Pediatric Exposures to Ionizing Radiation: Carcinogenic Considerations
Abstract
:1. Introduction
2. Evidence from Accidental Exposures
2.1. Leukemia
2.2. Thyroid Cancer
2.3. Other Cancers
2.4. Actions Taken and Future Considerations
3. Exposure from Treatment Modalities
3.1. Cancer Risks Associated with RT
3.2. Actions Taken
4. Exposure from Diagnostic Modalities: Concerns Associated with Computed Tomography (CT) Exposures
4.1. Cancer Risks Associated with CT Exposures
4.2. Actions Taken
4.3. Future Considerations and Tasks
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Ozasa, K.; Shimizu, Y.; Suyama, A.; Kasagi, F.; Soda, M.; Grant, E.J.; Sakata, R.; Sugiyama, H.; Kodama, K. Studies of the Mortality of Atomic Bomb Survivors, Report 14, 1950–2003: An Overview of Cancer and Noncancer Diseases. Radiat. Res. 2012, 177, 229–243. [Google Scholar] [CrossRef] [PubMed]
- Kamiya, K.; Ozasa, K.; Akiba, S.; Niwa, O.; Kodama, K.; Takamura, N.; Zaharieva, E.K.; Kimura, Y.; Wakeford, R. Long-term effects of radiation exposure on health. Lancet 2015, 386, 469–478. [Google Scholar] [CrossRef]
- Brenner, A.V.; Tronko, M.D.; Hatch, M.; Bogdanova, T.I.; Oliynik, V.A.; Lubin, J.H.; Zablotska, L.B.; Tereschenko, V.P.; McConnell, R.J.; Zamotaeva, G.A.; et al. I-131 dose response for incident thyroid cancers in Ukraine related to the Chornobyl accident. Environ. Health Perspect. 2011, 119, 933–939. [Google Scholar] [CrossRef] [PubMed]
- United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR). Sources, Effects and Risks of Ionizing Radiation: United Nations Scientific Committee on the Effects of Atomic Radiation: UNSCEAR 2013 Report to the General Assembly with Scientific Annexes; UNSCEAR: Vienna, Austria, 2013. [Google Scholar]
- Karlsson, P.; Holmberg, E.; Lundell, M.; Mattsson, A.; Holm, L.E.; Wallgren, A. Intracranial tumors after exposure to ionizing radiation during infancy: A pooled analysis of two Swedish cohorts of 28,008 infants with skin hemangioma. Radiat. Res. 1998, 150, 357–364. [Google Scholar] [CrossRef] [PubMed]
- Khong, P.-L.; Ringertz, H.; Donoghue, V.; Frush, D.; Rehani, M.; Appelgate, K.; Sanchez, R. ICRP publication 121: Radiological protection in paediatric diagnostic and interventional radiology. Ann. ICRP 2013, 42, 1–63. [Google Scholar] [CrossRef] [PubMed]
- Brenner, D.; Elliston, C.; Hall, E.; Berdon, W. Estimated risks of radiation-induced fatal cancer from pediatric CT. AJR Am. J. Roentgenol. 2001, 176, 289–296. [Google Scholar] [CrossRef] [PubMed]
- Pearce, M.S.; Salotti, J.A.; Howe, N.L.; McHugh, K.; Kim, K.P.; Lee, C.; Craft, A.W.; Berrington de Gonzaléz, A.; Parker, L. CT Scans in Young People in Great Britain: Temporal and Descriptive Patterns, 1993–2002. Radiol. Res. Pract. 2012, 2012, 594278. [Google Scholar] [CrossRef] [PubMed]
- McHugh, K.; Disini, L. Commentary: For the children’s sake, avoid non-contrast CT. Cancer Imaging 2011, 11, 16–18. [Google Scholar] [CrossRef] [PubMed]
- Folley, J.H.; Borges, W.; Yamawaki, T. Incidence of leukemia in survivors of the atomic bomb in Hiroshima and Nagasaki, Japan. Am. J. Med. 1952, 13, 311–321. [Google Scholar] [CrossRef]
- Richardson, D.; Sugiyama, H.; Nishi, N.; Sakata, R.; Shimizu, Y.; Grant, E.J.; Soda, M.; Hsu, W.-L.; Suyama, A.; Kodama, K.; et al. Ionizing radiation and leukemia mortality among Japanese Atomic Bomb Survivors, 1950–2000. Radiat. Res. 2009, 172, 368–382. [Google Scholar] [CrossRef] [PubMed]
- Henshaw, D.L.; Eatough, J.P.; Richardson, R.B. Radon as a causative factor in induction of myeloid leukaemia and other cancers. Lancet 1990, 335, 1008–1012. [Google Scholar] [CrossRef]
- Raaschou-Nielsen, O.; Andersen, C.E.; Andersen, H.P.; Gravesen, P.; Lind, M.; Schüz, J.; Ulbak, K. Domestic radon and childhood cancer in Denmark. Epidemiol. Camb. Mass. 2008, 19, 536–543. [Google Scholar] [CrossRef]
- Little, M.P.; Wakeford, R.; Lubin, J.H.; Kendall, G.M. The statistical power of epidemiological studies analyzing the relationship between exposure to ionizing radiation and cancer, with special reference to childhood leukemia and natural background radiation. Radiat. Res. 2010, 174, 387–402. [Google Scholar] [CrossRef] [PubMed]
- Kendall, G.M.; Little, M.P.; Wakeford, R.; Bunch, K.J.; Miles, J.C.H.; Vincent, T.J.; Meara, J.R.; Murphy, M.F.G. A record-based case-control study of natural background radiation and the incidence of childhood leukaemia and other cancers in Great Britain during 1980–2006. Leukemia 2013, 27, 3–9. [Google Scholar] [CrossRef] [PubMed]
- Ron, E.; Kleinerman, R.A.; Boice, J.D.; LiVolsi, V.A.; Flannery, J.T.; Fraumeni, J.F. A population-based case-control study of thyroid cancer. J. Natl. Cancer Inst. 1987, 79, 1–12. [Google Scholar] [PubMed]
- Thompson, D.E.; Mabuchi, K.; Ron, E.; Soda, M.; Tokunaga, M.; Ochikubo, S.; Sugimoto, S.; Ikeda, T.; Terasaki, M.; Izumi, S. Cancer incidence in atomic bomb survivors. Part II: Solid tumors, 1958–1987. Radiat. Res. 1994, 137, S17–S67. [Google Scholar] [CrossRef] [PubMed]
- Zablotska, L.B.; Ron, E.; Rozhko, A.V.; Hatch, M.; Polyanskaya, O.N.; Brenner, A.V.; Lubin, J.; Romanov, G.N.; McConnell, R.J.; O’Kane, P.; et al. Thyroid cancer risk in Belarus among children and adolescents exposed to radioiodine after the Chornobyl accident. Br. J. Cancer 2011, 104, 181–187. [Google Scholar] [CrossRef] [PubMed]
- Zablotska, L.B.; Nadyrov, E.A.; Rozhko, A.V.; Gong, Z.; Polyanskaya, O.N.; McConnell, R.J.; O’Kane, P.; Brenner, A.V.; Little, M.P.; Ostroumova, E.; et al. Analysis of thyroid malignant pathologic findings identified during 3 rounds of screening (1997–2008) of a cohort of children and adolescents from belarus exposed to radioiodines after the Chernobyl accident. Cancer 2015, 121, 457–466. [Google Scholar] [CrossRef] [PubMed]
- Prisyazhiuk, A.; Pjatak, O.A.; Buzanov, V.A.; Reeves, G.K.; Beral, V. Cancer in the Ukraine, post-Chernobyl. Lancet 1991, 338, 1334–1335. [Google Scholar] [CrossRef]
- Schneider, A.B.; Sarne, D.H. Long-term risks for thyroid cancer and other neoplasms after exposure to radiation. Nat. Clin. Pract. Endocrinol. Metab. 2005, 1, 82–91. [Google Scholar] [CrossRef] [PubMed]
- Shibata, Y.; Yamashita, S.; Masyakin, V.B.; Panasyuk, G.D.; Nagataki, S. 15 years after Chernobyl: New evidence of thyroid cancer. Lancet 2001, 358, 1965–1966. [Google Scholar] [CrossRef]
- Zablotska, L.B.; Nadyrov, E.A.; Polyanskaya, O.N.; McConnell, R.J.; O’Kane, P.; Lubin, J.; Hatch, M.; Little, M.P.; Brenner, A.V.; Veyalkin, I.V.; et al. Risk of thyroid follicular adenoma among children and adolescents in Belarus exposed to iodine-131 after the Chornobyl accident. Am. J. Epidemiol. 2015, 182, 781–790. [Google Scholar] [CrossRef] [PubMed]
- Tsuda, T.; Tokinobu, A.; Yamamoto, E.; Suzuki, E. Thyroid Cancer Detection by Ultrasound among Residents Ages 18 Years and Younger in Fukushima, Japan: 2011 to 2014. Epidemiol. Camb. Mass. 2016, 27, 316–322. [Google Scholar] [CrossRef] [PubMed]
- Wakeford, R.; Auvinen, A.; Gent, R.N.; Jacob, P.; Kesminiene, A.; Laurier, D.; Schüz, J.; Shore, R.; Walsh, L.; Zhang, W. Re: Thyroid Cancer among Young People in Fukushima. Epidemiol. Camb. Mass. 2016, 27, e20–e21. [Google Scholar] [CrossRef] [PubMed]
- Vaccarella, S.; Dal Maso, L.; Laversanne, M.; Bray, F.; Plummer, M.; Franceschi, S. The Impact of Diagnostic Changes on the Rise in Thyroid Cancer Incidence: A Population-Based Study in Selected High-Resource Countries. Thyroid 2015, 25, 1127–1136. [Google Scholar] [CrossRef] [PubMed]
- Franceschi, S.; Vaccarella, S. Thyroid cancer: An epidemic of disease or an epidemic of diagnosis? Int. J. Cancer 2015, 136, 2738–2739. [Google Scholar] [CrossRef] [PubMed]
- Goto, H.; Watanabe, T.; Miyao, M.; Fukuda, H.; Sato, Y.; Oshida, Y. Cancer mortality among atomic bomb survivors exposed as children. Environ. Health Prev. Med. 2012, 17, 228–234. [Google Scholar] [CrossRef] [PubMed]
- Pukkala, E.; Kesminiene, A.; Poliakov, S.; Ryzhov, A.; Drozdovitch, V.; Kovgan, L.; Kyyrönen, P.; Malakhova, I.V.; Gulak, L.; Cardis, E. Breast cancer in Belarus and Ukraine after the Chernobyl accident. Int. J. Cancer 2006, 119, 651–658. [Google Scholar] [CrossRef] [PubMed]
- Department of Health and Human Services, Food and Drug Administration, Center for Drug Evaluation and Research (CDER). Potassium Iodide as a Thyroid Blocking Agent in Radiation Emergencies; U.S. Department of Health and Human Services, Food and Drug Administration, Center for Drug Evaluation and Research (CDER): Silver Spring, MD, USA, 2001.
- Fisher, J.; Yang, X.; Harris, C.; Koturbash, I.; Lumen, A. The hypothalamic-pituitary-thyroid axis in infants and children: Protection from radioiodines. J. Thyroid Res. 2014, 2014, 710178. [Google Scholar] [CrossRef] [PubMed]
- Meadows, A.T.; Friedman, D.L.; Neglia, J.P.; Mertens, A.C.; Donaldson, S.S.; Stovall, M.; Hammond, S.; Yasui, Y.; Inskip, P.D. Second Neoplasms in Survivors of Childhood Cancer: Findings from the Childhood Cancer Survivor Study Cohort. J. Clin. Oncol. 2009, 27, 2356–2362. [Google Scholar] [CrossRef] [PubMed]
- Neglia, J.P.; Friedman, D.L.; Yasui, Y.; Mertens, A.C.; Hammond, S.; Stovall, M.; Donaldson, S.S.; Meadows, A.T.; Robison, L.L. Second Malignant Neoplasms in Five-Year Survivors of Childhood Cancer: Childhood Cancer Survivor Study. J. Natl. Cancer Inst. 2001, 93, 618–629. [Google Scholar] [CrossRef] [PubMed]
- Duffy, B.J.; Fitzgerald, P.J. Thyroid cancer in childhood and adolescence. A report on twenty-eight cases. Cancer 1950, 3, 1018–1032. [Google Scholar] [CrossRef]
- Simpson, C.L.; Hempelmann, L.H.; Fuller, L.M. Neoplasia in Children Treated with X-rays in Infancy for Thymic Enlargement. Radiology 1955, 64, 840–845. [Google Scholar] [CrossRef] [PubMed]
- Saenger, E.L.; Silverman, F.N.; Sterling, T.D.; Turner, M.E. Neoplasia following therapeutic irradiation for benign conditions in childhood. Radiology 1960, 74, 889–904. [Google Scholar] [CrossRef] [PubMed]
- Favus, M.J.; Schneider, A.B.; Stachura, M.E.; Arnold, J.E.; Ryo, U.Y.; Pinsky, S.M.; Colman, M.; Arnold, M.J.; Frohman, L.A. Thyroid Cancer Occurring as a Late Consequence of Head-and-Neck Irradiation: Evaluation of 1056 Patients. N. Engl. J. Med. 1976, 294, 1019–1025. [Google Scholar] [CrossRef] [PubMed]
- Ron, E.; Modan, B.; Boice, J.D.; Alfandary, E.; Stovall, M.; Chetrit, A.; Katz, L. Tumors of the brain and nervous system after radiotherapy in childhood. N. Engl. J. Med. 1988, 319, 1033–1039. [Google Scholar] [CrossRef] [PubMed]
- Ward, E.; DeSantis, C.; Robbins, A.; Kohler, B.; Jemal, A. Childhood and adolescent cancer statistics, 2014. CA Cancer J. Clin. 2014, 64, 83–103. [Google Scholar] [CrossRef] [PubMed]
- Bluhm, E.C.; Ronckers, C.; Hayashi, R.J.; Neglia, J.P.; Mertens, A.C.; Stovall, M.; Meadows, A.T.; Mitby, P.A.; Whitton, J.A.; Hammond, S.; et al. Cause-specific mortality and second cancer incidence after non-Hodgkin lymphoma: A report from the Childhood Cancer Survivor Study. Blood 2008, 111, 4014–4021. [Google Scholar] [CrossRef] [PubMed]
- Sandoval, C.; Pui, C.-H.; Bowman, L.C.; Heaton, D.; Hurwitz, C.A.; Raimondi, S.C.; Behm, F.G.; Head, D.R. Secondary acute myeloid leukemia in children previously treated with alkylating agents, intercalating topoisomerase II inhibitors, and irradiation. J. Clin. Oncol. 1993, 11, 1039–1045. [Google Scholar] [PubMed]
- Mody, R.; Li, S.; Dover, D.C.; Sallan, S.; Leisenring, W.; Oeffinger, K.C.; Yasui, Y.; Robison, L.L.; Neglia, J.P. Twenty-five-year follow-up among survivors of childhood acute lymphoblastic leukemia: A report from the Childhood Cancer Survivor Study. Blood 2008, 111, 5515–5523. [Google Scholar] [CrossRef] [PubMed]
- Bhatia, S.; Robison, L.L.; Oberlin, O.; Greenberg, M.; Bunin, G.; Fossati-Bellani, F.; Meadows, A.T. Breast cancer and other second neoplasms after childhood Hodgkin’s disease. N. Engl. J. Med. 1996, 334, 745–751. [Google Scholar] [CrossRef] [PubMed]
- Travis, L.B.; Hill, D.; Dores, G.M.; Gospodarowicz, M.; Van Leeuwen, F.E.; Holowaty, E.; Glimelius, B.; Andersson, M.; Pukkala, E.; Lynch, C.F.; et al. Cumulative absolute breast cancer risk for young women treated for Hodgkin lymphoma. J. Natl. Cancer Inst. 2005, 97, 1428–1437. [Google Scholar] [CrossRef] [PubMed]
- Gold, D.G.; Neglia, J.P.; Dusenbery, K.E. Second neoplasms after megavoltage radiation for pediatric tumors. Cancer 2003, 97, 2588–2596. [Google Scholar] [CrossRef] [PubMed]
- National Council on Radiation Protection and Measurements. Limitation of Exposure to Ionizing Radiation; National Council on Radiation Protection and Measurements: Bethesda, MD, USA, 1993. [Google Scholar]
- Childhood Cancer Survivor Study. Available online: https://ccss.stjude.org/ (accessed on 21 July 2016).
- Boukheris, H.; Stovall, M.; Gilbert, E.S.; Stratton, K.L.; Smith, S.A.; Weathers, R.; Hammond, S.; Mertens, A.C.; Donaldson, S.S.; Armstrong, G.T.; et al. Risk of salivary gland cancer after childhood cancer: A report from the Childhood Cancer Survivor Study. Int. J. Radiat. Oncol. Biol. Phys. 2013, 85, 776–783. [Google Scholar] [CrossRef] [PubMed]
- Neglia, J.P.; Robison, L.L.; Stovall, M.; Liu, Y.; Packer, R.J.; Hammond, S.; Yasui, Y.; Kasper, C.E.; Mertens, A.C.; Donaldson, S.S.; et al. New primary neoplasms of the central nervous system in survivors of childhood cancer: A report from the Childhood Cancer Survivor Study. J. Natl. Cancer Inst. 2006, 98, 1528–1537. [Google Scholar] [CrossRef] [PubMed]
- Inskip, P.D.; Robison, L.L.; Stovall, M.; Smith, S.A.; Hammond, S.; Mertens, A.C.; Whitton, J.A.; Diller, L.; Kenney, L.; Donaldson, S.S.; et al. Radiation dose and breast cancer risk in the childhood cancer survivor study. J. Clin. Oncol. 2009, 27, 3901–3907. [Google Scholar] [CrossRef] [PubMed]
- Henderson, T.O.; Rajaraman, P.; Stovall, M.; Constine, L.S.; Olive, A.; Smith, S.A.; Mertens, A.; Meadows, A.; Neglia, J.P.; Hammond, S.; et al. Risk factors associated with secondary sarcomas in childhood cancer survivors: A report from the childhood cancer survivor study. Int. J. Radiat. Oncol. Biol. Phys. 2012, 84, 224–230. [Google Scholar] [CrossRef] [PubMed]
- Bhatti, P.; Veiga, L.H.S.; Ronckers, C.M.; Sigurdson, A.J.; Stovall, M.; Smith, S.A.; Weathers, R.; Leisenring, W.; Mertens, A.C.; Hammond, S.; et al. Risk of second primary thyroid cancer after radiotherapy for a childhood cancer in a large cohort study: An update from the childhood cancer survivor study. Radiat. Res. 2010, 174, 741–752. [Google Scholar] [CrossRef] [PubMed]
- Watt, T.C.; Inskip, P.D.; Stratton, K.; Smith, S.A.; Kry, S.F.; Sigurdson, A.J.; Stovall, M.; Leisenring, W.; Robison, L.L.; Mertens, A.C. Radiation-related risk of basal cell carcinoma: A report from the Childhood Cancer Survivor Study. J. Natl. Cancer Inst. 2012, 104, 1240–1250. [Google Scholar] [CrossRef] [PubMed]
- Ronckers, C.M.; Sigurdson, A.J.; Stovall, M.; Smith, S.A.; Mertens, A.C.; Liu, Y.; Hammond, S.; Land, C.E.; Neglia, J.P.; Donaldson, S.S.; et al. Thyroid cancer in childhood cancer survivors: A detailed evaluation of radiation dose response and its modifiers. Radiat. Res. 2006, 166, 618–628. [Google Scholar] [CrossRef] [PubMed]
- Inskip, P.D.; Sigurdson, A.J.; Veiga, L.; Bhatti, P.; Ronckers, C.; Rajaraman, P.; Boukheris, H.; Stovall, M.; Smith, S.; Hammond, S.; et al. Radiation-Related New Primary Solid Cancers in the Childhood Cancer Survivor Study: Comparative Radiation Dose Response and Modification of Treatment Effects. Int. J. Radiat. Oncol. 2016, 94, 800–807. [Google Scholar] [CrossRef] [PubMed]
- Walter, A.W.; Hancock, M.L.; Pui, C.-H.; Hudson, M.M.; Ochs, J.S.; Rivera, G.K.; Pratt, C.B.; Boyett, J.M.; Kun, L.E. Secondary brain tumors in children treated for acute lymphoblastic leukemia at St Jude Children’s Research Hospital. J. Clin. Oncol. 1998, 16, 3761–3767. [Google Scholar] [PubMed]
- Kenney, L.B.; Yasui, Y.; Inskip, P.D.; Hammond, S.; Neglia, J.P.; Mertens, A.C.; Meadows, A.T.; Friedman, D.; Robison, L.L.; Diller, L. Breast Cancer after Childhood Cancer: A Report from the Childhood Cancer Survivor Study. Ann. Intern. Med. 2004, 141, 590–597. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Walsh, M.F.; Wu, G.; Edmonson, M.N.; Gruber, T.A.; Easton, J.; Hedges, D.; Ma, X.; Zhou, X.; Yergeau, D.A.; et al. Germline Mutations in Predisposition Genes in Pediatric Cancer. N. Engl. J. Med. 2015, 373, 2336–2346. [Google Scholar] [CrossRef] [PubMed]
- Baker, M.S.; McConnell, L.K.; Kleinberg, T.T.; Shriver, E.M.; Bilyk, J.R.; Allen, R.C. Orbital sarcomas in retinoblastoma patients: Recommendations for screening and treatment guidelines. Curr. Opin. Ophthalmol. 2016, 27, 443–448. [Google Scholar] [CrossRef] [PubMed]
- Newhauser, W.D.; Durante, M. Assessing the risk of second malignancies after modern radiotherapy. Nat. Rev. Cancer 2011, 11, 438–448. [Google Scholar] [CrossRef] [PubMed]
- Palm, A.; Johansson, K.-A. A review of the impact of photon and proton external beam radiotherapy treatment modalities on the dose distribution in field and out-of-field; implications for the long-term morbidity of cancer survivors. Acta Oncol. Stockh. Swed. 2007, 46, 462–473. [Google Scholar] [CrossRef] [PubMed]
- Hall, E.J.; Wuu, C.-S. Radiation-induced second cancers: The impact of 3D-CRT and IMRT. Int. J. Radiat. Oncol. Biol. Phys. 2003, 56, 83–88. [Google Scholar] [CrossRef]
- Leroy, R.; Benahmed, N.; Hulstaert, F.; Van Damme, N.; De Ruysscher, D. Proton Therapy in Children: A Systematic Review of Clinical Effectiveness in 15 Pediatric Cancers. Int. J. Radiat. Oncol. 2016, 95, 267–278. [Google Scholar] [CrossRef] [PubMed]
- Paganetti, H. Assessment of the Risk for Developing a Second Malignancy from Scattered and Secondary Radiation in Radiation Therapy. Health Phys. 2012, 103, 652–661. [Google Scholar] [CrossRef] [PubMed]
- Surveillance, Epidemiology, and End Results Program. Available online: http://seer.cancer.gov/ (accessed on 22 July 2016).
- Jairam, V.; Roberts, K.B.; Yu, J.B. Historical trends in the use of radiation therapy for pediatric cancers: 1973–2008. Int. J. Radiat. Oncol. Biol. Phys. 2013, 85, e151–e155. [Google Scholar] [CrossRef] [PubMed]
- Kaldor, J.M.; Day, N.E.; Clarke, E.A.; Van Leeuwen, F.E.; Henry-Amar, M.; Fiorentino, M.V.; Bell, J.; Pedersen, D.; Band, P.; Assouline, D. Leukemia following Hodgkin’s disease. N. Engl. J. Med. 1990, 322, 7–13. [Google Scholar] [CrossRef] [PubMed]
- Deley, M.-C.L.; Leblanc, T.; Shamsaldin, A.; Raquin, M.-A.; Lacour, B.; Sommelet, D.; Chompret, A.; Cayuela, J.-M.; Bayle, C.; Bernheim, A.; et al. Risk of Secondary Leukemia after a Solid Tumor in Childhood According to the Dose of Epipodophyllotoxins and Anthracyclines: A Case-Control Study by the Société Française d’Oncologie Pédiatrique. J. Clin. Oncol. 2003, 21, 1074–1081. [Google Scholar] [CrossRef] [PubMed]
- Specht, L.; Yahalom, J.; Illidge, T.; Berthelsen, A.K.; Constine, L.S.; Eich, H.T.; Girinsky, T.; Hoppe, R.T.; Mauch, P.; Mikhaeel, N.G.; et al. Modern Radiation Therapy for Hodgkin Lymphoma: Field and Dose Guidelines From the International Lymphoma Radiation Oncology Group (ILROG). Int. J. Radiat. Oncol. 2014, 89, 854–862. [Google Scholar] [CrossRef] [PubMed]
- Mettler, F.A.; Bhargavan, M.; Faulkner, K.; Gilley, D.B.; Gray, J.E.; Ibbott, G.S.; Lipoti, J.A.; Mahesh, M.; McCrohan, J.L.; Stabin, M.G.; et al. Radiologic and nuclear medicine studies in the United States and worldwide: Frequency, radiation dose, and comparison with other radiation sources—1950–2007. Radiology 2009, 253, 520–531. [Google Scholar] [CrossRef] [PubMed]
- Brenner, D.J.; Hricak, H. Radiation exposure from medical imaging: Time to regulate? JAMA 2010, 304, 208–209. [Google Scholar] [CrossRef] [PubMed]
- Brenner, D.J.; Mossman, K.L. Do radiation doses below 1 cGy increase cancer risks? Radiat. Res. 2005, 163, 692–693. [Google Scholar] [PubMed]
- Brenner, D.J.; Hall, E.J. Cancer risks from CT scans: Now we have data, what next? Radiology 2012, 265, 330–331. [Google Scholar] [CrossRef] [PubMed]
- Hricak, H.; Brenner, D.J.; Adelstein, S.J.; Frush, D.P.; Hall, E.J.; Howell, R.W.; McCollough, C.H.; Mettler, F.A.; Pearce, M.S.; Suleiman, O.H.; et al. Managing radiation use in medical imaging: A multifaceted challenge. Radiology 2011, 258, 889–905. [Google Scholar] [CrossRef] [PubMed]
- Mettler, F.A.; Wiest, P.W.; Locken, J.A.; Kelsey, C.A. CT scanning: Patterns of use and dose. J. Radiol. Prot. 2000, 20, 353–359. [Google Scholar] [CrossRef] [PubMed]
- Chodick, G.; Ronckers, C.; Ron, E.; Shalev, V. The utilization of pediatric computed tomography in a large Israeli Health Maintenance Organization. Pediatr. Radiol. 2006, 36, 485–490. [Google Scholar] [CrossRef] [PubMed]
- Coren, M.E.; Ng, V.; Rubens, M.; Rosenthal, M.; Bush, A. The value of ultrafast computed tomography in the investigation of pediatric chest disease. Pediatr. Pulmonol. 1998, 26, 389–395. [Google Scholar] [CrossRef]
- Dorfman, A.L.; Fazel, R.; Einstein, A.J.; Applegate, K.E.; Krumholz, H.M.; Wang, Y.; Christodoulou, E.; Chen, J.; Sanchez, R.; Nallamothu, B.K. Use of medical imaging procedures with ionizing radiation in children: A population-based study. Arch. Pediatr. Adolesc. Med. 2011, 165, 458–464. [Google Scholar] [CrossRef] [PubMed]
- Pearce, M.S.; Salotti, J.A.; Little, M.P.; McHugh, K.; Lee, C.; Kim, K.P.; Howe, N.L.; Ronckers, C.M.; Rajaraman, P.; Sir Craft, A.W.; et al. Radiation exposure from CT scans in childhood and subsequent risk of leukaemia and brain tumours: A retrospective cohort study. Lancet 2012, 380, 499–505. [Google Scholar] [CrossRef]
- Miglioretti, D.L.; Johnson, E.; Williams, A.; Greenlee, R.T.; Weinmann, S.; Solberg, L.I.; Feigelson, H.S.; Roblin, D.; Flynn, M.J.; Vanneman, N.; et al. The use of computed tomography in pediatrics and the associated radiation exposure and estimated cancer risk. JAMA Pediatr. 2013, 167, 700–707. [Google Scholar] [CrossRef] [PubMed]
- Huang, W.-Y.; Muo, C.-H.; Lin, C.-Y.; Jen, Y.-M.; Yang, M.-H.; Lin, J.-C.; Sung, F.-C.; Kao, C.-H. Paediatric head CT scan and subsequent risk of malignancy and benign brain tumour: A nation-wide population-based cohort study. Br. J. Cancer 2014, 110, 2354–2360. [Google Scholar] [CrossRef] [PubMed]
- Mathews, J.D.; Forsythe, A.V.; Brady, Z.; Butler, M.W.; Goergen, S.K.; Byrnes, G.B.; Giles, G.G.; Wallace, A.B.; Anderson, P.R.; Guiver, T.A.; et al. Cancer risk in 680,000 people exposed to computed tomography scans in childhood or adolescence: Data linkage study of 11 million Australians. BMJ 2013, 346, f2360. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Preston, D.L.; Kusumi, S.; Tomonaga, M.; Izumi, S.; Ron, E.; Kuramoto, A.; Kamada, N.; Dohy, H.; Matsuo, T.; Matsuo, T. Cancer incidence in atomic bomb survivors. Part III: Leukemia, lymphoma and multiple myeloma, 1950–1987. Radiat. Res. 1994, 137, S68–S97. [Google Scholar] [CrossRef] [PubMed]
- Krille, L.; Dreger, S.; Schindel, R.; Albrecht, T.; Asmussen, M.; Barkhausen, J.; Berthold, J.D.; Chavan, A.; Claussen, C.; Forsting, M.; et al. Risk of cancer incidence before the age of 15 years after exposure to ionising radiation from computed tomography: Results from a German cohort study. Radiat. Environ. Biophys. 2015, 54, 1–12. [Google Scholar] [CrossRef] [PubMed]
- De Gonzalez, A.B.; Salotti, J.A.; McHugh, K.; Little, M.P.; Harbron, R.W.; Lee, C.; Ntowe, E.; Braganza, M.Z.; Parker, L.; Rajaraman, P.; et al. Relationship between paediatric CT scans and subsequent risk of leukaemia and brain tumours: Assessment of the impact of underlying conditions. Br. J. Cancer 2016, 114, 388–394. [Google Scholar] [CrossRef] [PubMed]
- Boice, J.D. Radiation epidemiology and recent paediatric computed tomography studies. Ann. ICRP 2015, 44, 236–248. [Google Scholar] [CrossRef] [PubMed]
- Walsh, L.; Shore, R.; Auvinen, A.; Jung, T.; Wakeford, R. Risks from CT scans—What do recent studies tell us? J. Radiol. Prot. 2014, 34, E1. [Google Scholar] [CrossRef] [PubMed]
- Preston, R.J. Uncertainties in the Estimation of Radiation Risks and Probability of Disease Causation; National Council on Radiation Protection and Measurements: Bethesda, MD, USA, 2012; p. 418. [Google Scholar]
- Public Health Notifications (Medical Devices)—FDA Public Health Notification: Reducing Radiation Risk from Computed Tomography for Pediatric and Small Adult Patients. Available online: http://www.fda.gov/MedicalDevices/Safety/AlertsandNotices/PublicHealthNotifications/ucm062185.htm (accessed on 28 June 2016).
- U.S. Food and Drug Administration (FDA). Initiative to Reduce Unnecessary Radiation Exposure from Medical Imaging—White Paper: Initiative to Reduce Unnecessary Radiation Exposure from Medical Imaging; FDA: Silver Spring, MD, USA, 2010.
- Society of Pediatric Radiology the ALARA (as low as reasonably achievable) concept in pediatric CT intelligent dose reduction. Multidisciplinary conference organized by the Society of Pediatric Radiology, 18–19 August 2001. Pediatr. Radiol. 2002, 32, 217–313.
- Brink, J.A.; Amis, E.S. Image Wisely: A campaign to increase awareness about adult radiation protection. Radiology 2010, 257, 601–602. [Google Scholar] [CrossRef] [PubMed]
- Goske, M.J.; Applegate, K.E.; Bulas, D.; Butler, P.F.; Callahan, M.J.; Coley, B.D.; Don, S.; Frush, D.P.; Hernanz-Schulman, M.; Kaste, S.C.; et al. Alliance for Radiation Safety in Pediatric Imaging Image Gently: Progress and challenges in CT education and advocacy. Pediatr. Radiol. 2011, 41 (Suppl. 2), 461–466. [Google Scholar] [CrossRef] [PubMed]
- FDA Consumer Health Information. Radiology & Children: Extra Care Required; FDA Consumer Health Information: Silver Spring, MD, USA, 2008.
- Hampton, T. Radiation oncology organization, FDA announce radiation safety initiatives. JAMA 2010, 303, 1239–1240. [Google Scholar] [CrossRef] [PubMed]
- Shahi, V.; Brinjikji, W.; Cloft, H.J.; Thomas, K.B.; Kallmes, D.F. Trends in CT Utilization for Pediatric Fall Patients in US Emergency Departments. Acad. Radiol. 2015, 22, 898–903. [Google Scholar] [CrossRef] [PubMed]
- Pandit, V.; Michailidou, M.; Rhee, P.; Zangbar, B.; Kulvatunyou, N.; Khalil, M.; O’Keeffe, T.; Haider, A.; Gries, L.; Joseph, B. The use of whole body computed tomography scans in pediatric trauma patients: Are there differences among adults and pediatric centers? J. Pediatr. Surg. 2016, 51, 649–653. [Google Scholar] [CrossRef] [PubMed]
- Repplinger, M.D.; Weber, A.C.; Pickhardt, P.J.; Rajamanickam, V.P.; Svenson, J.E.; Ehlenbach, W.J.; Westergaard, R.P.; Reeder, S.B.; Jacobs, E.A. Trends in the Use of Medical Imaging to Diagnose Appendicitis at an Academic Medical Center. J. Am. Coll. Radiol. JACR 2016, 13, 1050–1056. [Google Scholar] [CrossRef] [PubMed]
- Nosek, A.E.; Hartin, C.W., Jr.; Bass, K.D.; Glick, P.L.; Caty, M.G.; Dayton, M.T.; Ozgediz, D.E. Are facilities following best practices of pediatric abdominal CT scans? J. Surg. Res. 2013, 181, 11–15. [Google Scholar] [CrossRef] [PubMed]
- Lee, C.; Pearce, M.S.; Salotti, J.A.; Harbron, R.W.; Little, M.P.; McHugh, K.; Chapple, C.-L.; Berrington de Gonzalez, A. Reduction in radiation doses from paediatric CT scans in Great Britain. Br. J. Radiol. 2016, 89, 20150305. [Google Scholar] [CrossRef] [PubMed]
- Parker, M.W.; Shah, S.S.; Hall, M.; Fieldston, E.S.; Coley, B.D.; Morse, R.B. Computed Tomography and Shifts to Alternate Imaging Modalities in Hospitalized Children. Pediatrics 2015, 136, e573–e581. [Google Scholar] [CrossRef] [PubMed]
- Larson, D.B.; Johnson, L.W.; Schnell, B.M.; Salisbury, S.R.; Forman, H.P. National trends in CT use in the emergency department: 1995–2007. Radiology 2011, 258, 164–173. [Google Scholar] [CrossRef] [PubMed]
- Townsend, B.A.; Callahan, M.J.; Zurakowski, D.; Taylor, G.A. Has pediatric CT at children’s hospitals reached its peak? AJR Am. J. Roentgenol. 2010, 194, 1194–1196. [Google Scholar] [CrossRef] [PubMed]
- Frush, D.P. Justification and optimization of CT in children: How are we performing? Pediatr. Radiol. 2011, 41 (Suppl. 2), 467–471. [Google Scholar] [CrossRef] [PubMed]
- Reid, J.; Gamberoni, J.; Dong, F.; Davros, W. Optimization of kVp and mAs for pediatric low-dose simulated abdominal CT: Is it best to base parameter selection on object circumference? AJR Am. J. Roentgenol. 2010, 195, 1015–1020. [Google Scholar] [CrossRef] [PubMed]
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kutanzi, K.R.; Lumen, A.; Koturbash, I.; Miousse, I.R. Pediatric Exposures to Ionizing Radiation: Carcinogenic Considerations. Int. J. Environ. Res. Public Health 2016, 13, 1057. https://doi.org/10.3390/ijerph13111057
Kutanzi KR, Lumen A, Koturbash I, Miousse IR. Pediatric Exposures to Ionizing Radiation: Carcinogenic Considerations. International Journal of Environmental Research and Public Health. 2016; 13(11):1057. https://doi.org/10.3390/ijerph13111057
Chicago/Turabian StyleKutanzi, Kristy R., Annie Lumen, Igor Koturbash, and Isabelle R. Miousse. 2016. "Pediatric Exposures to Ionizing Radiation: Carcinogenic Considerations" International Journal of Environmental Research and Public Health 13, no. 11: 1057. https://doi.org/10.3390/ijerph13111057