Angiotensin-I-Converting Enzyme (ACE) Inhibitors from Marine Resources: Prospects in the Pharmaceutical Industry
Abstract
:1. Introduction
2. Marine-derived ACE Inhibitors and Their Antihypertensive Activity
2.1. Bioactive peptides
2.2. Chitooligosaccharide derivatives (COS)
2.3. Phlorotannins
3. Conclusions
Acknowledgments
References and Notes
- Harris, T; Cook, EF; Kannel, W; Schatzkin, A; Goldman, L. Blood pressure experience and risk of cardiovascular disease in the elderly. Hypertension 1985, 7, 118–124. [Google Scholar]
- Kannel, WB; Higgins, M. Smoking and hypertension as predictors of cardiovascular risk in population studies. J Hypertens 1990, 8, S3–8. [Google Scholar]
- Alper, AB; Calhoun, DA; Oparil, S. Hypertension. In Encyclopedia of Life Sciences; Nature Publishing Group: London, UK, 2001; pp. 1–8. [Google Scholar]
- Skeggs, LT; Kahn, JR; Shumway, NP. The preparation and function of the hypertension-converting enzyme. J Exp Med 1956, 103, 295–299. [Google Scholar]
- Li, GH; Le, GW; Shi, YH; Shrestha, S. Angiotensin I – converting enzyme inhibitory peptides derived from food proteins and their physiological and pharmacological effects. Nutr Res 2003, 24, 469–486. [Google Scholar]
- Ondetti, MA. Design of specific inhibitors of angiotensin-converting enzyme: New class of orally active antihypertensive agents. Science 1977, 196, 441–444. [Google Scholar]
- Atkinson, AB; Robertson, JIS. Captopril in the treatment of clinical hypertension and cardiac failure. Lancet 1979, 2, 836–839. [Google Scholar]
- Goretta, LA; Ottaviani, JI; Keen, CL; Fraga, CG. Inhibition of angiotensin converting enzyme (ACE) activity by flavan-3-ols and procyanidins. FEBS Lett 2003, 555, 597–600. [Google Scholar]
- Lee, DH; Kim, JH; Park, JS; Choi, YJ; Lee, JS. Isolation and characterization of a novel angiotensin-I-converting enzyme inhibitory peptide derived from the edible mushroom Tricholoma giganteum. Peptides 2004, 25, 621–627. [Google Scholar]
- Maruyama, S; Miyoshi, S; Tanaka, H. Angiotensin-I-converting enzyme inhibitor derived from Ficus carica. Agric Biol Chem 1989, 53, 2763–2769. [Google Scholar]
- Demain, AL; Somkuti, GA; Hunter-Cevera, JC; Rossmoore, HW. Novel microbial products for medicine and agriculture; Elsevier Science Publishers: Amsterdam, The Netherlands, 1989. [Google Scholar]
- Fujita, H; Yokoyama, K; Yoshikawa, M. Classification and antihypertensive activity of angiotensin I-converting enzyme inhibitory peptides derived from food proteins. J Food Sci 2000, 65, 564–569. [Google Scholar]
- Je, JY; Qian, ZJ; Lee, SH; Byun, HG; Kim, SK. Purification and antioxidant properties of bigeye tuna (Thunnus obesus) dark muscle peptide on free radical-mediated oxidation systems. J Med Food 2008, 11, 629–637. [Google Scholar]
- Sheih, IC; Fang, TJ; Wu, TK. Isolation and characterization of a novel angiotensin I-converting enzyme (ACE) inhibitory peptide from the algae protein waste. Food Chem 2009, 115, 279–284. [Google Scholar]
- Slizyte, R; Mozuraityte, R; Martinez-Alvarez, O; Falch, E; Fouchereau-Peron, M; Rustad, T. Functional, bioactive and antioxidative properties of hydrolysates obtained from cod (Gadus morhua) backbones. Process Biochem 2009, 44, 668–677. [Google Scholar]
- Suetsuna, K; Chen, JR. Identification of antihypertensive peptides from peptic digest of two microalgae, Chlorella vulgaris and Spirulina platensis. Mar Biotechnol 2001, 3, 305–309. [Google Scholar]
- Zhao, Y; Li, B; Liu, Z; Dong, S; Zhao, X; Zeng, M. Antihypertensive effect and purification of an ACE inhibitory peptide from sea cucumber gelatin hydrolysate. Process Biochem 2007, 42, 1586–1591. [Google Scholar]
- Je, JY; Park, JY; Jung, WK; Park, PJ; Kim, SK. Isolation of angiotensin I converting enzyme (ACE) inhibitor from fermented oyster sauce, Crassostrea gigas. Food Chem 2005, 90, 809–814. [Google Scholar]
- Je, JY; Park, PJ; Byun, HK; Jung, WK; Kim, SK. Angiotensin I converting enzyme (ACE) inhibitory peptide derived from the sauce of fermented blue mussel, Mytilus edulis. Bioresour Technol 2005, 96, 1624–1629. [Google Scholar]
- Kim, SK; Choi, YR; Park, PJ; Choi, JH; Moon, SH. Screening of biofunctional peptides from cod processing wastes. J Korean Soc Agric Chem Biotechnol 2000, 33, 198–204. [Google Scholar]
- Kim, SK; Kim, YT; Byun, HG; Nam, KS; Joo, DS; Shahidi, F. Isolation and characterization of antioxidative peptides from gelatin hydrolysate of Alaska pollack skin. J Agric Food Chem 2001, 49, 1984–1989. [Google Scholar]
- Jun, SY; Park, PJ; Jung, WK; Kim, SK. Purification and characterization of an antioxidative peptide from enzymatic hydrolysates of yellowfin sole (Limanda aspera) frame protein. Eur Food Res Technol 2004, 219, 20–26. [Google Scholar]
- Ravallec, PR; Charlot, C; Pires, C; Braga, V; Batista, I; Wormhoudt, AV; Gal, YL; Fouchereau-Peron, M. The presence of bioactive peptides in hydrolysates prepared from processing waste of sardine (Sardina pilchardus). J Sci Food Agric 2001, 81, 1120–1125. [Google Scholar]
- Yokoyama, KH; Chiba, H; Yoshikawa, M. Peptide inhibitors for angiotensin-I-converting enzyme from thermolysin digest of dried bonito. Biosci Biotechnol Biochem 1992, 56, 1541–1545. [Google Scholar]
- Kim, SY; Je, JY; Kim, SK. Purification and characterization of antioxidant peptide from hoki (Johnius balengerii) frame protein by gastrointestinal digestion. J Nutr Biochem 2007, 18, 31–38. [Google Scholar]
- Mendis, E; Rajapakse, N; Kim, SK. Antioxidant properties of a radical-scavenging peptide purified from enzymatically prepared fish skin gelatin hydrolysate. J Agric Food Chem 2005, 53, 581–587. [Google Scholar]
- Jo, HY; Jung, WK; Kim, SK. Purification and characterization of a novel anticoagulant peptide from marine echiuroid worm, Urechis unicinctus. Process Biochem 2008, 43, 179–184. [Google Scholar]
- Rajapakse, N; Jung, WK; Mendis, E; Moon, SH; Kim, SK. A novel anticoagulant purified from fish protein hydrolysate inhibits factor XIIa and platelet aggregation. Life Sci 2005, 76, 2607–2619. [Google Scholar]
- Liu, Z; Dong, S; Xu, J; Zeng, M; Song, H; Zhao, Y. Production of cysteine-rich antimicrobial peptide by digestion of oyster (Crassostrea gigas) with alcalase and bromelin. Food Control 2008, 19, 231–235. [Google Scholar]
- Stensvag, K; Haug, T; Sperstad, SV; Rekdal, O; Indrevoll, B; Styrvold, OB. Arasin 1, a proline-arginine-rich antimicrobial peptide isolated from the spider crab, Hyas araneus. Dev Comp Immuno 2008, 32, 275–285. [Google Scholar]
- Defelice, SL. The nutritional revolution: Its impact on food industry R&D. Trends Food Sci Technol 1995, 6, 59–61. [Google Scholar]
- Erdmann, K; Cheung, BWY; Schroder, H. The possible roles of food-derived bioactive peptides in reducing the risk of cardiovascular disease. J Nutr Biochem 2008, 19, 643–654. [Google Scholar]
- Park, CH; Kim, HJ; Kang, KT; Park, JW; Kim, JS. Fractionation and angiotensin I-converting enzyme (ACE) inhibitory activity of gelatin hydrolysates from by-products of Alaska Pollock surimi. Fish Aqua Sci 2009, 12, 79–85. [Google Scholar]
- Byun, HG; Kim, SK. Purification and characterization of angiotensin I converting enzyme (ACE) inhibitory peptides from Alaska Pollack (Theragra chalcogramma) skin. Process Biochem 2001, 36, 1155–1162. [Google Scholar]
- Qian, ZJ; Je, JY; Kim, SK. Antihypertensive effect of angiotensin I converting enzyme-inhibitory peptide from hydrolysates of bigeye tuna dark muscle, Thunnus obesus. J Agric Food Chem 2007, 55, 8398–8403. [Google Scholar]
- Lee, SH; Qian, ZJ; Kim, SK. A novel angiotensin I converting enzyme inhibitory peptide from tuna frame protein hydrolysate and its antihypertensive effect in spontaneously hypertensive rats. Food Chem 2010, 118, 96–102. [Google Scholar]
- He, HL; Chen, XL; Sun, CY; Zhang, YZ; Zhou, BC. Analysis of novel angiotensin-I-converting enzyme inhibitory peptides from protease-hydrolyzed marine shrimp Acetes chinensis. J Peptide Sci 2006, 12, 726–733. [Google Scholar]
- Wang, YK; He, HL; Chen, XL; Sun, CY; Zhang, YZ; Zhou, BC. Production of novel angiotensin I-converting enzyme inhibitory peptides by fermentation of marine shrimp Acetes chinensis with Lactobacillus fermentum SM 605. Appl Microbiol Biotechnol 2008, 79, 785–791. [Google Scholar]
- Tsai, JS; Chen, JL; Pan, BS. ACE-inhibitory peptides identified from the muscle protein hydrolysate of hard clam (Meretrix lusoria). Process Biochem 2008, 43, 743–747. [Google Scholar]
- Zhao, Y; Bafang, L; Dong, S; Liu, Z; Zhao, X; Wang, J; Zeng, M. A novel ACE inhibitory peptide isolated from Acaudina molpadioidea hydrolysate. Peptides 2009, 30, 1028–1033. [Google Scholar]
- Lee, JK; Hong, S; Jeon, JK; Kim, SK; Byun, HG. Purification and characterization of angiotensin I converting enzyme inhibitory peptides from the rotifer, Brachionus rotundiformis. Bioresour Technol 2009, 100, 5255–5259. [Google Scholar]
- Suetsuna, K; Nakano, T. Identification of an antihypertensive peptide from peptic digest of wakame (Undaria pinnatifida). J Nutr Biochem 2000, 11, 450–454. [Google Scholar]
- Sheih, IC; Fang, TJ; Wu, TK. Isolation and characterization of a novel angiotensin I-converting enzyme (ACE) inhibitory peptide from the algae protein waste. Food Chem 2009, 115, 279–284. [Google Scholar]
- Jung, WK; Mendis, E; Je, JY; Park, PJ; Son, BW; Kim, HC; Choi, YK; Kim, SK. Angiotensin I-converting enzyme inhibitory peptide from yellowfin sole (Limanda aspera) frame protein and its antihypertensive effect in spontaneously hypertensive rats. Food Chem 2006, 94, 26–32. [Google Scholar]
- Fujita, H; Yoshikawa, M. LKPNM: A prodrug-type ACE-inhibitory peptide derived from fish protein. Immunopharmacology 1999, 44, 123–127. [Google Scholar]
- Matsui, T; Matsufuji, H; Seki, E; Osajima, K; Nakashima, M; Osajima, Y. Inhibition of angiotensin I-converting enzyme by Bacillus licheniformis alkaline protease hydrolysates derived from sardine muscle. Biosci Biotech Biochem 1993, 57, 922–925. [Google Scholar]
- Wang, J; Hu, J; Cui, J; Bai, X; Du, Y; Miyaguchi, Y; Lin, B. Purification and identification of a ACE inhibitory peptide from oyster proteins hydrolysate and the antihypertensive effect of hydrolysate in spontaneously hypertensive rats. Food Chem 2008, 111, 302–308. [Google Scholar]
- Wu, H; He, HL; Chen, XL; Sun, CY; Zhang, YZ; Zhou, BC. Purification and identification of novel angiotensin-I-converting enzyme inhibitory peptides from shark meat hydrolysate. Process Biochem 2008, 43, 457–461. [Google Scholar]
- Ichimura, T; Hu, J; Aita, DQ; Maruyama, S. Angiotensin I-converting enzyme inhibitory activity and insulin secretion stimulative activity of fermented fish sauce. J Biosci Bioeng 2003, 96, 496–499. [Google Scholar]
- Fahmi, A; Morimura, S; Guo, HC; Shigematsu, T; Kida, K; Uemura, Y. Production of angiotensin I converting enzyme inhibitory peptides from sea bream scales. Process Biochem 2004, 39, 1195–1200. [Google Scholar]
- Cheung, HS; Chushman, DW. Spectrophotometric assay and properties of the angiotensin-converting enzyme of rabbit lung. Biochem Pharmacol 1971, 20, 1637–1648. [Google Scholar]
- Suetsuna, K; Nakano, T. Identification of an antihypertensive peptide from peptic digest of wakame (Undaria pinnatifida). J Nutr Biochem 2000, 11, 450–454. [Google Scholar]
- Rho, SJ; Lee, JS; Chung, YI; Kim, YW; Lee, HG. Purification and identification of an angiotensin I-converting enzyme inhibitory peptide from fermented soybean extract. Process Biochem 2009, 44, 490–493. [Google Scholar]
- Qian, ZJ; Jung, WK; Lee, SH; Byun, HG; Kim, SK. Antihypertensive effect of an angiotensin I-converting enzyme inhibitory peptide from bullfrog (Rana catesbeiana Shaw) muscle protein in spontaneously hypertensive rats. Process Biochem 2007, 42, 1443–1448. [Google Scholar]
- Shahidi, F; Arachchi, JKV; Jeon, YJ. Food applications of chitin and chitosans. Trends Food Sci Technol 1999, 10, 37–51. [Google Scholar]
- Kim, SK; Nghiep, ND; Rajapakse, N. Therapeutic prospectives of chitin, chitosan and their derivatives. J Chitin Chitosan 2006, 11, 1–10. [Google Scholar]
- Dou, JL; Tan, CY; Du, YG; Bai, XF; Wang, KY; Ma, XJ. Effects of chitooligosaccharides on rabbit neutrophils in vitro. Carbohydr Polym 2007, 69, 209–213. [Google Scholar]
- Jeon, YJ; Kim, SK. Continuous production of chitooligosaccharides using a dual reactor system. Process Biochem 2000, 35, 623–632. [Google Scholar]
- Jeon, YJ; Kim, SK. Production of chitooligosaccharides using ultrafiltration membrane reactor and their antibacterial activity. Carbohydr Polym 2000, 41, 133–141. [Google Scholar]
- Kim, SK; Rajapakse, N. Enzymatic production and biological activities of chitosan oligosaccharides (COS): A review. Carbohydr Polym 2005, 62, 357–368. [Google Scholar]
- Hong, SP; Kim, MH; Oh, SW; Han, CH; Kim, YH. ACE inhibitory and antihypertensive effect of chitosan oligosaccharides in SHR. Korean J Food Sci Technol 1998, 30, 1476–1479. [Google Scholar]
- Park, PJ; Je, JY; Kim, SK. Free radical scavenging activity of chitooligosaccharides by electron spin resonance spectrometry. J Agric Food Chem 2003, 51, 4624–4627. [Google Scholar]
- Park, PJ; Lee, HK; Kim, SK. Preparation of hetero-chitooligosaccharides and their antimicrobial activity on Vibrio parahaemolyticus. J Microbiol Biotechnol 2004, 14, 41–47. [Google Scholar]
- Shen, KT; Chen, MH; Chan, HY; Jeng, JH; Wang, YJ. Inhibitory effects of chitooligosaccharides on tumor growth and metastasis. Food Chem Toxicol 2009, 47, 1864–1871. [Google Scholar]
- Jeon, YJ; Kim, SK. Antitumor activity of chitosan oligosaccharides produced in ultrafiltration membrane reactor system. J Microbiol Biotechnol 2002, 12, 503–507. [Google Scholar]
- Jeon, YJ; Kim, SK. Potential immuno-stimulating effect of antitumoral fraction of chitosan oligosaccharides. J Chitin Chitosan 2001, 6, 163–167. [Google Scholar]
- Liu, B; Liu, WS; Han, BQ; Sun, YY. Antidibetic effects of chito-oligosaccharides on pancreatic islet cells in streptozotocin-induced diabetic rats. World J Gastroenterol 2007, 13, 725–731. [Google Scholar]
- Kim, KN; Joo, ES; Kim, KI; Kim, SK; Yang, HP; Jeon, YJ. Effect of chitosan oligosaccharides on cholesterol level and antioxidant enzyme activities in hypercholesterolemic rat. J Korean Soc Food Sci Nutr 2005, 34, 36–41. [Google Scholar]
- Miura, T; Usami, M; Tsuura, Y; Ishida, H; Seino, Y. Hypoglycemic and hypolipidemic effect of chitosan in normal and neonatal streptozotocin-induced diabetic mice. Biol Pharm Bull 1995, 18, 1623–1625. [Google Scholar]
- Yoon, NY; Ngo, DN; Kim, SK. Acetylcholinesterase inhibitory activity of novel chitooligosaccharide derivatives. Carbohydr Polym 2009, 78, 869–872. [Google Scholar]
- Park, PJ; Je, JY; Jung, WK; Kim, SK. Anticoagulant activity of heterochitosans and their oligosaccharide sulfates. Eur Food Res Technol 2004, 219, 529–533. [Google Scholar]
- Cho, EJ; Rahman, A; Kim, SW; Baek, YM; Hwang, HJ; Oh, JY; Hwang, HS; Lee, SK; Yun, JW. Chitosan oligosaccharides inhibit adipogenesis in 3T3-L1 adipocytes. J Microbiol Biotechnol 2008, 18(1), 80–87. [Google Scholar]
- Park, PJ; Je, JY; Kim, SK. Angiotensin I converting enzyme (ACE) inhibitory activity of hetero-chitooligosaccharides prepared from partially different deacetylated chitosans. J Agric Food Chem 2003, 51, 4930–4934. [Google Scholar]
- Je, JY; Park, PJ; Kim, B; Kim, SK. Antihypertensive activity of chitin derivatives. Biopolymers 2006, 83, 250–254. [Google Scholar]
- Ngo, DN; Qian, ZJ; Je, JY; Kim, MM; Kim, SK. Aminoethyl chitooligosaccharides inhibit the activity of angiotensin converting enzyme. Process Biochem 2008, 43, 119–123. [Google Scholar]
- Huang, R; Mendis, E; Kim, SK. Improvement of ACE inhibitory activity of chitooligosaccharides (COS) by carboxyl modifications. Bioorg Med Chem 2005, 13, 3649–3655. [Google Scholar]
- Park, PJ; Ahn, LB; Jeon, YJ; Je, JY. Renin inhibition activity by chitooligosacharides. Bioorg Med Chem Lett 2008, 18, 2471–2474. [Google Scholar]
- Ragan, MA; Glombitza, KW. Handbook of physiological methods; Cambridge University Press: Cambridge, UK, 1986; pp. 129–241. [Google Scholar]
- Singh, IP; Bharate, SB. Phloroglucinol compounds of natural origin. Nat Prod Rep 2006, 23, 558–591. [Google Scholar]
- Glombitza, KW; Li, SM. Hydroxyphlorethols from the brown alga Carpophyllum maschalocarpum. Phytochemistry 1991, 30, 2741–2745. [Google Scholar]
- Heo, SJ; Park, EU; Lee, KW; Jeon, YJ. Antioxidant activities of enzymatic extracts from brown seaweeds. Bioresour Technol 2005, 96, 1613–1623. [Google Scholar]
- Li, Y; Qian, ZJ; Ryu, BM; Lee, SH; Kim, MM; Kim, SK. Chemical components and its antioxidant properties in vitro: An edible marine brown alga, Ecklonia cava. Bioorg Med Chem 2009, 17, 1963–1973. [Google Scholar]
- Artan, M; Li, Y; Karadeniz, F; Lee, SH; Kim, MM; Kim, SK. Anti-HIV-1 activity of phloroglucinol derivative, 6,6′-bieckol, from Ecklonia cava. Bioorg Med Chem 2008, 16, 7921–7926. [Google Scholar]
- Kong, CS; Kim, JA; Yoon, NY; Kim, SK. Induction of apoptosis by phloroglucinol derivative from Ecklonia cava in MCF-7 human breast cancer cells. Food Chem Toxicol 2009, 47, 1653–1658. [Google Scholar]
- Jung, WK; Ahn, YW; Lee, SH; Choi, YH; Kim, SK; Yea, SS; Choi, I; Park, SG; Seo, SK; Lee, SW; Choi, IW. Ecklonia cava ethanolic extracts inhibit lipopolysaccharide-induced cyclooxygenase-2 and inducible nitric oxide synthase expression in BV2 microglia via the MAP kinase and NF-kB pathways. Food Chem Toxicol 2009, 47, 410–417. [Google Scholar]
- Zhang, R; Kang, KA; Piao, MJ; Ko, DO; Wang, ZH; Lee, IK; Kim, BJ; Jeong, YI; Shin, T; Park, JW; Lee, NH; Hyun, JW. Eckol protects V79-4 lung fibroblast cells against ύ-ray radiation-induced apoptosis via the scavenging of reactive oxygen species and inhibiting of the c-Jun NH2-terminal kinase pathway. Eur J Pharmacol 2008, 591, 114–123. [Google Scholar]
- Lee, SH; Li, Y; Karadeniz, F; Kim, MM; Kim, SK. α–Glycosidase and α–amylase inhibitory activities of phloroglucinal derivatives from edible marine brown alga, Ecklonia cava. J Sci Food Agric 2009. [Google Scholar] [CrossRef]
- Yoon, NY; Lee, SH; Li, Y; Kim, SK. Phlorotannins from Ishige okamurae and their acetyl- and butyry-lcholinesterase inhibitory effects. J Func Foods 2009, 1, 331–335. [Google Scholar]
- Nagayama, K; Iwamura, Y; Shibata, T; Hirayama, I; Nakamura, T. Bactericidal activity of phlorotannins from the brown alga Ecklonia kurome. J Antimicrob Chemother 2002, 50, 889–893. [Google Scholar]
- Jung, HA; Hyun, SK; Kim, HR; Choi, JS. Angiotensin-converting enzyme I inhibitory activity of phlorotannins from Ecklonia stolonifera. Fisheries Sci 2006, 72, 1292–1299. [Google Scholar]
- Liu, JC; Hsu, FL; Tsai, JC; Chan, P; Liu, JYH; Thomas, GN; Tomlinsond, B; Loe, M-Y; Linf, J-Y. Antihypertensive effects of tannins isolated from traditional Chinese herbs as non-specific inhibitors of angiotensin converting enzyme. Life Sci 2003, 73, 1543–1555. [Google Scholar]
- Athukorala, Y; Jeon, YJ. Screening for Angiotensin 1-converting enzyme inhibitory activity of Ecklonia cava. J Food Sci Nutr 2005, 10, 134–139. [Google Scholar]
- Cha, SH; Lee, KW; Jeon, YJ. Screening of extracts from red algae in Jeju for potentials marine angiotensin-I converting enzyme (ACE) inhibitory activity. Algae 2006, 21, 343–348. [Google Scholar]
Source | Enzyme | IC50 | Ref. |
---|---|---|---|
Blue mussel sauce | natural fermentation | 19.34 μg/mL | [19] |
Alaska pollack | pronase, flavourzyme | 0.21 mg/mL | [33] |
Alaska pollack | alcalase, pronase, collagenase | 2.6 μM | [34] |
Big eye tuna (muscle) | pepsin | 21.6 μM | [35] |
Big eye tuna (frame) | pepsin | 11.28 μM | [36] |
Shrimp | protease | 0.39 μM | [37] |
Shrimp | Lactobacillus fermentum enzymes | 3.37 mg/mL | [38] |
Hard clam | protamex | 51 μM | [39] |
Sea cucumber | bromelain, alcalase, protease | 4.5 μM | [40] |
Rotifer | alcalase | 9.64 μM | [41] |
Wakame | pepsin | 21 μM | [42] |
Microalga | pepsin | 29.6 μM | [43] |
Yellow fin sole | α-chymotrypsin | 22.3 μM | [44] |
Bonito | thermolysin | 0.32 μM | [45] |
Sardine | alkaline protease | 0.015 mg/mL | [46] |
Oyster | pepsin | 66 μM | [47] |
Shark | protease | 1.45 μM | [48] |
Anchovy fish sauce | natural fermentation | 22 μM | [49] |
Sea bream | alkaline protease | 0.57 mg/mL | [50] |
COS derivative | IC50 | Ref. |
---|---|---|
Chitosan trimer | 0.9 μM | [61] |
Chitosan oligosaccharides | 1.22 mg/mL | [73] |
Chitin derivatives | ||
AEC | 0.064 μM | [74] |
AEC 50 | 0.038 μM | [74] |
AEC 90 | 0.103 μM | [74] |
Aminoethyl-COS (AE-COS) | 0.80 μg/mL | [75] |
Captoprila | 0.1 μM | [74] |
Phlorotannin/fraction | IC50 | Ref. |
---|---|---|
Phlorofucofuroeckol A | 12.74 μM | [89] |
Flavourzyme digest fraction of E. cava | 0.3 μg/mL | [91] |
Methanolic extract of A. flabelliformis | 13.8 μg/mL | [92] |
Captoprila | 0.05 μg/mL | [91] |
Abbreviations
ACE | angiotensin-I-converting enzyme |
COS | chitooligosaccharides |
AE-COS | aminoethyl chitooligosaccharides |
© 2010 by the authors; licensee Molecular Diversity Preservation International, Basel, Switzerland This article is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Wijesekara, I.; Kim, S.-K. Angiotensin-I-Converting Enzyme (ACE) Inhibitors from Marine Resources: Prospects in the Pharmaceutical Industry. Mar. Drugs 2010, 8, 1080-1093. https://doi.org/10.3390/md8041080
Wijesekara I, Kim S-K. Angiotensin-I-Converting Enzyme (ACE) Inhibitors from Marine Resources: Prospects in the Pharmaceutical Industry. Marine Drugs. 2010; 8(4):1080-1093. https://doi.org/10.3390/md8041080
Chicago/Turabian StyleWijesekara, Isuru, and Se-Kwon Kim. 2010. "Angiotensin-I-Converting Enzyme (ACE) Inhibitors from Marine Resources: Prospects in the Pharmaceutical Industry" Marine Drugs 8, no. 4: 1080-1093. https://doi.org/10.3390/md8041080
APA StyleWijesekara, I., & Kim, S. -K. (2010). Angiotensin-I-Converting Enzyme (ACE) Inhibitors from Marine Resources: Prospects in the Pharmaceutical Industry. Marine Drugs, 8(4), 1080-1093. https://doi.org/10.3390/md8041080