A Decision Support System for Drinking Water Production Integrating Health Risks Assessment
Abstract
:1. Introduction
Leading Organization | Year | Name of The Tool | Main Characteristics | Water Supply Size Range | Application Environment | Outputs |
---|---|---|---|---|---|---|
WHO/IWA | 2009 | Water Safety Plan Manual | Guidance document | 2500–8,500,000 | Agricultural (extensive) Urban | Risk scoring Control measures |
Ireland (EPA) | 2010 | Handbook on implementation for Water Services Authorities for private water supplies—Section 10 | Semi quantitative RA | 2–5000 | Agricultural Urban pressure | Risk scoring |
United Kingdom (Scottish executive) | 2003 | Private water supplies : Technical Manual | Semi quantitative RA | 1–50 50–1000 | All pressures (wild life, agriculture, forestry industry, wastewater, sludge, landfill | Risk scoring Recommendations |
France (ASTEE) | 2009 | Ogeris, aide à l’évaluation des risques microbiologiques dans les petites unités de production/distribution d’eau potable | Vulnerability assessment | <5000 | All types | Recommendations and priorization of actions |
Germany (DVGW) | 2008 | Technical note for guideline W 1001. DVGW Rules, security of water supply risk management during normal operation | Guidance document | Risk scoring Control measures | ||
USA (EPA) | 2007 | HACCP Strategies for Distribution System Monitoring, Hazard Assessment and Control | Guidance document | Large supplies (1 example 770,000) | Urban pressure | Risk analysis and recommendations |
University of Guelph (Canada) | 2009 | Fuzzy-Logic Modeling of Risk Assessment | Fuzzy logic and fault tree methodology | Small water supplies | All types | Identification of which failure contributes to the high potential risk Recommendations |
2. Description of the Tool
2.1. General Architecture
- Water resources risk analysis based on a score determined from data on catchment land-use and land management.
- Water treatment risk analysis.
- Risk reduction recommendations to support decision making.
- Health risk assessment.
- Graphical representation of scores.
- Recommendations for catchment and treatment management improvement.
- Estimates of likely pollutant concentration following treatment and associated Health Risk Assessment (HRA).
2.2. Parameters
2.3. Main Functionalities
2.3.1. Catchment Type Module
2.3.2. Catchment Characteristics Module
2.3.3. Treatment Module
2.3.4. System Assessment Module
2.3.5. Health Risk Assessment Module
2.3.5.1. Contaminant Selection
2.3.5.2. Dissolved Organic Carbon Concentration Calculation
- Mean catchment altitude.
- Percentage of peat or peaty gley soil in the catchment.
- Annual effective rainfall (i.e., rain minus evaporation).
2.3.5.3. Calculation of Organic Contaminants Removal Following Water Treatment
2.3.5.4. Calculation of Disinfection By-Product Concentrations
- Chloroform: 23.5%
- Bromoform: 28.2%
- Dibromochloromethane: 30.2%
- Bromodichloromethane: 18.4%
- Chloroform = 1.6 × (DOCtreated water)1.092
- Bromoform = 1.92 × (DOCtreated water)1.092
- Dibromochloromethane = 2.057 × (DOCtreated water)1.092
- Bromodichloromethane = 1.253 × (DOCtreated water)1.092
- Dichloroacetate = 1.534 + 0.566 × (Bromodichloromethane) − 0.258 × (Bromoform)
- Trichloroacetate = 1.269 + 0.375 × (Chloroform)
2.3.5.5. Individual Excess Risks Calculation (Non-Thresholds Effects)
3. DSS Validation
Sampling Site | Number of Contaminants Selected by the DSS and Analyzed * | Contaminants Detected * (%) | Number of Contaminants Non Selected by the DSS and Analyzed * | Contaminants Detected * (%) |
---|---|---|---|---|
1 | 11 | 45.5 | 0 | - |
2 | 12 | 91.7 | 0 | - |
3 | 12 | 66.7 | 0 | - |
4 | 0 | - | 20 | 0.0 |
5 | 12 | 91.7 | 7 | 0.0 |
6 | 0 | - | 20 | 10.0 |
7 | 12 | 16.7 | 14 | 0.0 |
8 | 11 | 9.1 | 12 | 0.0 |
9 | 14 | 100 | 6 | 0.0 |
4. Discussion
5. Conclusions
Supplementary Files
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Climate Change and Water, Technical Paper of the Intergovernmental Panel on Climate Change; Bates, B.; Kundzewicz, Z.W.; Wu, S.; Palutikof, J. (Eds.) IPCC Secretariat: Geneva, Switzerland, 2008; p. 210.
- Schijven, J.; Bouwknegt, M.; de Roda Husman, A.M.; Rutje, S.; Sudr, B.; Suk, J.E.; Semenza, J.C. A decision support tool to compare waterborne and foodborne infection and/or illness risks associated with climate change. Risk Anal. 2013, 33, 2154–2167. [Google Scholar]
- Curriero, F.C.; Patz, J.A.; Rose, J.B.; Lele, S. The association between extreme precipitation and waterborne disease outbreaks in the United States, 1948–1994. Amer. J. Public Health 2001, 91, 1194–1199. [Google Scholar] [CrossRef]
- Delpla, I.; Jung, A.-V.; Baurès, E.; Clément, M.; Thomas, O. Impacts of climate change on surface water quality in relation to drinking water production. Environ. Int. 2009, 35, 1225–1233. [Google Scholar] [CrossRef]
- Gallina, N.; Anneville, O.; Beniston, M. Impacts of extreme air temperatures on cyanobacteria in five deep peri-Alpine lakes. J. Limnol. 2011, 70, 186–196. [Google Scholar]
- Van Vliet, M.T.H.; Zwolsman, J.J.G. Impact of summer droughts on the water quality of the Meuse river. J. Hydrol. 2008, 353, 1–17. [Google Scholar] [CrossRef]
- Freeman, C.; Evans, C.D.; Monteith, D.T.; Reynolds, B.; Fenner, N. Export of organic carbon from peat soils. Nature 2001, 412. [Google Scholar] [CrossRef]
- Worrall, F.; Burt, T.; Adamson, J. Can climate change explain increases in DOC flux from upland peat catchments? Sci. Total Environ. 2004, 326, 95–112. [Google Scholar] [CrossRef]
- Monteith, D.T.; Stoddard, J.L.; Evans, C.D.; de Wit, H.A.; Forsius, M.; Høgåsen, T.; Wilander, A.; Skjelkvåle, B.L.; Jeffries, D.S.; Vuorenmaa, J.; et al. Dissolved organic carbon trends resulting from changes in atmospheric deposition chemistry. Nature 2007, 450, 537–541. [Google Scholar] [CrossRef]
- Oulehle, F.; Hruška, J. Rising trends of dissolved organic matter in drinking-water reservoirs as a result of recovery from acidification in the Ore Mts., Czech Republic. Environ. Pollut. 2009, 157, 3433–3439. [Google Scholar] [CrossRef]
- Evans, C.D.; Jones, T.G.; Burden, A.; Ostle, N.J.; Zieliński, P.; Cooper, M.D.A.; Peacock, M.; Clark, J.M.; Oulehle, F.; Cooper, D.; et al. Acidity controls on dissolved organic carbon mobility in organic soils. Glob. Chang. Biol. 2012, 18, 3317–3331. [Google Scholar] [CrossRef][Green Version]
- Gough, R.; Holliman, P.J.; Willis, N.; Jones, T.G.; Freeman, C. Influence of habitat on the quantity and composition of leachable carbon in the O2 horizon: Potential implications for potable water treatment. Lake Reserv. Manag. 2012, 28, 282–292. [Google Scholar] [CrossRef]
- Freeman, C.; Fenner, N.; Ostle, N.J.; Kang, H.; Dowrick, D.J.; Reynolds, B.; Lock, M.A.; Sleep, D.; Hughes, S.; Hudson, J. Dissolved organic carbon export from peatlands under elevated carbon dioxide levels. Nature 2004, 430, 195–198. [Google Scholar] [CrossRef]
- Fenner, N.; Freeman, C. Drought-induced carbon loss in peatlands. Nat. Geosci. 2011, 4, 895–900. [Google Scholar] [CrossRef]
- Tang, R.; Clark, J.M.; Bond, T.; Graham, N.; Hughes, D.; Freeman, C. Assessment of potential climate change impacts on peatland dissolved organic carbon release and drinking water treatment from laboratory experiments. Environ. Pollut. 2013, 173, 270–277. [Google Scholar] [CrossRef]
- Matilainen, A.; Sillanpää, M. Removal of natural organic matter from drinking water by advanced oxidation processes. Chemosphere 2010, 80, 351–365. [Google Scholar] [CrossRef]
- Report on Water Quality in France 2005–2006; DGS (French Health Directorate): Paris, France, 2008; p. 66.
- Small-Scale Water Supplies in the pan-European Region: Background—Challenges—Improvements; WHO-United Nations Economic Commission for Europe (UNECE): Copenhagen, Denmark, 2011; p. 54.
- Bloech, H. Summary Record of the Meeting of the Committee under Article 12 of Directive 98/83/EC; Directorate-General for the Environment: Brussels, Belgium, 2011. [Google Scholar]
- Guidelines for Drinking-Water Quality, 3rd ed.; Incorporating The First and Second Addenda; World Health Organization: Geneva, Switzerland, 2008; Volume 1, p. 668.
- Roig, B.; Delpla, I.; Baurès, E.; Jung, A.V.; Thomas, O. Analytical issues for drinking water contamination monitoring related to short term intense rainy events. Trends Anal. Chem. 2011, 30, 1243–1251. [Google Scholar] [CrossRef]
- Giupponi, C. Decision support systems for implementing the european water framework directive: The MULINO approach. Environ. Model. Softw. 2007, 22, 248–258. [Google Scholar] [CrossRef]
- Berlekamp, J.; Lautenbach, S.; Graf, N.; Reimer, S.; Matthies, M. Integration of MONERIS and GREAT-ER in the decision support system for the German Elbe river basin. Environ. Model. Softw. 2007, 22, 239–247. [Google Scholar] [CrossRef]
- Lautenbach, S.; Berlekamp, J.; Graf, N.; Seppelt, R.; Matthies, M. Scenario analysis and management options for sustainable river basin management: Application of the Elbe DSS. Environ. Model. Softw. 2009, 24, 26–43. [Google Scholar] [CrossRef]
- Zeng, Y.; Cai, Y.; Jia, P.; Jee, H. Development of a web-based decision support system for supporting integrated water resources management in Daegu city, South Korea. Expert Syst. Appl. 2012, 39, 10091–10102. [Google Scholar] [CrossRef]
- Lee, S.; Ni-Mesister, W.; Toll, D.; Nigro, J.; Gutierrez-Magness, A.L.; Engman, T. Assessing the hydrologic performance of the EPA’s nonpoint source water quality assessment decision support tool using North American Land Data Assimilation System (NLDAS) products. J. Hydrol. 2010, 387, 212–220. [Google Scholar] [CrossRef]
- Xu, Y.-P.; Tung, Y.-K. Decision rules for water resources management under uncertainty. J. Water Resour. Plan. Man-Asce. 2009, 135, 149–159. [Google Scholar] [CrossRef]
- Zhang, X.; Huang, G.H.; Nie, X.; Lin, Q. Model-based decision support system for water quality management under hybrid uncertainty. Expert Syst. Appl. 2011, 38, 2809–2816. [Google Scholar] [CrossRef]
- Arnold, J.G.; Fohrer, N. SWAT2000: current capabilities and research opportunities in applied watershed modelling. Hydrol. Process. 2005, 19, 563–572. [Google Scholar] [CrossRef]
- Even, S.; Billen, G.; Bacq, N.; Théry, S.; Ruelland, D.; Garnier, J.; Cugier, P.; Poulin, M.; Blanc, S.; Lamy, F.; et al. New tools for modelling water quality of hydrosystems: An application in the Seine River basin in the frame of the Water Framework Directive. Sci. Total Environ. 2007, 375, 274–291. [Google Scholar] [CrossRef]
- Mirauda, D.; Ostoich, M. Surface water vulnerability assessment applying the integrity model as a decision support system for quality improvement. Environ. Impact Assess. 2011, 31, 161–171. [Google Scholar] [CrossRef]
- Mysiak, J.; Giupponi, C.; Rosato, P. Towards the development of a decision support system for water resource management. Environ. Model. Softw. 2005, 20, 203–214. [Google Scholar] [CrossRef]
- Paredes, J.; Andreu, J.; Solera, A. A decision support system for water quality issues in the Manzanares river (Madrid, Spain). Sci. Total Environ. 2010, 408, 2576–2589. [Google Scholar] [CrossRef]
- Sieker, H.; Bandermann, S.; Schröter, K.; Ostrowski, M.; Leichtfuss, A.; Schmidt, W.; Thiel, E.; Peters, C.; Mühleck, R. Development of a decision support system for integrated water resources management in intensively used small watersheds. Water Pract. Technol. 2006, 1. [Google Scholar] [CrossRef]
- Handbook on Implementation for Water Services Authorities for Private Water Supplies—Appendix 1; EPA Ireland: Wexford, Ireland, 2010; p. 63.
- Scottish Executive. Private Water Supplies: Technical Manual; Scottish Executive: Edinburgh, UK, 2006; p. 32. [Google Scholar]
- Ogeris. Outil D’aide a L’évaluation des Risques Microbiologiques dans les Petites Unités de Production/Distribution d’eau Potable; Association Scientifique et Technique pour l’Eau et l’Environnement: Nanterre, Paris, 2009. (in French) [Google Scholar]
- HACCP Strategies for Distribution System Monitoring, Hazard Assessment and Control; U.S. Environmental Protection Agency: Washington, DC, USA, 2007; p. 81.
- Bartram, J.; Corrales, L.; Davison, A.; Deere, D.; Drury, D.; Gordon, B.; Howard, G.; Rinehold, A.; Stevens, M. Water Safety Plan Manual: Step-By-Step Risk Management for Drinking-Water Suppliers; World Health Organization: Geneva, Switzerland, 2009; p. 108. [Google Scholar]
- Guidelines for Drinking Water Quality, 3rd ed.; World Health Organization: Geneva, Switzerland, 2004; Volume 1, p. 540.
- Calderon, R.L. The epidemiology of chemical contaminants of drinking water. Food Chem. Toxicol. 2000, 38, S13–S20. [Google Scholar] [CrossRef]
- Monteith, D.T.; Henrys, P.A.; Evans, C.D.; Malcolm, I.; Shilland, E.M.; Pereira, M.G. Spatial controls on dissolved organic carbon in upland waters inferred from a simple statistical model. In review.
- Gruau, G.; Birgand, F.; Novince, E.; Jarde, E. Pollution des Captages d’eau Brute de Bretagne par les Matières Organiques; Agence de l’eau Loire Bretagne: Rennes, France, 2004. (in French) [Google Scholar]
- Laor, Y.; Rebhun, M. Complexation-flocculation: A new method to determine binding coefficients of organic contaminants to dissolved humic substances. Environ. Sci. Technol. 1997, 31, 3558–3564. [Google Scholar] [CrossRef]
- Thuy, P.T.; Moons, K.; van Dijk, J.C.; Anh, N.V.; van der Bruggen, B. To what extent are pesticides removed from surface water during coagulation-flocculation? Water Environ. J. 2008, 22, 217–223. [Google Scholar] [CrossRef]
- Association of River Water Supply Companies. Annual Report 2010. Available online: http://www.riwa-rijn.org/uploads/tx_deriwa/RIWA_Jaarrapport_2010_internet.pdf (accessed on 6 May 2014).
- Fernandez, M.A.; Alonso, C.; Gonzalez, M.J.; Hernandez, L.M. Occurrence of organochlorine insecticides, PCBs and PCB congeners in water and sediments of the Ebro river (Spain). Chemosphere 1999, 38, 33–43. [Google Scholar] [CrossRef]
- Kolpin, D.W.; Furlong, E.T.; Meyer, M.T.; Thurman, E.M.; Zaugg, S.D.; Barber, L.B.; Buxton, H.T. Pharmaceuticals, hormones, and other organic wastewater contaminants in U.S. streams, 1999–2000: A national reconnaissance. Environ. Sci. Technol. 2002, 36, 1202–1211. [Google Scholar] [CrossRef]
- Manoli, E.; Samara, C. Polycyclic aromatic hydrocarbons in natural waters: Sources, occurrence and analysis. Trends Anal. Chem. 1999, 18, 417–428. [Google Scholar] [CrossRef]
- Gomez-Belinchon, J.I.; Grimalt, J.O.; Albaiges, J. Volatile organic compounds in two polluted rivers in Barcelona (Catalonia, Spain). Water Res. 1991, 25, 577–589. [Google Scholar] [CrossRef]
- Murray, K.E.; Thomas, S.M.; Bodour, A.A. Prioritizing research for trace pollutants and emerging contaminants in the freshwater environment. Environ. Pollut. 2010, 158, 3462–3471. [Google Scholar] [CrossRef]
- Vulliet, E.; Cren-Olivé, C. Screening of pharmaceuticals and hormones at the regional scale, in surface and groundwaters intended to human consumption. Environ. Pollut. 2011, 159, 2929–2934. [Google Scholar] [CrossRef]
- Lapworth, D.J.; Baran, N.; Stuart, M.E.; Ward, R.S. Emerging organic contaminants in groundwater: A review of sources, fate and occurrence. Environ. Pollut. 2012, 163, 287–303. [Google Scholar] [CrossRef][Green Version]
- Huerta-Fontela, M.; Galceran, M.T.; Ventura, F. Occurrence and removal of pharmaceuticals and hormones through drinking water treatment. Water Res. 2011, 45, 1432–1442. [Google Scholar] [CrossRef]
- Roberts, P.H.; Thomas, K.V. The occurrence of selected pharmaceuticals in wastewater effluent and surface waters of the lower Tyne catchment. Sci. Total Environ. 2006, 356, 143–153. [Google Scholar] [CrossRef]
- Verliefde, A.; Cornelissen, E.; Amy, G.; van der Bruggen, B.; van Dijk, H. Priority organic micropollutants in water sources in Flanders and the Netherlands and assessment of removal possibilities with nanofiltration. Environ. Pollut. 2007, 146, 281–289. [Google Scholar] [CrossRef]
- Weston, D.P.; Holmes, R.W.; Lydy, M.J. Residential runoff as a source of pyrethroid pesticides to urban creeks. Environ. Pollut. 2009, 157, 287–294. [Google Scholar] [CrossRef]
- Balmer, M.E.; Buser, H.R.; Muller, M.D.; Poiger, T. Occurrence of some organic UV filters in wastewater, in surface waters, and in fish from Swiss lakes. Environ. Sci. Technol. 2005, 39, 953–962. [Google Scholar] [CrossRef]
- Westerhoff, P.W.; Yoon, Y.N.; Snyder, S.; Wert, E. Fate of endocrine-disruptor, pharmaceutical, and personal care product chemicals during simulated drinking water treatment processes. Environ. Sci. Technol. 2005, 39, 6649–6663. [Google Scholar] [CrossRef]
- Stackelberg, P.E.; Gibs, J.; Furlong, E.T.; Meyer, M.T.; Zaugg, S.D.; Lippincott, R.L. Efficiency of conventional drinking-water-treatment processes in removal of pharmaceuticals and other organic compounds. Sci. Total Environ. 2007, 377, 255–272. [Google Scholar] [CrossRef]
- Nghiem, L.D.; Schäfer, A.I.; Elimelech, M. Removal of natural hormones by nanofiltration membranes: Measurement, modeling, and mechanisms. Environ. Sci. Technol. 2004, 38, 1888–1896. [Google Scholar] [CrossRef]
- Kimura, K.; Amy, G.; Drewes, J.E.; Heberer, T.; Kim, T.-U.; Watanabe, Y. Rejection of organic micropollutants (disinfection by-products, endocrine disrupting compounds, and pharmaceutically active compounds) by NF/RO membranes. J. Membr. Sci. 2003, 227, 113–121. [Google Scholar] [CrossRef]
- Huber, M.M.; Canonica, S.; Park, G.-Y.; von Gunten, U. Oxidation of pharmaceuticals during ozonation and advanced oxidation processes. Environ. Sci. Technol. 2003, 37, 1016–1024. [Google Scholar] [CrossRef]
- Rosenfeldt, E.J.; Linden, K.G. Degradation of endocrine disrupting chemicals bisphenol A, ethinyl estradiol, and estradiol during UV photolysis and advanced oxidation processes. Environ. Sci. Technol. 2004, 38, 5476–5483. [Google Scholar] [CrossRef]
- Rodriguez, M.J.; Serodes, J.; Morin, M. Estimation of water utility compliance with trihalomethane regulations using modeling approach. J. Water Supply Res. Technol.—Aq. 2000, 49, 57–73. [Google Scholar]
- Clément, M.; Thomas, O. Détermination de la Contamination de l’air Intérieur des Habitats par les Trihalométhanes, en vue d’une Évaluation de L’exposition à ces Substances par Inhalation; PRIMEQUAL 2 – PREDIT report; 2009. (in french) [Google Scholar]
- Villanueva, C.M.; Kogevinas, M.; Grimalt, J.O. Research note: Haloacetic acids and trihalomethanes in finished drinking waters from heterogeneous sources. Water Res. 2003, 37, 953–958. [Google Scholar] [CrossRef]
- Human health evaluation manual (part A). Risk Assessment Guidance for Superfund; Office of Emergency and Remedial Response, U.S. Environmental Protection Agency: Washington, DC, USA, 1989; Volume 1. [Google Scholar]
- Guidelines for Drinking-Water Quality; World Health Organization: Geneva, Switzerland, 1993; Volume 1.
- Rodriguez, M.J.; Serodes, J.B. Spatial and temporal evolution of trihalomethanes in three water distribution systems. Water Res. 2001, 35, 1572–1586. [Google Scholar] [CrossRef]
- Lehtola, M.J.; Miettinen, I.T.; Keinänen, M.M.; Kekki, T.K.; Laine, O.; Hirvonen, A.; Vartiainen, T.; Martikainen, P.J. Microbiology, chemistry and biofilm development in a pilot drinking water distribution system with copper and plastic pipes. Water Res. 2004, 38, 3769–3779. [Google Scholar] [CrossRef]
- Sadiki, A.-I.; Williams, D.T. A study on organotin levels in Canadian drinking water distributed through PVC pipes. Chemosphere 1999, 38, 1541–1548. [Google Scholar] [CrossRef]
- Beardsley, M.; Adams, C.D. Modeling and control of vinyl chloride in drinking water distribution systems. J. Environ. Eng. 2003, 129, 844–851. [Google Scholar] [CrossRef]
© 2014 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Delpla, I.; Monteith, D.T.; Freeman, C.; Haftka, J.; Hermens, J.; Jones, T.G.; Baurès, E.; Jung, A.-V.; Thomas, O. A Decision Support System for Drinking Water Production Integrating Health Risks Assessment. Int. J. Environ. Res. Public Health 2014, 11, 7354-7375. https://doi.org/10.3390/ijerph110707354
Delpla I, Monteith DT, Freeman C, Haftka J, Hermens J, Jones TG, Baurès E, Jung A-V, Thomas O. A Decision Support System for Drinking Water Production Integrating Health Risks Assessment. International Journal of Environmental Research and Public Health. 2014; 11(7):7354-7375. https://doi.org/10.3390/ijerph110707354
Chicago/Turabian StyleDelpla, Ianis, Donald T. Monteith, Chris Freeman, Joris Haftka, Joop Hermens, Timothy G. Jones, Estelle Baurès, Aude-Valérie Jung, and Olivier Thomas. 2014. "A Decision Support System for Drinking Water Production Integrating Health Risks Assessment" International Journal of Environmental Research and Public Health 11, no. 7: 7354-7375. https://doi.org/10.3390/ijerph110707354