Gender Differences in the Longitudinal Association between Work-Related Injury and Depression
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Measures
2.3. Analyses
2.3.1. Occupational Injury and Risk of Subsequent Depression (Analysis 1)
2.3.2. Depression and Risk of Occupational Injury (Analysis 2)
3. Results
3.1. Occupational Injury and Depression
3.2. Depression and Occupational Injury
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Conflicts of Interest
References
- Kühn, M.; Ehlert, U.; Rumpf, H.J.; Backhaus, J.; Hohagen, F.; Broocks, A. Onset and maintenance of psychiatric disorders after serious accidents. Eur. Arch. Psychiatry Clin. Neurosci. 2006, 256, 497–503. [Google Scholar] [CrossRef] [PubMed]
- Richmond, T.S.; Amsterdam, J.D.; Guo, W.; Ackerson, T.; Gracias, V.; Robinson, K.M.; Hollander, J.E. The effect of post-injury depression on return to pre-injury function: A prospective cohort study. Psychol. Med. 2009, 39, 1709–1720. [Google Scholar] [CrossRef] [PubMed]
- Bryant, R.A.; O’Donnell, M.L.; Creamer, M.; McFarlane, A.C.; Clark, C.R.; Silove, D. The psychiatric sequelae of traumatic injury. Am. J. Psychiatry 2010, 167, 312–320. [Google Scholar] [CrossRef] [PubMed]
- Kessler, R.C. The effects of stressful life events on depression. Annu. Rev. Psychol. 1997, 48, 191–214. [Google Scholar] [CrossRef] [PubMed]
- Korniloff, K.; Hakkinen, A.; Koponen, H.J.; Kautiainen, H.; Jarvenpaa, S.; Peltonen, M.; Mantyselka, P.; Kampman, O.; Oksa, H.; Vanhala, M. Relationships between depressive symptoms and self-reported unintentional injuries: The cross-sectional population-based FIN-D2D survey. BMC Public Health 2012. [Google Scholar] [CrossRef] [PubMed]
- Wadsworth, E.J.K.; Moss, S.C.; Simpson, S.A.; Smith, A.P. Psychotropic medication use and accidents, injuries and cognitive failures. Hum. Psychopharmmcol. Clin. Exp. 2005, 20, 391–400. [Google Scholar] [CrossRef] [PubMed]
- Quach, L.; Yang, F.M.; Berry, S.D.; Newton, E.; Jones, R.N.; Burr, J.A.; Lipsitz, L.A. Depression, antidepressants, and falls among community-dwelling elderly people: The MOBILIZE Boston study. J. Gerontol. A Biol. Sci. Med. Sci. 2013, 68, 1575–1581. [Google Scholar] [CrossRef] [PubMed]
- Tiesman, H.M.; Peek-Asa, C.; Whitten, P.; Sprince, N.L.; Stromquist, A.; Zwerling, C. Depressive symptoms as a risk factor for unintentional injury: A cohort study in a rural county. Inj. Prev. 2006, 12, 172–177. [Google Scholar] [CrossRef] [PubMed]
- Patten, S.B.; Williams, J.V.; Lavorato, D.H.; Eliasziw, M. Major depression and injury risk. Can. J. Psychiatry 2010, 55, 313–318. [Google Scholar] [PubMed]
- Kessler, R.; Merikangas, K.; Wang, P. The Prevalence and Correlates of Workplace Depression in the National Comorbidity Survey Replication. J. Occup. Environ. Med. 2008. [Google Scholar] [CrossRef] [PubMed]
- Boden, L.I.; Biddle, E.A.; Spieler, E.A. Social and economic impacts of workplace illness and injury: Current and future directions for research. Am. J. Ind. Med. 2001, 40, 398–402. [Google Scholar] [CrossRef] [PubMed]
- Mason, S.; Wardrope, J.; Turpin, G.; Rowlands, A. Outcomes after injury: A comparison of workplace and nonworkplace injury. J. Trauma 2002, 53, 98–103. [Google Scholar] [CrossRef] [PubMed]
- Keogh, J.P.; Nuwayhid, I.; Gordon, J.L.; Gucer, P.W. The impact of occupational injury on injured worker and family: Outcomes of upper extremity cumulative trauma disorders in Maryland workers. Am. J. Ind. Med. 2000, 38, 498–506. [Google Scholar] [CrossRef]
- Ghisi, M.; Novara, C.; Buodo, G.; Kimble, M.O.; Scozzari, S.; Di Natale, A.; Sanavio, E.; Palomba, D. Psychological distress and post-traumatic symptoms following occupational accidents. Behav. Sci. 2013, 3, 587–600. [Google Scholar] [CrossRef] [PubMed]
- Kim, J. Depression as a psychosocial consequence of occupational injury in the US working population: Findings from the medical expenditure panel survey. BMC Public Health 2013, 13, 303. [Google Scholar] [CrossRef] [PubMed]
- Dersh, J.; Mayer, T.; Theodore, B.R.; Polatin, P.; Gatchel, R.J. Do Psychiatric Disorders First Appear Preinjury or Postinjury in Chronic Disabling Occupational Spinal Disorders? Spine 2007. [Google Scholar] [CrossRef] [PubMed]
- Peele, P.B.; Tollerud, D.J. Depression and Occupational Injury: Results of a Pilot Investigation. J. Occup. Environ. Med. 2005, 47, 424–427. [Google Scholar] [CrossRef] [PubMed]
- Palmer, K.T.; D’Angelo, S.; Harris, E.C.; Linaker, C.; Coggon, D. The role of mental health problems and common psychotropic drug treatments in accidental injury at work: A case-control study. Occup. Environ. Med. 2014, 71, 308–312. [Google Scholar] [CrossRef] [PubMed]
- Kim, K.C.; Park, S.G.; Min, K.B.; Yoon, K.J. Depressive symptoms and self-reported occupational injury in small and medium-sized companies. Int. Arch. Occup. Environ. Health 2009, 82, 715–721. [Google Scholar] [CrossRef] [PubMed]
- Messing, K. One-Eyed Science: Occupational Health and Women Workers; Temple University Press: Philadelphia, PA, USA, 1998. [Google Scholar]
- Van de Velde, S.; Bracke, P.; Levecque, K. Gender differences in depression in 23 European countries. Cross-national variation in the gender gap in depression. Soc. Sci. Med. 2010, 71, 305–313. [Google Scholar] [CrossRef] [PubMed]
- Berecki-Gisolf, J.; Smith, P.M.; Collie, A.; McClure, R.J. Gender differences in occupational injury incidence. Am. J. Ind. Med. 2015, 58, 299–307. [Google Scholar] [CrossRef] [PubMed]
- Dembe, A.E.; Erickson, J.B.; Delbos, R. Predictors of work-related injuries and illnesses: National survey findings. J. Occup. Environ. Hyg. 2004, 1, 542–550. [Google Scholar] [CrossRef] [PubMed]
- (AHRQ) AfHRaQ. Medical Expenditure Panel Survey (MEPS). Available online: http://www.meps.ahrq.gov/mepsweb/ (accessed on 1 July 2016).
- Ezzati-Rice, T.; Rohde, F.; Greenblatt, J. Sample Design of the Medical Expenditure Panel Survey Household Component, 1998–2007. In Methodology Report 2008; No. 22. (March); Agency for Healthcare Research and Quality: Rockville, MD, USA, 2008. [Google Scholar]
- Barell, V.; Aharonson-Daniel, L.; Fingerhut, L.; Mackenzie, E.; Ziv, A.; Boyko, V.; Abargel, A.; Avitzour, M.; Heruti, R. An introduction to the Barell body region by nature of injury diagnosis matrix. Inj. Prev. 2002, 8, 91–96. [Google Scholar] [CrossRef] [PubMed]
- Greenspan, L.; McLellan, B.A.; Greig, H. Abbreviated Injury Scale and Injury Severity Score: A scoring chart. J. Trauma 1985, 25, 60–64. [Google Scholar] [CrossRef] [PubMed]
- Bonde, J. Psychosocial factors at work and risk of depression: A systematic review of the epidemiological evidence. Br. Med. J. 2008, 65, 438–445. [Google Scholar] [CrossRef] [PubMed]
- Palmer, K.T.; Harris, E.C.; Coggon, D. Chronic health problems and risk of accidental injury in the workplace: A systematic literature review. Occup. Environ. Med. 2008, 65, 757–764. [Google Scholar] [CrossRef] [PubMed]
- Brattstrom, O.; Eriksson, M.; Larsson, E.; Oldner, A. Socio-economic status and co-morbidity as risk factors for trauma. Eur. J. Epidemiol. 2015, 30, 151–157. [Google Scholar] [CrossRef] [PubMed]
- D’Hoore, W.; Bouckaert, A.; Tilquin, C. Practical considerations on the use of the Charlson comorbidity index with administrative data bases. J. Clin. Epidemiol. 1996, 49, 1429–1433. [Google Scholar] [CrossRef]
- Allison, P. Survival Analysis Using SAS: A Practical Guide; SAS institute Inc.: Cary, NC, USA, 2010. [Google Scholar]
- Kubo, J.; Goldstein, B.A.; Cantley, L.F.; Tessier-Sherman, B.; Galusha, D.; Slade, M.D.; Chu, I.M.; Cullen, M.R. Contribution of health status and prevalent chronic disease to individual risk for workplace injury in the manufacturing environment. Occup. Environ. Med. 2014, 71, 159–166. [Google Scholar] [CrossRef] [PubMed]
- Sareen, J.; Erickson, J.; Medved, M.I.; Asmundson, G.J.; Enns, M.W.; Stein, M.; Leslie, W.; Doupe, M.; Logsetty, S. Risk factors for post-injury mental health problems. Depression Anxiety 2013, 30, 321–327. [Google Scholar] [CrossRef] [PubMed]
- Lin, K.H.; Shiao, J.S.; Guo, N.W.; Liao, S.C.; Kuo, C.Y.; Hu, P.Y.; Hsu, J.H.; Hwang, Y.H.; Guo, Y.L. Long-term psychological outcome of workers after occupational injury: Prevalence and risk factors. J. Occup. Rehabil. 2014, 24, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Asfaw, A.; Souza, K. Incidence and cost of depression after occupational injury. J. Occup. Environ. Med. 2012, 54, 1086–1091. [Google Scholar] [CrossRef] [PubMed]
- Kendler, K.S.; Gardner, C.O. Sex differences in the pathways to major depression: A study of opposite-sex twin pairs. Am. J. Psychiatry 2014, 171, 426–435. [Google Scholar] [CrossRef] [PubMed]
- Godin, I.; Kornitzer, M.; Clumeck, N.; Linkowski, P.; Valente, F.; Kittel, F. Gender specificity in the prediction of clinically diagnosed depression. Results of a large cohort of Belgian workers. Soc. Psychiatry Psychiatr. Epidemiol. 2009, 44, 592–600. [Google Scholar] [CrossRef] [PubMed]
- Lax, M.B.; Klein, R. More than meets the eye: Social, economic, and emotional impacts of work-related injury and illness. New Solut. 2008, 18, 343–360. [Google Scholar] [CrossRef] [PubMed]
- Lilley, R.; Davie, G.; Langley, J.; Ameratunga, S.; Derrett, S. Do outcomes differ between work and non-work-related injury in a universal injury compensation system? Findings from the New Zealand Prospective Outcomes of Injury Study. BMC Public Health 2013, 13, 995. [Google Scholar] [CrossRef] [PubMed]
- Bay, E.; Donders, J. Risk factors for depressive symptoms after mild-to-moderate traumatic brain injury. Brain Inj. 2008, 22, 233–241. [Google Scholar] [CrossRef] [PubMed]
- Kvelde, T.; McVeigh, C.; Toson, B.; Greenaway, M.; Lord, S.R.; Delbaere, K.; Close, J.C. Depressive symptomatology as a risk factor for falls in older people: Systematic review and meta-analysis. J. Am. Geriatr. Soc. 2013, 61, 694–706. [Google Scholar] [CrossRef] [PubMed]
- Orriols, L.; Queinec, R.; Philip, P.; Gadegbeku, B.; Delorme, B.; Moore, N.; Suissa, S.; Lagarde, E. Risk of injurious road traffic crash after prescription of antidepressants. J. Clin. Psychiatry 2012, 73, 1088–1094. [Google Scholar] [CrossRef] [PubMed]
- Frackiewicz, E.J.; Sramek, J.J.; Cutler, N.R. Gender differences in depression and antidepressant pharmacokinetics and adverse events. Ann. Pharmacother. 2000, 34, 80–88. [Google Scholar] [CrossRef] [PubMed]
- Keers, R.; Aitchison, K.J. Gender differences in antidepressant drug response. Int. Rev. Psychiatry 2010, 22, 485–500. [Google Scholar] [CrossRef] [PubMed]
- Theorell, T.; Hammarstrom, A.; Gustafsson, P.E.; Magnusson Hanson, L.; Janlert, U.; Westerlund, H. Job strain and depressive symptoms in men and women: A prospective study of the working population in Sweden. J. Epidemiol. Community Health 2014, 68, 78–82. [Google Scholar] [CrossRef] [PubMed]
- AHRQ: MEPS HC-104: 2006 Medical Conditions. 2006. Available online: https://meps.ahrq.gov/data_stats/download_data/pufs/h104/h104doc.pdf (accessed on 1 July 2016).
- Cohen, S.; Ezzati-Rice, T.; Yu, W. The impact of survey attrition on health insurance coverage estimates in a National Longitudinal Health Care Survey. Health Serv. Outcomes Res. Methodol. 2006, 6, 111–125. [Google Scholar] [CrossRef]
Male | Female | |||||
---|---|---|---|---|---|---|
Selected Characteristics † | No Injury (n = 17,645) | Occupational Injury (n = 598) | p-Value | No Injury (n = 16,606) | Occupational Injury (n = 306) | p-Value |
Mean age (SD), years | 39.4(11.8) | 39.0(11.3) | 0.860 | 39.1(11.9) | 40.6(11.5) | 0.012 |
Race | 0.049 | 0.564 | ||||
White | 12,752(72.3) | 446(74.6) | 11,149(67.1) | 198(64.7) | ||
Black | 1846(10.5) | 44(7.4) | 2529(15.2) | 53(17.3) | ||
Other | 3047(17.3) | 108(18.1) | 2928(17.6) | 55(18.0) | ||
Education | <0.0001 | 0.007 | ||||
Less than high school | 4492(25.5) | 179(29.9) | 3289(19.8) | 76(24.8) | ||
High school graduate | 7811(44.3) | 302(50.5) | 7991(48.1) | 153(50.0) | ||
College or more | 4164(23.6) | 74(12.4) | 3955(23.8) | 49(16.0) | ||
Other degree | 1178(6.7) | 43(7.2) | 1371(8.3) | 28(9.2) | ||
Marital status | 0.012 | <0.0001 | ||||
Married | 11,228(63.6) | 383(64.1) | 9174(55.2) | 134(43.8) | ||
Never married | 4678(26.5) | 137(22.9) | 4462(26.9) | 90(29.4) | ||
Divorced, widowed, separated | 1739(9.9) | 78(13.0) | 2970(17.9) | 82(26.8) | ||
Family income | 0.001 | 0.001 | ||||
High | 7080(40.1) | 193(32.3) | 6230(37.5) | 80(26.2) | ||
Middle | 5948(33.7) | 230(38.5) | 5476(33.0) | 113(36.9) | ||
Low | 4617(26.2) | 175(29.2) | 4900(29.5) | 113(36.9) | ||
No health care accessibility | 6253(35.7) | 196(33.0) | 0.176 | 3756(22.8) | 51(16.7) | 0.011 |
Health insurance coverage | 0.109 | 0.076 | ||||
Any private | 13,051(74.0) | 422(70.6) | 12,654(76.2) | 221(72.2) | ||
Public only | 643(3.6) | 29(4.8) | 1304(7.8) | 25(8.2) | ||
Uninsured | 3951(22.4) | 147(24.6) | 2648(16.0) | 60(19.6) | ||
No physical activity | 6981(39.6) | 236(39.5) | 0.961 | 7662(46.1) | 151(49.3) | 0.264 |
Current smoking | 3874(22.0) | 174(29.1) | <0.0001 | 2906(17.5) | 77(25.2) | 0.001 |
Alcohol or substance abuse problem | 28(0.2) | - | N/A | 14(0.1) | 1(0.3) | 0.459 |
Obese (BMI ≥ 30) | 4509(25.6) | 170(28.4) | 0.113 | 4341(26.1) | 122(39.9) | <0.0001 |
Activity limitation | 199(1.1) | 9(1.5) | 0.393 | 251(1.5) | 13(4.3) | 0.001 |
Cognitive function limitation | 115(0.7) | 5(0.8) | 0.378 | 165(1.0) | 2(0.7) | 0.806 |
Co-morbidity ∏ | 1641(9.3) | 49(8.19) | 0.648 | 1457(8.8) | 38(12.4) | 0.130 |
Self-rated physical health: Poor | 147(0.8) | 10(1.7) | 0.028 | 156(0.9) | 14(4.6) | <0.0001 |
Self-rated mental health: Poor | 32(0.2) | 2(0.3) | 0.393 | 42(0.3) | 2(0.7) | 0.172 |
Occupational group | <0.0001 | 0.001 | ||||
White collar | 7654(43.4) | 150(25.1) | 10,940(65.9) | 168(54.9) | ||
Service | 2188(12.4) | 69(11.5) | 3773(22.7) | 95(31.1) | ||
Farm | 271(1.5) | 18(3.0) | 84(0.5) | 3(0.9) | ||
Blue collar | 7127(40.4) | 350(58.5) | 1655(9.9) | 38(12.4) | ||
Job tenure | 0.002 | 0.378 | ||||
Less than 1 year | 4606(29.3) | 218(30.2) | 5110(34.1) | 146(34.8) | ||
More than 5 years | 7107(45.3) | 310(43.0) | 5771(38.5) | 176(41.9) | ||
Overtime work | 5293(31.4) | 469(34.2) | 0.038 | 2615(16.2) | 143(18.8) | 0.083 |
Work status: part time | 3641(21.6) | 310(22.6) | 0.449 | 5989(37.1) | 237(31.1) | 0.004 |
WC payment | - | 218(36.5) | N/A | - | 131(42.8) | N/A |
Incident cases of depression, No. | 334(1.9) | 26(4.4) | <0.0001 | 747(4.5) | 24(7.8) | 0.005 |
Person-round | 12,421 | 1880 | 89,951 | 1735 |
Male | Female | |||
---|---|---|---|---|
Selected Characteristics | OR a | 95% CI | OR a | 95% CI |
Depression | ||||
No occupational injury | 1.00 | 1.00 | ||
Occupational injury | 2.35 | 1.52, 3.65 | 1.31 | 0.83, 2.06 |
Age | 1.00 | 0.99, 1.01 | 0.98 | 0.99, 1.00 |
Race | ||||
White | 1.00 | 1.00 | ||
Black | 0.73 | 0.49, 1.07 | 0.55 | 0.43, 0.69 |
Other | 0.92 | 0.69, 1.22 | 0.66 | 0.53, 0.83 |
Marital status | ||||
Married | 1.00 | 1.00 | ||
Never married | 1.11 | 0.82, 1.50 | 0.92 | 0.75, 1.14 |
Divorced, widowed, separated | 1.78 | 1.32, 2.39 | 1.33 | 1.09, 1.60 |
Family income | ||||
High | 1.00 | 1.00 | ||
Middle | 1.26 | 0.98, 1.62 | 1.06 | 0.87, 1.29 |
Low | 1.09 | 0.81, 1.48 | 1.57 | 1.28, 1.94 |
Health care accessibility | ||||
Yes | 1.00 | 1.00 | ||
No | 1.12 | 0.88, 1.43 | 1.43 | 1.18, 1.74 |
Current smoking | ||||
No | 1.00 | 1.00 | ||
Yes | 1.76 | 1.40, 2.21 | 1.71 | 1.45, 2.02 |
Obese (BMI ≥ 30) | ||||
No | 1.00 | 1.00 | ||
Yes | 1.38 | 1.09, 1.73 | 1.29 | 1.10, 1.52 |
Activity limitation | ||||
No | 1.00 | 1.00 | ||
Yes | 1.93 | 1.02, 3.65 | 2.28 | 1.55, 3.35 |
Co-morbidity | ||||
Charlson co-morbidity index <1 | 1.00 | 1.00 | ||
Charlson co-morbidity index ≥1 | 1.62 | 1.18, 2.22 | 1.61 | 1.29, 2.00 |
Occupational group | ||||
White collar | 1.00 | 1.00 | ||
Service | 0.72 | 0.31, 1.66 | 0.97 | 0.81, 1.16 |
Farm | 0.47 | 0.14, 1.50 | 0.19 | 0.02, 1.43 |
Blue collar | 0.90 | 0.70, 1.14 | 0.83 | 0.64, 1.08 |
Work status | ||||
Full time | 1.00 | 1.00 | ||
Part time | 1.22 | 0.94, 1.58 | 1.11 | 0.95, 1.30 |
Male | Female | |||
---|---|---|---|---|
OR a | 95% CI | OR a | 95% CI | |
Workers’ compensation | ||||
No | 1.00 | 1.00 | ||
Yes | 2.83 | 1.04, 5.49 | 0.90 | 0.35, 2.24 |
Injury severity (ISS) | ||||
Minor (<9) | 1.00 | 1.00 | ||
Moderate (9~15) | 1.74 | 0.86, 3.59 | 0.89 | 0.35, 1.81 |
Severe (≥16) | 2.89 | 1.68, 4.69 | 1.80 | 1.03, 3.12 |
Type of injury | ||||
all other | 1.00 | 1.00 | ||
Musculoskeletal | 2.16 | 1.09, 4.19 | 1.86 | 1.05, 3.25 |
Male | Female | |||||
---|---|---|---|---|---|---|
Selected Characteristics † | No Depression (n = 16,426) | Depression (n = 159) | p-Value | No Depression (n = 15,434) | Depression (n = 336) | p-Value |
Mean age(years) | 39.4(11.8) | 41.2(12.5) | 0.065 | 39.1(11.9) | 40.9(11.8) | 0.005 |
Race | 0.009 | 0.001 | ||||
White | 11,885(72.4) | 132(83.0) | 10,365(67.2) | 255(75.9) | ||
Black | 1700(10.3) | 8(5.0) | 2342(15.2) | 31(9.2) | ||
Other | 2841(17.3) | 19(12.0) | 2727(17.7) | 50(14.9) | ||
Education | 0.003 | 0.014 | ||||
Less than high school | 3984(24.2) | 36(22.6) | 3783(24.5) | 71(21.1) | ||
High school graduate | 3376(20.6) | 48(30.2) | 3897(25.2) | 109(32.4) | ||
Some college | 4831(29.4) | 50(31.5) | 4689(30.4) | 87(26.0) | ||
College graduation or more | 4235(25.8) | 25(15.7) | 3065(19.9) | 69(20.5) | ||
Marital status | <0.0001 | <0.0001 | ||||
Married | 10,647(64.8) | 82(51.5) | 8684(56.3) | 161(47.9) | ||
Never married | 4164(25.4) | 45(28.3) | 3978(25.7) | 72(21.4) | ||
Divorces, widowed, separated | 1615(9.8) | 32(20.1) | 2772(18.0) | 103(30.7) | ||
Family income | 0.714 | 0.183 | ||||
High | 6574(40.0) | 62(39.0) | 5777(37.4) | 117(34.8) | ||
Middle | 7925(48.3) | 75(47.2) | 7354(47.7) | 157(46.7) | ||
Low | 1927(11.7) | 22(13.8) | 2303(14.9) | 62(18.5) | ||
No health care accessibility | 5864(35.7) | 53(33.3) | 0.016 | 3534(22.9) | 66(19.7) | <0.0001 |
Health insurance coverage | 0.770 | 0.004 | ||||
Any private | 12,101(73.7) | 119(74.8) | 11,737(76.1) | 254(75.6) | ||
Public only | 581(3.5) | 5(3.2) | 1178(7.6) | 40(11.9) | ||
Uninsured | 3744(22.8) | 35(22.0) | 2519(16.3) | 42(12.5) | ||
No physical activity | 6560(39.9) | 69(43.4) | 0.375 | 7120(16.1) | 180(53.6) | 0.006 |
Current smoking | 3627(22.1) | 58(36.5) | <0.0001 | 2691(17.4) | 93(27.7) | <0.0001 |
Alcohol or substance abuse problem | 23(0.1) | 2(1.3) | 0.0003 | 25(0.2) | 4(1.2) | <0.0001 |
Obese (BMI ≥ 30) | 4238(25.8) | 52(32.7) | 0.049 | 4105(26.6) | 123(36.6) | <0.0001 |
Activity limitation | 182(1.1) | 9(5.7) | <0.0001 | 227(1.5) | 19(5.6) | <0.0001 |
Cognitive function limitation | 145(0.9) | 7(4.4) | <0.0001 | 128(0.9) | 35(4.0) | <0.0001 |
Co-morbidity ∏ | 511(3.1) | 34(7.1) | <0.0001 | 540(3.5) | 19(5.8) | 0.001 |
Self-rated physical health: Poor | 137(0.8) | 2(1.3) | 0.559 | 145(0.9) | 14(4.2) | <0.0001 |
Self-rated mental health: Poor | 28(0.2) | 4(2.5) | <0.0001 | 36(0.2) | 10(3.0) | <0.0001 |
Occupational group | 0.558 | 0.877 | ||||
White collar | 7096(43.2) | 77(48.4) | 10,174(65.9) | 213(63.4) | ||
Service | 1989(12.1) | 17(10.7) | 3472(22.5) | 82(24.4) | ||
Farm | 264(1.6) | 1(0.6) | 79(0.5) | 2(0.6) | ||
Blue collar | 6712(40.9) | 62(39.0) | 1569(10.2) | 35(10.4) | ||
Job tenure | 0.048 | 0.020 | ||||
Less than 1 year | 5404(32.9) | 72(45.3) | 5263(34.1) | 140(41.7) | ||
More than 5 years | 7423(45.2) | 55(34.6) | 5952(38.5) | 119(35.4) | ||
Work status: part time | 3412(21.0) | 52(32.7) | 0.0002 | 556(36.1) | 146(43.5) | 0.005 |
Incident cases of occupational injury | 904(5.5) | 12(7.6) | 0.261 | 543(3.5) | 17(5.1) | 0.131 |
Person-round | 80,359 | 760 | 46,931 | 1193 |
Male | Female | |||
---|---|---|---|---|
Selected Characteristics | OR a | 95% CI | OR a | 95% CI |
Occupational injury | ||||
No depression | 1.00 | 1.00 | ||
Depression | 1.24 | 0.97, 1.87 | 1.44 | 1.07, 1.96 |
Age | 0.99 | 0.99, 1.00 | 1.01 | 1.00, 1.02 |
Race | ||||
White | 1.00 | 1.00 | ||
Black | 0.72 | 0.56, 0.91 | 0.92 | 0.72, 1.17 |
Other | 0.91 | 0.75, 1.09 | 1.03 | 0.82, 1.30 |
Marital status | ||||
Married | 1.00 | 1.00 | ||
Never married | 1.16 | 0.96, 1.40 | 1.14 | 0.9, 1.44 |
Divorced, widowed, separated | 1.49 | 1.21, 1.82 | 1.07 | 0.85, 1.34 |
Family income | ||||
High | 1.00 | 1.00 | ||
Middle | 1.26 | 1.07, 1.47 | 1.17 | 0.95, 1.44 |
Low | 0.93 | 0.72, 1.19 | 1.51 | 0.85, 1.54 |
Health care accessibility | ||||
Yes | 1.00 | 1.00 | ||
No | 1.17 | 1.01, 1.36 | 1.26 | 1.01, 1.57 |
Current smoking | ||||
No | 1.00 | 1.00 | ||
Yes | 1.48 | 1.28, 1.72 | 1.54 | 1.27, 1.88 |
Obese (BMI ≥ 30) | ||||
No | 1.00 | 1.00 | ||
Yes | 1.08 | 0.93, 1.26 | 1.45 | 1.21, 1.75 |
Activity limitation | ||||
No | 1.00 | 1.00 | ||
Yes | 1.17 | 0.68, 2.03 | 1.65 | 0.99, 2.75 |
Co-morbidity | ||||
Charlson co-morbidity index <1 | 1.00 | 1.00 | ||
Charlson co-morbidity index ≥1 | 1.14 | 0.90, 1.44 | 0.99 | 0.75, 1.32 |
Occupational group | ||||
White collar | 1.00 | 1.00 | ||
Service | 1.77 | 1.39, 2.25 | 1.52 | 1.24, 1.87 |
Farm | 2.61 | 1.61, 4.22 | 1.31 | 0.40, 4.22 |
Blue collar | 2.56 | 2.16, 3.03 | 1.38 | 1.06, 1.81 |
Work status | ||||
Full time | 1.00 | 1.00 | ||
Part time | 1.03 | 0.87, 1.22 | 0.77 | 0.63, 0.93 |
Male | Female | |||
---|---|---|---|---|
OR a | 95% CI | OR a | 95% CI | |
Anti-depressant medication | ||||
No | 1.00 | 1.00 | ||
Yes | 1.08 | 0.67, 1.75 | 1.43 | 1.16, 1.75 |
Duration of depression | ||||
1 round | 1.00 | 1.00 | ||
More than 1 round | 1.27 | 0.89, 1.84 | 1.42 | 1.07, 1.87 |
Number of depression episodes | ||||
One | 1.00 | 1.00 | ||
More than one | 1.09 | 0.65, 1.82 | 1.53 | 1.07, 2.17 |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, J.; Choi, Y. Gender Differences in the Longitudinal Association between Work-Related Injury and Depression. Int. J. Environ. Res. Public Health 2016, 13, 1077. https://doi.org/10.3390/ijerph13111077
Kim J, Choi Y. Gender Differences in the Longitudinal Association between Work-Related Injury and Depression. International Journal of Environmental Research and Public Health. 2016; 13(11):1077. https://doi.org/10.3390/ijerph13111077
Chicago/Turabian StyleKim, Jaeyoung, and Yeongchull Choi. 2016. "Gender Differences in the Longitudinal Association between Work-Related Injury and Depression" International Journal of Environmental Research and Public Health 13, no. 11: 1077. https://doi.org/10.3390/ijerph13111077
APA StyleKim, J., & Choi, Y. (2016). Gender Differences in the Longitudinal Association between Work-Related Injury and Depression. International Journal of Environmental Research and Public Health, 13(11), 1077. https://doi.org/10.3390/ijerph13111077