Differences in Urinary Arsenic Metabolites between Diabetic and Non-Diabetic Subjects in Bangladesh
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Measurements
2.3. Urine Sample Collection and Analysis
2.4. Water Sample Collection and Analysis
2.5. Data Analyses and Statistical Methods
3. Results
| Variables | Diabetic cases (n = 140) | Controls (n = 180) | * P-value |
|---|---|---|---|
| Demographic | |||
| Sex | 0.037 | ||
| Male | 70 (50) | 69 (38) | |
| Female | 70 (50) | 111 (62) | |
| Age (years) | 48.0 (46.3–49.7) | 41.4 (39.7–43.2) | ≤0.001 |
| Family history of diabetes | ≤0.001 | ||
| Yes | 65 (46.4) | 40 (22.2) | |
| No | 75 (53.6) | 140 (77.8) | |
| Monthly income (USD) | 230 ± 186 | 165 ± 86 | ≤0.001 |
| Smoking habit | 0.438 | ||
| Yes | 23 (16.4)) | 24 (13.3) | |
| No | 117 (83.6) | 156 (86.7) | |
| Betel nut chewing | 0.928 | ||
| Yes | 45 (32.1) | 57 (31.7) | |
| No | 95 (67.9) | 123 (68.3) | |
| No education | 13 (9) | 30 (17) | |
| Primary | 61 (44) | 82 (46) | |
| Secondary and above | 66 (47) | 68 (37) | |
| Water | |||
| Arsenic in drinking water (μg/L) | 85.1 (69.3–100.9) | 85.8 (74.7–96.9) | 0.946 |
| Water arsenic level (μg/L) | 0.241 | ||
| <10 | 24 (17) | 23 (13) | |
| 10–50 | 48 (34) | 53 (29) | |
| >50 | 68 (49) | 104 (58) | |
| Duration of water drinking (years) | 11.7 (9.8–13.6) | 11.8 (10.4–13.3) | 0.926 |
| Test | |||
| BMI (kg/m2) | 25.1 (25.5–25.6) | 24.5 (23.8–25.1) | 0.150 |
| BMI (kg/m2) | 0.070 | ||
| ≤25 | 62 (44) | 98 (54) | |
| >25 | 78 (56) | 82 (46) | |
| Random plasma glucose (mg/dL) | 253 (237–270) | 125 (121–128) | 0.001 |
| Urinary creatinine (mg/dL) | 183.0 (164–202) | 175.0 (160–190) | 0.500 |
| Absolute values (μg/L) | |||
| TAs | 252.2 (208.3–296.0) | 235.3 (197.6–273.0) | 0.565 |
| iAs | 20.0 (15.7–23.8) | 21.2 (17.9–24.5) | 0.650 |
| MMA | 23.9 (18.7–29.0) | 22.2 (18.5–25.7) | 0.595 |
| DMA | 208.3 (172.7–243.9) | 192.0 (159.9–224.0) | 0.813 |
| Variables | n | iAs μg/L (%) | MMA μg/L (%) | DMA μg/L (%) | TAs μg/L | PMI | SMI |
|---|---|---|---|---|---|---|---|
| Sex | |||||||
| Male | 139 | 20.2 (10.5) | 23.3 (10.3) | 183.3 (79.1) | 226.8 | 1.2 | 9.2 |
| Female | 181 | 21.0 (8.9) | 22.6 (8.7) | 212.4 (82.4) | 255.0 | 1.3 | 11.7 |
| P-value | NS (0.020) | NS (0.001) | NS (0.001) | NS | NS | 0.001 | |
| Age (years) | |||||||
| 20–44 | 157 | 21.7 (10.5) | 21.1 (9.3) | 185.7 (80.2) | 228.6 | 1.1 | 10.8 |
| 45–70 | 163 | 19.2 (8.8) | 23.8 (9.6) | 208.3 (81.6) | 251.4 | 1.4 | 10.4 |
| P-value | NS (0.016) | NS (NS) | NS (NS) | NS | 0.005 | NS | |
| Family history of diabetes | |||||||
| Yes | 105 | 19.3 (9.9) | 22.7 (9.5) | 199.2 (80.7) | 241.2 | 1.1 | 10.7 |
| No | 215 | 22.3 (10.1) | 23.5 (9.7) | 198.5 (80.1) | 244.1 | 1.2 | 10.1 |
| P-value | NS (NS) | NS (NS) | NS (NS) | NS | NS | NS | |
| Monthly income (United States Dollars) | |||||||
| Low group | 165 | 23.2 (10.4) | 24.6 (9.8) | 203.7 (79.8) | 251.6 | 1.2 | 10 |
| High group | 155 | 18.3 (8.7) | 21.3 (9.0) | 193.0 (82.1) | 232.6 | 1.3 | 10.9 |
| P-value | NS (0.025) | NS (NS) | NS (0.018) | NS | NS | NS | |
| Smoking habit | |||||||
| Yes | 47 | 18.1 (9.8) | 20.5 (10.3) | 147.0 (80.0) | 185.7 | 1.1 | 9.2 |
| No | 273 | 21.0 (9.6) | 23.4 (9.3) | 209.1 (81.1) | 253.4 | 1.3 | 10.8 |
| P-value | NS (NS) | NS (NS) | NS (NS) | NS | NS | NS | |
| Water arsenic (μg/L) a | |||||||
| ≤50 | 148 | 14.4 (9.5) | 15.3 (8.9) | 149.0 (81.6) | 178.7 | 1.3 | 11.3 |
| >50 | 172 | 26.1 (9.8) | 30.0 (9.9) | 245.5 (80.3) | 301.5 | 1.3 | 9.9 |
| P-value | 0.001 (NS) | 0.001 (0.020) | 0.001 (NS) | 0.001 | NS | NS | |
| Duration of drinking water (years) b | |||||||
| ≤10 | 159 | 21.8 (10.1) | 23.5 (9.7) | 204.0 (80.2) | 249.3 | 1.2 | 11.3 |
| >10 | 156 | 19.8 (9.1) | 23.0 (9.1) | 200.7 (81.7) | 243.5 | 1.3 | 10.8 |
| P-value | NS (NS) | NS (NS) | NS (NS) | NS | NS | NS | |
| BMI (kg/m2) | |||||||
| ≤25 | 160 | 22.2 (9.9) | 23.9 (10.0) | 197.6 (80.0) | 243.7 | 1.3 | 10.7 |
| >25 | 160 | 19.1 (9.3) | 22.1 (8.8) | 203.1 (81.9) | 244.2 | 1.3 | 11.3 |
| P-value | 0.050 (NS) | NS (0.030) | NS (0.046) | NS | NS | 0.02 | |
| Characteristics | Diabetic cases (n = 140) | Controls (n = 180) | * P-value |
|---|---|---|---|
| iAs% | |||
| a Crude | 8.6 | 10.4 | 0.022 |
| b Model 1 | 9.0 | 10.8 | 0.065 |
| c Model 2 | 9.3 | 10.4 | 0.281 |
| d Model 3 | 9.5 | 10.5 | 0.345 |
| MMA% | |||
| a Crude | 8.8 | 9.7 | 0.064 |
| b Model 1 | 9.4 | 10.4 | 0.068 |
| c Model 2 | 9.3 | 10.5 | 0.041 |
| d Model 3 | 9.3 | 10.3 | 0.081 |
| DMA% | |||
| a Crude | 82.6 | 79.9 | 0.012 |
| b Model 1 | 81.6 | 78.8 | 0.028 |
| c Model 2 | 81.3 | 79.1 | 0.087 |
| d Model 3 | 81.2 | 79.3 | 0.142 |
| PMI | |||
| a Crude | 1.4 | 1.2 | 0.191 |
| b Model 1 | 1.3 | 1.2 | 0.488 |
| c Model 2 | 1.3 | 1.3 | 0.641 |
| d Model 3 | 1.2 | 1.3 | 0.365 |
| SMI | |||
| a Crude | 11.6 | 10.0 | 0.037 |
| b Model 1 | 10.7 | 9.2 | 0.089 |
| c Model 2 | 10.9 | 9.1 | 0.053 |
| d Model 3 | 10.8 | 9.3 | 0.093 |
4. Discussion
5. Conclusions
Conflict of Interest
Acknowledgements
References
- Arsenic in Drinking Water. Background Document for Preparation of WHO Guidelines for Drinking-Water Quality; World Health Organization: Geneva, Switzerland, 2003.
- Smedley, P.L.; Kinniburg, D.G. A review of the source, behavior and distribution of arsenic in natural waters. Appl. Geochem. 2002, 17, 517–568. [Google Scholar] [CrossRef]
- Smith, A.H.; Lingas, E.O.; Rahman, M. Contamination of drinking-water by arsenic in Bangladesh: A public health emergency. Bull. World Health Organ. 2000, 78, 1093–1103. [Google Scholar]
- Kinniburgh, D.G.; Smedley, P.L. Arsenic Contamination of Groundwater in Bangladesh; British Geological Survey (BGS),Department for International Development (DFID),Government of the People’s Republic of Bangladesh, Ministry of Local Government, Rural Development and Cooperatives, Department of Public Health Engineering (DPHE): Dhaka, Bangladesh, 2001.
- Andreae, M.O. Determination of arsenic in natural waters. Anal. Chem. 1997, 49, 820–823. [Google Scholar] [CrossRef]
- Shraim, A.; Sekaran, N.C.; Anuradha, C.D.; Hirano, S. Speciation of arsenic in tube-well water samples collected from West Bengal, India, by high-performance liquid chromatography-inductively coupled plasma mass spectrometry. Appl. Organomet. Chem. 2002, 16, 202–209. [Google Scholar]
- Kitchin, K.T. Recent advances in arsenic carcinogenesis: Modes of action, animal model systems and methylated arsenic metabolites. Toxicol. Appl. Pharmacol. 2001, 172, 249–261. [Google Scholar] [CrossRef]
- Styblo, M.; Drobna, Z.; Jaspers, I.; Lin, S.; Thomas, D.J. The role of biomethylation in toxicity and carcinogenicity of arsenic: A research update. Environ. Health Perspect. 2002, 110, 767–771. [Google Scholar] [CrossRef]
- Thompson, D.J. A chemical hypothesis for arsenic methylation in mammals. Chem. Biol. Interact. 1993, 88, 89–114. [Google Scholar] [CrossRef]
- Thomas, D.J.; Styblo, M.; Lin, S. The cellular metabolism and systemic toxicity of arsenic. Toxicol. Appl. Pharmacol. 2001, 176, 127–144. [Google Scholar] [CrossRef]
- Thomas, D.J.; Waters, S.B.; Styblo, M. Elucidating the pathway for arsenic methylation. Toxicol. Appl. Pharmacol. 2004, 198, 319–326. [Google Scholar] [CrossRef]
- Vahter, M. Mechanisms of arsenic biotransformation. Toxicology 2002, 181-182, 211–217. [Google Scholar] [CrossRef]
- Aposhian, H.V.; Aposhian, M.M. Arsenic toxicology: Five questions. Chem. Res. Toxicol. 2006, 19, 1–15. [Google Scholar] [CrossRef]
- Vahter, M.; Concha, G. Role of metabolism in arsenic toxicity. Pharmacol. Toxicol. 2001, 89, 1–5. [Google Scholar] [CrossRef]
- Lindberg, A.L.; Rahman, M.; Persson, L.A.; Vather, M. The risk of arsenic induced skin lesions in Bangladeshi men and women is affected by arsenic metabolism and the age at first exposure. Toxicol. Appl. Pharmacol. 2008, 230, 9–16. [Google Scholar] [CrossRef]
- Hopenhayn-Rich, C.; Biggs, M.L.; Kalman, D.A.; Moore, L.E.; Smith, A.H. Arsenic methylation patterns before and after changing from high to lower concentrations of arsenic in drinking water. Environ. Health Perspect. 1996, 104, 1200–1207. [Google Scholar] [CrossRef]
- Del Razo, L.M.; Garcia-Vargas, G.C.; Vargas, H.; Albores, A.; Gonsebatt, M.E.; Montero, R.; Ostrosky-Wegman, P.; Kelsh, M.; Cebrian, M.E. Altered profile of urinary arsenic metabolites in adults with chronic arsenicism. A pilot study. Arch. Toxicol. 1997, 71, 211–217. [Google Scholar] [CrossRef]
- Vahter, M. Methylation of inorganic arsenic in different mammalian species and population groups. Sci. Prog. 1999, 82, 69–88. [Google Scholar]
- Kile, M.L.; Hoffman, E.; Rodrigues, E.G.; Breton, C.V.; Quamruzzaman, Q.; Rahman, M.; Mahiuddin, G.; Hsueh, Y.M.; Christiani, D.C. A pathway-based analysis of urinary arsenic metabolites and skin lesions. Am. J. Epidemiol. 2010, 173, 778–786. [Google Scholar]
- Ahsan, H.; Chen, Y.; Kibriya, M.G.; Slavkovich, V.; Parvez, F.; Jasmine, F.; Gamble, M.V.; Graziano, J.H. Arsenic metabolism, genetic susceptibility, and risk of premalignant skin lesions in Banglades. Cancer Epidemiol. Biomarkers Prev. 2007, 16, 1270–1278. [Google Scholar] [CrossRef]
- Chen, Y.C.; Su, H.J.; Guo, Y.L.; Hsueh, Y.M.; Smith, T.J.; Ryan, L.M.; Lee, M.S.; Christiani, D.C. Arsenic methylation and bladder cancer risk in Taiwan. Canc. Causes Contr. 2003, 14, 303–310. [Google Scholar] [CrossRef]
- Chen, C.L.; Chiou, H.Y.; Hsu, L.I.; Hsueh, Y.M.; Wu, M.M.; Chen, C.J. Ingested arsenic, characteristics of well water consumption and risk of different histological types of lung cancer in northeastern Taiwan. Environ. Res. 2010, 110, 455–462. [Google Scholar] [CrossRef]
- Tseng, C.H.; Huang, Y.K.; Huang, Y.L.; Chung, C.J.; Yang, M.H.; Chen, C.J.; Hsueh, Y.M. Arsenic exposure, urinary arsenic speciation, and peripheral vascular disease in blackfoot disease-hyperendemic village in Taiwan. Toxicol. Appl. Pharmacol. 2005, 206, 299–308. [Google Scholar] [CrossRef]
- Huang, Y.K.; Tseng, C.H.; Huang, Y.L.; Yang, M.H.; Chen, C.J.; Hsueh, Y.M. Arsenic methylation capability and hypertension risk in subjects living in arseniasis-hyperendemic areas in southwestern Taiwan. Toxicol. Appl. Pharmacol. 2007, 218, 135–142. [Google Scholar] [CrossRef]
- Tseng, C.H.; Tai, T.Y.; Chong, C.K.; Tseng, C.P.; Lai, M.S.; Lin, B.J.; Chiou, H.Y.; Hsueh, Y.M.; Hsu, K.H.; Chen, C.J. Long-term arsenic exposure and incidence of non-insulin-dependent diabetes mellitus: a cohort study in arseniasis-hyperendemic villages in Taiwan. Environ. Health. Perspect. 2000, 108, 847–851. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.; Ahsan, H.; Slavkovich, V.; Peltier, G.L.; Gluskin, R.T.; Parvez, F.; Liu, X.; Graziano, J.H. No association between arsenic exposure to drinking water and diabetes mellitus: A cross-sectional study in Bangladesh. Environ. Health Perspect. 2010, 118, 1299–1305. [Google Scholar] [CrossRef]
- Navas-Acien, A.; Silbergeld, E.K.; Streeter, R.A.; Clark, J.M.; Burke, T.A.; Guallar, E. Arsenic exposure and type 2 diabetes: A systematic review of the experimental and epidemiological evidence. Environ. Health Perspect. 2006, 114, 641–648. [Google Scholar]
- Rahman, M.; Tondel, M.; Ahmad, S.A.; Axelson, O. Diabetes mellitus associated with arsenic exposure in Bangladesh. Am. J. Epidemiol. 1998, 148, 198–203. [Google Scholar] [CrossRef]
- Kim, Y.; Lee, B.K. Association between urinary arsenic and diabetes mellitus in the Korean general population according to KNHANES 2008. Sci. Total Environ. 2011, 409, 4054–4062. [Google Scholar] [CrossRef]
- Bangladesh Bureau of Statistics, Population Census 2001, Zila Series, Zila Dhaka; Planning Division, Ministry of Planning, GOB: Dhaka, Bangladesh, 2007.
- Bała, M.M.; Płaczkiewicz-Jankowska, E.; Topór-Mądry, R.; Leśniak, W.; Jaeschke, R.; Sieradzki, J.; Grzeszczak, W.; Banasiak, W. Is newly diagnosed type 2 diabetes treated according to the guidelines? Results of the Polish ARETAEUS1 study. Pol. Arch. Med. Wewn. 2011, 121, 7–17. [Google Scholar]
- American Diabetes Association. Diagnosis and classification of diabetes mellitus. Diabetes Care 2005, 28, s37–s42. [CrossRef]
- Tseng, C.H. A review on environmental factors regulating arsenic methylation in humans. Toxicol. Appl. Pharmacol. 2009, 235, 338–350. [Google Scholar] [CrossRef]
- Edris, M. Assessment of nutritional status of preschool children of Gumbrit, North West Ethiopia. Ethiop. J. Health Dev. 2007, 21, 125–129. [Google Scholar]
- Rahman, M.M.; Nasrin, S.O. Mothers nutritional status in an impoverished nation: Evidence from rural Bangladesh. Int. J. Nutr. Wellness 2009, 7. [Google Scholar] [CrossRef]
- Steinmaus, C.; Carrigan, K.; Kalman, D.; Atallah, R.; Yuan, Y.; Smith, A.H. Dietary intake and arsenic methylation in a U.S. population. Environ. Health Perspect. 2005, 113, 1153–1159. [Google Scholar] [CrossRef]
- Lammon, C.A.; Hood, R.D. Effects of protein deficient diets on the developmental toxicity of inorganic arsenic in mice. Birth Defects Res. B Dev. Reprod. Toxicol. 2004, 71, 124–134. [Google Scholar] [CrossRef]
- Heck, J.E.; Gamble, M.V.; Chen, Y.; Graziano, J.H.; Slavkovich, V.; Parvez, F.; Baron, J.A.; Howe, G.R.; Ahsan, H. Consumption of folate-related nutrients and metabolism of arsenic in Bangladesh. Am. J. Clin. Nutr. 2007, 85, 1367–1374. [Google Scholar]
- Hossain, M.G.; Bharati, P.; Aik, S.; Lestrel, P.E.; Abeer, A.; Kamarul, T. Body mass index of married Bangladeshi women: Trends and association with socio-demographic factors. J. Biosoc. Sci. 2012, 44, 385–399. [Google Scholar] [CrossRef]
- Milton, A.H.; Hasan, Z.; Shahidullah, S.M.; Sharmin, S.; Jakariya, M.D.; Rahman, M.; Dear, K.; Smith, W. Association between nutritional status and arsenicosis due to chronic arsenic exposure in Bangladesh. Int. J. Environ. Health Res. 2004, 14, 99–108. [Google Scholar] [CrossRef]
- Gamble, M.V.; Liu, X.; Ahsan, H.; Pilsner, R.; Ilievski, V.; Slavkovich, V.; Parvez, F.; Levy, D.; Factor-Litvak, P.; Graziano, J.H. Folate, homocysteine, and arsenic metabolism in arsenic-exposed individuals in Bangladesh. Environ. Health Perspect. 2005, 113, 1683–1688. [Google Scholar] [CrossRef]
- Chung, C.J.; Huang, C.J.; Pu, Y.S.; Su, C.T.; Huang, Y.K.; Chen, Y.T.; Hsueh, Y.M. Urinary 8-hydroxydeoxyguanosine and urothelial carcinoma risk in low arsenic exposure area. Toxicol. Appl. Pharmacol. 2008, 226, 14–21. [Google Scholar] [CrossRef]
- Steinmaus, C.; Moore, L.E.; Shipp, M.; Kalman, D.; Rey, O.A.; Biggs, M.L.; Hopenhayn, C.; Bates, M.N.; Zheng, S.; Wiencke, J.K.; Smith, A.H. Genetic polymorphisms in MTHFR 677 and 1298, GSTM1 and T1, and metabolism of arsenic. J. Toxicol. Environ. Health A 2007, 70, 159–170. [Google Scholar] [CrossRef]
- Serder, M.A.; Bakir, F.; Hasimi, A.; Cellic, T.; Akin, O.; Kenar, L.; Aykut, O.; Yildirimkaya, M. Trace and toxic element patterns in nonsmoker patients with noninsulin-dependent diabetes mellitus, impaired glucose tolerance, and fasting glucose. Int. J. Diabetes Dev. Ctries. 2009, 29, 35–40. [Google Scholar] [CrossRef]
- Afridi, H.I.; Kazi, T.G.; Kazi, N.; Jamali, M.K.; Arain, M.B.; Jalbani, N.; Baig, J.A.; Sarfaraz, R.A. Evaluation of status of toxic metals in biological samples of diabetes mellitus patients. Diabetes Res. Clin. Pract. 2008, 80, 280–288. [Google Scholar] [CrossRef]
- Del Razo, L.M.; García-Vargas, G.G.; Valenzuela, O.L.; Castellanos, E.H.; Sánchez-Peña, L.C.; Currier, J.M.; Drobná, Z.; Loomis, D.; Stýblo, M. Exposure to arsenic in drinking water is associated with increased prevalence of diabetes: A cross-sectional study in the Zimapán and Lagunera regions in Mexico. Environ. Health 2011, 10, 73–83. [Google Scholar] [CrossRef]
- Chen, Y.C.; Guo, Y.L.; Su, H.J.; Hsueh, Y.M.; Smith, T.J.; Ryan, L.M.; Lee, M.S.; Chao, S.C.; Lee, J.Y.; Christiani, D.C. Arsenic methylation and skin cancer risk in southwestern Taiwan. J. Occup. Environ. Med. 2003, 45, 241–248. [Google Scholar] [CrossRef]
- Pu, Y.S.; Yang, S.M.; Huang, Y.K.; Chung, C.J.; Huang, S.K.; Chiu, A.W.; Yang, M.H.; Chen, C.J.; Hsueh, Y.M. Urinary arsenic profile affects the risk of urothelial carcinoma even at low exposure. Toxicol. Appl. Pharmacol. 2007, 218, 99–106. [Google Scholar] [CrossRef]
- Lindberg, A.L.; Ekström, E.C.; Nermell, B.; Rahman, M.; Lönnerdal, B.; Persson, L.A.; Vahter, M. Gender and age differences in the metabolism of inorganic arsenic in a highly exposed population in Bangladesh. Environ. Res. 2008, 106, 110–120. [Google Scholar] [CrossRef]
- Steinmaus, C.; Yuan, Y.; Liaw, J.; Smith, A.H. Low-level population exposure to inorganic arsenic in the United States and diabetes mellitus: A reanalysis. Epidemiology 2009, 20, 807–815. [Google Scholar] [CrossRef]
- Batista, B.L.; Souza, J.M.; De Souza, S.S.; Barbosa, F., Jr. Speciation of arsenic in rice and estimation of daily intake of different arsenic species by Brazilians through rice consumption. J. Hazard. Mater. 2011, 15, 342–348. [Google Scholar]
- Canet, M.J.; Hardwick, R.N.; Lake, A.D.; Kopplin, M.J.; Scheffer, G.L.; Klimecki, W.T.; Gandolfi, A.J.; Cherrington, N.J. Altered arsenic disposition in experimental nonalcoholic fatty liver disease. Drug Metab. Dispos. 2012, 40, 1817–1824. [Google Scholar] [CrossRef]
© 2013 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Nizam, S.; Kato, M.; Yatsuya, H.; Khalequzzaman, M.; Ohnuma, S.; Naito, H.; Nakajima, T. Differences in Urinary Arsenic Metabolites between Diabetic and Non-Diabetic Subjects in Bangladesh. Int. J. Environ. Res. Public Health 2013, 10, 1006-1019. https://doi.org/10.3390/ijerph10031006
Nizam S, Kato M, Yatsuya H, Khalequzzaman M, Ohnuma S, Naito H, Nakajima T. Differences in Urinary Arsenic Metabolites between Diabetic and Non-Diabetic Subjects in Bangladesh. International Journal of Environmental Research and Public Health. 2013; 10(3):1006-1019. https://doi.org/10.3390/ijerph10031006
Chicago/Turabian StyleNizam, Saika, Masashi Kato, Hiroshi Yatsuya, Md. Khalequzzaman, Shoko Ohnuma, Hisao Naito, and Tamie Nakajima. 2013. "Differences in Urinary Arsenic Metabolites between Diabetic and Non-Diabetic Subjects in Bangladesh" International Journal of Environmental Research and Public Health 10, no. 3: 1006-1019. https://doi.org/10.3390/ijerph10031006
APA StyleNizam, S., Kato, M., Yatsuya, H., Khalequzzaman, M., Ohnuma, S., Naito, H., & Nakajima, T. (2013). Differences in Urinary Arsenic Metabolites between Diabetic and Non-Diabetic Subjects in Bangladesh. International Journal of Environmental Research and Public Health, 10(3), 1006-1019. https://doi.org/10.3390/ijerph10031006
