The Influence of Monitoring Interval on Data Measurement: An Analysis of Step Counts of University Students
Abstract
:1. Introduction
- Describe the differences in the number of steps in light of the day monitoring begins
- Determine the most appropriate day to begin monitoring in accordance with the ICC
- Establish the number of days of monitoring necessary to predict the week-long PA regarding the day monitoring begins
2. Methods
2.1. Ethics
2.2. Participants
2.3. Assessment of Physical Activity
2.4. Statistical Analysis
3. Results
Initial monitoring day | Entire week | Weekdays | Weekend | ||||
---|---|---|---|---|---|---|---|
n | M | SD | M | SD | M | SD | |
Monday | 99 | 12,110 | 3,191 | 12,829 | 3,519 | 10,329 | 4,121 |
Tuesday | 151 | 11,409 | 3,225 | 11,991 | 3,669 | 9,956 | 3,904 |
Wednesday | 155 | 11,876 | 3,086 | 12,671 | 3,414 | 9,889 | 4,360 |
Thursday | 65 | 11,842 | 2,953 | 12,685 | 3,128 | 9,733 | 3,892 |
Friday | 97 | 11,880 | 2,919 | 12,318 | 3,126 | 10,782 | 4,236 |
Saturday | 17 | 10,917 | 2,761 | 10,677 | 3,098 | 11,517 | 3,618 |
Sunday | 57 | 13,119 | 2,825 | 13,870 | 3,096 | 11,241 | 4,107 |
Initial monitoring day | n | ICC | 95% Confidence Interval | |
---|---|---|---|---|
Lower Bound | Upper Bound | |||
Monday | 99 | 0.71 | 0.61 | 0.79 |
Tuesday | 151 | 0.67 | 0.59 | 0.75 |
Wednesday | 155 | 0.61 | 0.51 | 0.69 |
Thursday | 65 | 0.68 | 0.55 | 0.79 |
Friday | 97 | 0.53 | 0.37 | 0.66 |
Saturday | 17 | 0.55 | 0.12 | 0.81 |
Sunday | 57 | 0.51 | 0.28 | 0.68 |
Monitoring interval | R | R2 | Adjusted R2 | Standard Error of the Estimate |
---|---|---|---|---|
One day | 0.53 | 0.28 | 0.28 | 2,622.15 |
Two days | 0.70 | 0.49 | 0.49 | 2,209.30 |
Three days | 0.81 | 0.65 | 0.65 | 1,828.58 |
Four days | 0.87 | 0.76 | 0.76 | 1,526.82 |
Five days | 0.92 | 0.85 | 0.84 | 1,218.57 |
Six days | 0.97 | 0.94 | 0.94 | 788.48 |
Seven days | 1.00 | 1.00 | 1.00 | 0.00 |
Monitoring interval | Starting day | ||||||
---|---|---|---|---|---|---|---|
Mon | Tue | Wed | Thu | Fri | Sat | Sun | |
One day | 0.36 | 0.35 | 0.27 | 0.49 | 0.25 | 0.38 | 0.13 |
Two days | 0.54 | 0.62 | 0.47 | 0.58 | 0.39 | 0.42 | 0.40 |
Three days | 0.65 | 0.72 | 0.67 | 0.77 | 0.56 | 0.73 | 0.79 |
Four days | 0.78 | 0.80 | 0.79 | 0.84 | 0.71 | 0.84 | 0.61 |
Five days | 0.89 | 0.89 | 0.84 | 0.89 | 0.82 | 0.89 | 0.75 |
Six days | 0.95 | 0.95 | 0.94 | 0.95 | 0.94 | 0.93 | 0.91 |
Seven days | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
Predictors | R-square change | p |
---|---|---|
Starting day | 0.01 | 0.067 |
Starting day, 1st day | 0.28 | <0.001 |
Starting day, 1st day, 2nd day | 0.21 | <0.001 |
Starting day, 1st day, 2nd day, 3rd day | 0.16 | <0.001 |
Starting day, 1st day, 2nd day, 3rd day , 4th day | 0.11 | <0.001 |
Starting day, 1st day, 2nd day, 3rd day , 4th day, 5th day | 0.09 | <0.001 |
Starting day, 1st day, 2nd day, 3rd day, 4th day, 5th day, 6th day | 0.08 | <0.001 |
Starting day, 1st day, 2nd day, 3rd day, 4th day, 5th day, 6th day, 7th day | 0.064 | <0.001 |
4. Discussion
4.1. The Pedometer
4.2. Daily Step Count
4.3. Initial Measurement Day
4.4. Monitoring Interval
4.5. Limitations
5. Conclusions
Acknowledgments
Conflict of Interest
References
- US Department of Health and Human Services, 2008 Physical Activity Guidelines for Americans; US Department of Health and Human Services: Washington, DC, USA, 2008.
- Gordon-Larsen, P.; McMurray, R.G.; Popkin, B.M. Determinants of adolescent physical activity and inactivity patterns. Pediatrics 2000, 105. [Google Scholar] [CrossRef]
- Tammelin, T.; Nayha, S.; Hills, A.; Jarvelin, M. Adolescent participation in sports and adult physical activity. Amer. J. Prev. Med. 2003, 24, 22–28. [Google Scholar] [CrossRef]
- Telama, R.; Yang, X.; Viikari, J.; Valimaki, I.; Wanne, O.; Raitakari, O. Physical activity from childhood to adulthood: A 21-year tracking study. Amer. J. Prev. Med. 2005, 28, 267–273. [Google Scholar] [CrossRef]
- de Vries, S.I.; van Hirtum, H.W.; Bakker, I.; Hopman-Rock, M.; Hirasing, R.A.; van Mechelen, W. Validity and reproducibility of motion sensors in youth: A systematic update. Med. Sci. Sports Exerc. 2009, 41, 818–827. [Google Scholar] [CrossRef]
- Welk, G.J. Physical Activity Assessment for Health-Related Research; Human Kinetics: Champaign, IL, USA, 2002. [Google Scholar]
- US Department of Health and Human Services, Healthy People 2010: Understanding and Improving Health; U.S. Government Printing Office: Washington, DC, USA, 2000.
- National Association for Sport and Physical Education. College/university physical activity instruction programs: A critical piece in the education of young adults. Strategies 2007, 20, 20–22. [CrossRef]
- de Cocker, K.; de Bourdeaudhuij, I.; Cardon, G.M. What do pedometer counts represent? A comparison between pedometer data and data from four different questionnaires. Public Health Nutr. 2009, 12, 74–81. [Google Scholar] [CrossRef]
- Tudor-Locke, C.E.; Williams, J.E.; Reis, J.P.; Pluto, D. Utility of pedometers for assessing physical activity: Convergent validity. Sport. Med. 2002, 32, 795–808. [Google Scholar] [CrossRef]
- Crouter, S.E.; Schneider, P.L.; Karabulut, M.; Bassett, D.R., Jr. Validity of 10 electronic pedometers for measuring steps, distance, and energy cost. Med. Sci. Sports Exerc. 2003, 35, 1455–1460. [Google Scholar] [CrossRef]
- Trost, S.G.; McIver, K.L.; Pate, R.R. Conducting accelerometer-based activity assessments in field-based research. Med. Sci. Sports Exerc. 2005, 37, S531–S543. [Google Scholar] [CrossRef]
- Rowe, D.A.; Kemble, C.D.; Robinson, T.S.; Mahar, M.T. Daily walking in older adults: Day-to-day variability and criterion-referenced validity of total daily step counts. J. Phys. Act. Health 2007, 4, 434–446. [Google Scholar]
- Sigmund, E.; Sigmundová, D. Pohybová aktivita pro podporu zdraví dětí a mládeže; Univerzita Palackého: Olomouc, Czech Republic, 2011. [Google Scholar]
- Cardon, G.; de Bourdeaudhuij, I. A pilot study comparing pedometer counts with reported physical activity in elementary schoolchildren. Pediatr. Exerc. Sci. 2004, 16, 355–367. [Google Scholar]
- Silva, P.; Mota, J.; Esliger, D.; Welk, G. Technical reliability assessment of the actigraph GT1M accelerometer. Meas. Phys. Educ. Exerc. Sci. 2010, 14, 79–91. [Google Scholar] [CrossRef]
- Gretebeck, R.J.; Montoye, H.J. Variability of some objective measures of physical activity. Med. Sci. Sports Exerc. 1992, 24, 1167–1172. [Google Scholar]
- Tudor-Locke, C.E.; Burkett, L.; Reis, J.P.; Ainsworth, B.E.; Macera, C.A.; Wilson, D.K. How many days of pedometer monitoring predict weekly physical activity in adults? Prevent. Med. 2005, 40, 293–298. [Google Scholar] [CrossRef]
- Craig, C.L.; Tudor- Locke, C.; Cragg, S.; Cameron, C. Process and treatment of pedometer data collection for youth: The Canadian physical activity levels among youth study. Med. Sci. Sports Exerc. 2010, 42, 430–435. [Google Scholar]
- Sigmundová, D.; El Ansari, W.; Sigmund, E. Neighbourhood environment correlates of physical activity: A study of eight czech regional towns. Int. J. Environ. Res. Public Health 2011, 8, 341–357. [Google Scholar] [CrossRef] [Green Version]
- Davis, J.N.; Hodges, V.A.; Gillham, M.B. Physical activity compliance: Differences between overweight/obese and normal-weight adults. Obesity 2006, 14, 2259–2265. [Google Scholar] [CrossRef]
- Burton, N.W.; Khan, A.; Brown, W.J.; Turrell, G. The association between sedentary leisure and physical activity in middle-aged adults. Brit. J. Sport. Med. 2012, 46, 747–752. [Google Scholar] [CrossRef] [Green Version]
- Sigmund, E.; Croix, M.D.S.; Miklánková, L.; Frömel, K. Physical activity patterns of kindergarten children in comparison to teenagers and young adults. Eur. J. Public. Health 2007, 17, 646–651. [Google Scholar] [CrossRef]
- Baranowski, T.O.M.; Masse, L.C.; Ragan, B.; Welk, G. How many days was that? We’re still not sure, but we’re asking the question better! Med. Sci. Sports Exerc. 2008, 40, S544–S549. [Google Scholar] [CrossRef]
- Clemes, S.A.; Deans, N.K. Presence and duration of reactivity to pedometers in adults. Med. Sci. Sports Exerc. 2012, 44, 1097–1101. [Google Scholar] [CrossRef]
- Raines-Eudy, R. Using Structural Equation Modeling to test for differential reliability and validity: An empirical demonstration. Struct. Equ. Modeling 2000, 7, 124–141. [Google Scholar] [CrossRef]
- Rowe, D.A.; Mahar, M.T.; Raedeke, T.D.; Lore, J. Measuring physical activity in children with pedometers: Reliability, reactivity, and replacement of missing data. Pediatr. Exerc. Sci. 2004, 16, 343–354. [Google Scholar]
- Kang, M.; Hart, P.D.; Kim, Y. Establishing a threshold for the number of missing days using 7 d pedometer data. Physiol. Meas. 2012, 33, 1877–1885. [Google Scholar] [CrossRef]
- Bassett, D.R., Jr.; Ainsworth, B.E.; Leggett, S.R.; Mathien, C.A.; Main, J.A.; Hunter, D.C.; Duncan, G.E. Accuracy of five electronic pedometers for measuring distance walked. Med. Sci. Sports Exerc. 1996, 28, 1071–1077. [Google Scholar] [CrossRef]
- World Health Organisation, Obesity: Preventing and Managing the Global Epidemic: Report of a WHO Consultation; World Health Organisation: Geneva, Switzerland, 2000.
- Trost, S.G.; Pate, R.R.; Freedson, P.S.; Sallis, J.F.; Taylor, W.C. Using objective physical activity measures with youth: How many days of monitoring are needed? Med. Sci. Sports Exerc. 2000, 32, 426–431. [Google Scholar]
- Stone, M.R.; Esliger, D.W.; Tremblay, M.S. Comparative validity assessment of five activity monitors: Does being a child matter? Pediatr. Exerc. Sci. 2007, 19, 291–309. [Google Scholar]
- Schneider, P.L.; Crouter, S.E.; Bassett, D.R., Jr. Pedometer measures of free-living physical activity: Comparison of 13 models. Med. Sci. Sports Exerc. 2004, 36, 331–335. [Google Scholar] [CrossRef]
- Frömel, K.; Stelzer, J.; Groffik, D.; Ernest, J. Physical activity of children ages 6–8: The beginning of school attendance. J. Res. Child. Edu. 2008, 23, 29–40. [Google Scholar]
- Behrens, T.K.; Dinger, M.K. Motion sensor reactivity in physically active young adults. Res. Q. Exerc. Sport 2007, 78, 1–8. [Google Scholar]
- Vašíčková, J.; Frömel, K.; Nykodým, J. Physical activity recommendation and its association with demographic variables in Czech university students. Acta Universitatis Palackianea Olomucensis Gymnica 2008, 38, 75–84. [Google Scholar]
- Atkinson, G.; Nevill, A.M. Statistical methods for assessing measurement error (reliability) in variables relevant to sports medicine. Sport. Med. 1998, 26, 217–238. [Google Scholar] [CrossRef]
- Bot, S.D.M.; Terwee, C.B.; van der Windt, D.A.W.M.; Bouter, L.M.; Dekker, J.; de Vet, H.C.W. Psychometric Evaluation of Self-Report Questionnaires—The Development of a Checklist, Proceedings of the Second Workshop on Research Methodology, VU University, Amsterdam, The Netherlands, 25–27 June 2003.
- Traub, R.E. Reliability for the Social Sciences: Theory and Applications; Sage: Thousand Oaks, CA, USA, 1994. [Google Scholar]
- Baranowski, T.; Smith, M.; Thompson, W.O.; Baranowski, J.; Hebert, D.; de Moor, C. Intraindividual variability and reliability in a 7-day exercise record. Med. Sci. Sports Exerc. 1999, 31, 1619–1622. [Google Scholar] [CrossRef]
- Levin, S.; Ainsworth, B.E.; Kwok, C.W.; Addy, C.L.; Popkin, B.M. Patterns of physical activity among Russian youth—The Russian Longitudinal Monitoring Survey. Eur. J. Public. Health 1999, 9, 166–173. [Google Scholar]
- Matthews, C.E.; Freedson, P.S.; Hebert, J.R.; Stanek, E.J., III; Merriam, P.A.; Rosal, M.C.; Ebbeling, C.B.; Ockene, I.S. Seasonal variation in household, occupational, and leisure time physical activity: Longitudinal analyses from the seasonal variation of blood cholesterol study. Amer. J. Epidemiol. 2001, 153, 172–183. [Google Scholar] [CrossRef]
- Vincent, S.D.; Pangrazi, R.P. Does reactivity exist in children when measuring activity levels with pedometers?/La reactivite existe-t-elle chez des enfants lorsque que l’ on mesure leur niveau d’ activite a l’ aide d’ un podometre? Pediatr. Exerc. Sci. 2002, 14, 56–63. [Google Scholar]
- Baranowski, T.; Moor, C.D. How many days was that? Intra-individual variability and physical activity assessment. Res. Q. Exerc. Sport 2000, 71, 74–78. [Google Scholar]
© 2013 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Sigmundová, D.; Vašíčková, J.; Stelzer, J.; Řepka, E. The Influence of Monitoring Interval on Data Measurement: An Analysis of Step Counts of University Students. Int. J. Environ. Res. Public Health 2013, 10, 515-527. https://doi.org/10.3390/ijerph10020515
Sigmundová D, Vašíčková J, Stelzer J, Řepka E. The Influence of Monitoring Interval on Data Measurement: An Analysis of Step Counts of University Students. International Journal of Environmental Research and Public Health. 2013; 10(2):515-527. https://doi.org/10.3390/ijerph10020515
Chicago/Turabian StyleSigmundová, Dagmar, Jana Vašíčková, Jiří Stelzer, and Emil Řepka. 2013. "The Influence of Monitoring Interval on Data Measurement: An Analysis of Step Counts of University Students" International Journal of Environmental Research and Public Health 10, no. 2: 515-527. https://doi.org/10.3390/ijerph10020515
APA StyleSigmundová, D., Vašíčková, J., Stelzer, J., & Řepka, E. (2013). The Influence of Monitoring Interval on Data Measurement: An Analysis of Step Counts of University Students. International Journal of Environmental Research and Public Health, 10(2), 515-527. https://doi.org/10.3390/ijerph10020515