | −6.980 | * 0.001 | −7.013 | * 0.001 |
b–c rc L | 2.300 | 0.392 | −1.525 | 0.535 | −3.825 | * 0.004 |
c–d rc L | 5.083 | * 0.023 | 0.030 | 0.999 | –5.053 | * 0.001 |
atd L | 2.767 | 0.386 | –2.655 | 0.266 | –5.422 | * 0.001 |
Females | ||||||
FRR4 | 1.775 | 0.369 | –1.671 | 0.164 | –3.447 | * 0.005 |
FRR5 | –0.087 | 0.997 | –2.287 | * 0.022 | –2.200 | 0.082 |
a–b rc R | –3.712 | * 0.024 | –7.508 | * 0.001 | –3.797 | * 0.004 |
b–c rc R | 0.914 | 0.817 | –1.452 | 0.353 | –2.367 | 0.147 |
c–d rc R | –1.304 | 0.662 | –4.509 | * 0.001 | –3.205 | * 0.030 |
atd R | 0.809 | 0.899 | –2.756 | 0.082 | –3.565 | 0.054 |
FRL4 | 2.632 | 0.082 | –0.060 | 0.997 | –2.692 | * 0.024 |
a–b rc L | –0.929 | 0.776 | –6.016 | * 0.001 | –5.087 | * 0.001 |
b–c rc L | 1.033 | 0.757 | –2.038 | 0.113 | –3.072 | * 0.031 |
c–d rc L | –0.877 | 0.848 | –3.858 | * 0.002 | –2.982 | 0.067 |
atd L | 1.454 | 0.699 | –3.608 | * 0.012 | –5.062 | * 0.003 |
Gender | Group | Whorl % | Ulnar Loop % | Radial Loop % | Arch % |
---|---|---|---|---|---|
Males | Controls | 33.9 | 56.2 | 4.5 | 5.3 |
Non-functional tumors | 26.7 | 61.0 | 2.3 | 10.0 | |
Functional tumors | 20.0 | 69.0 | 2.5 | 8.5 | |
Females | Controls | 31.9 | 59.9 | 3.6 | 4.6 |
Non-functional tumors | 17.7 | 67.0 | 4.0 | 11.3 | |
Functional tumors | 26.7 | 60.9 | 3.3 | 9.1 |
Fingertip Pattern | Functional vs. Non-Functional Tumors | Functional Tumors vs. Controls | Non-Functional Tumors vs. Controls | |||
---|---|---|---|---|---|---|
Males | ||||||
χ2 | p < 0.05 | χ2 | p < 0.05 | χ2 | p < 0.05 | |
Right hand | 5.054 | 0.168 | 19.477 | * 0.001 | 5.907 | 0.116 |
Left hand | 2.894 | 0.408 | 6.494 | 0.090 | 14.276 | * 0.003 |
Both hands | 3.720 | 0.293 | 21.100 | * 0.001 | 18.005 | * 0.001 |
Females | ||||||
Right hand | 7.079 | 0.069 | 25.472 | * 0.003 | 13.686 | * 0.001 |
Left hand | 3.466 | 0.325 | 18.173 | 0.070 | 7.054 | * 0.001 |
Both hands | 8.692 | * 0.034 | 41.002 | * 0.001 | 17.048 | * 0.001 |
Palmar Pattern | χ2 | p < 0.05 | Males |
---|---|---|---|
Hypothenar | 6.096 | 0.014 | Functional tumors vs. controls |
I4 interdigital area | 5.826 | 0.016 | Non-functional tumors vs. controls |
Hypothenar | 6.871 | 0.009 | Functional vs. non-functional tumors |
Thenar | 4.167 | 0.041 | Functional vs. non-functional tumors |
Females | |||
I3 interdigital area | 22.186 | 0.001 | Functional tumors vs. controls |
I3 interdigital area | 5.338 | 0.021 | Non-functional tumors vs. controls |
I2 interdigital area | 8.887 | 0.003 | Non-functional tumors vs. controls |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons by Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gradiser, M.; Matovinovic Osvatic, M.; Dilber, D.; Bilic-Curcic, I. Assessment of Environmental and Hereditary Influence on Development of Pituitary Tumors Using Dermatoglyphic Traits and Their Potential as Screening Markers. Int. J. Environ. Res. Public Health 2016, 13, 330. https://doi.org/10.3390/ijerph13030330
Gradiser M, Matovinovic Osvatic M, Dilber D, Bilic-Curcic I. Assessment of Environmental and Hereditary Influence on Development of Pituitary Tumors Using Dermatoglyphic Traits and Their Potential as Screening Markers. International Journal of Environmental Research and Public Health. 2016; 13(3):330. https://doi.org/10.3390/ijerph13030330
Chicago/Turabian StyleGradiser, Marina, Martina Matovinovic Osvatic, Dario Dilber, and Ines Bilic-Curcic. 2016. "Assessment of Environmental and Hereditary Influence on Development of Pituitary Tumors Using Dermatoglyphic Traits and Their Potential as Screening Markers" International Journal of Environmental Research and Public Health 13, no. 3: 330. https://doi.org/10.3390/ijerph13030330
APA StyleGradiser, M., Matovinovic Osvatic, M., Dilber, D., & Bilic-Curcic, I. (2016). Assessment of Environmental and Hereditary Influence on Development of Pituitary Tumors Using Dermatoglyphic Traits and Their Potential as Screening Markers. International Journal of Environmental Research and Public Health, 13(3), 330. https://doi.org/10.3390/ijerph13030330