Metabolite Profiling and Antioxidant Activities in Seagrass Biomass
Abstract
:1. Introduction
2. Results
2.1. Global Analysis of Seed Metabolites
2.2. Metabolites in Seeds of Seagrasses
2.3. Marine Plant Fragment Metabolites: Assessing Antioxidant Activity in Marine Plants Washed up Coast
3. Discussion
3.1. Metabolites in Seeds of Seagrasses
3.2. Marine Plant Metabolites: Assessing Antioxidant Activity in Marine Plants Washed up Coast
4. Materials and Methods
4.1. Sampling of Seeds and Fragments Washed up on Coast
4.2. Hydrophilic Interaction Liquid Chromatography (HILIC) Coupled to Hybrid Quadrupole-Time of Flight Mass Spectrometry (QTOF-MS)-Based Metabolomic Analysis of Seeds of Two Seagrasses
4.3. Processing and Analysis of Metabolomic Data of Seagrass Seeds
4.4. Marine Plant Fragment Metabolites: Assessing of Antioxidant Activity
4.5. Chemicals
4.6. Data Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Moreno-Curtidor, C.; Annunziata, M.G.; Gupta, S.; Apelt, F.; Richard, S.I.; Kragler, F.; Mueller-Roeber, B.; Olas, J.J. Physiological profiling of embryos and dormant seeds in two Arabidopsis accessions reveals a metabolic switch in carbon reserve accumulation. Front. Plant Sci. 2020, 11, 588433. [Google Scholar] [CrossRef]
- Liu, C.; Du, B.; Hao, F.; Lei, H.; Wan, Q.; He, G.; Wang, Y.; Tang, H. Dynamic metabolic responses of brown planthoppers towards susceptible and resistant rice plants. Plant Biotechnol. J. 2017, 15, 1346–1357. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Hasanuzzaman, M.; Wen, H.; Zhang, J.; Peng, T.; Sun, H.; Zhao, Q. High temperature and drought stress cause abscisic acid and reactive oxygen species accumulation and suppress seed germination growth in rice. Protoplasma 2019, 256, 1217–1227. [Google Scholar] [CrossRef]
- Graeber, K.A.I.; Nakabayashi, K.; Miatton, E.; Leubner-Metzger, G.E.R.H.A.R.D.; Soppe, W.J. Molecular mechanisms of seed dormancy. Plant Cell Environ. 2012, 35, 1769–1786. [Google Scholar] [CrossRef] [PubMed]
- Danaraj, J.; Mariasingarayan, Y.; Ayyappan, S. Comparative metabolomics analysis of wild and suspension cultured cells (SCC) of seagrass Halodule pinifolia (Miki) Hartog of Cymodoceaceae family. Aquat. Bot. 2020, 167, 103278. [Google Scholar] [CrossRef]
- Guerriero, G.; Berni, R.; Muñoz-Sanchez, J.A.; Apone, F.; Abdel-Salam, E.M.; Qahtan, A.A.; Alatar, A.A.; Cantini, C.; Cai, G.; Hausman, J.-F.; et al. Production of plant secondary metabolites: Examples, tips and suggestions for biotechnologists. Genes 2018, 9, 309. [Google Scholar] [CrossRef] [PubMed]
- Maciel, E.; Leal, M.C.; Lillebø, A.I.; Domingues, P.; Domingues, M.R.; Calado, R. Bioprospecting of marine macrophytes using MS-based lipidomics as a new approach. Mar. Drugs 2016, 14, 49. [Google Scholar] [CrossRef]
- Qian, W.; Zhu, Y.; Chen, Q.; Wang, S.; Chen, L.; Liu, T.; Tang, H.; Yao, H. Comprehensive metabolomic and lipidomic alterations in response to heat stress during seed germination and seedling growth of Arabidopsis. Front. Plant Sci. 2023, 14, 1132881. [Google Scholar] [CrossRef]
- Alu’datt, M.H.; Rababah, T.; Alhamad, M.N.; Al-Mahasneh, M.A.; Almajwal, A.; Gammoh, S.; Ereifej, K.; Johargy, A.; Alli, I. A review of phenolic compounds in oil-bearing plants: Distribution, identification and occurrence of phenolic compounds. Food Chem. 2017, 218, 99–106. [Google Scholar] [CrossRef]
- Xu, C.-C.; Wang, B.; Pu, Y.-Q.; Tao, J.-S.; Zhang, T. Advances in extraction and analysis of phenolic compounds from plant materials. Chin. J. Nat. Med. 2017, 15, 721–731. [Google Scholar] [CrossRef]
- Baby, L.; Sankar, T.V.; Chandramohanakumar, N. Changes in phenolic compounds in seagrasses against changes in the ecosystem. J. Pharmacog. Phytochem. 2017, 6, 742–747. [Google Scholar]
- Quideau, S.; Deffieux, D.; Douat-Casassus, C.; Pouységu, L. Plant polyphenols: Chemical properties, biological activities, and synthesis. Angew. Chem. Int. Ed. 2011, 50, 586–621. [Google Scholar] [CrossRef]
- Sansone, C.; Brunet, C. Promises and challenges of microalgal antioxidant production. Antioxidants 2019, 8, 199. [Google Scholar] [CrossRef]
- Benito-González, I.; López-Rubio, A.; Martínez-Abad, A.; Ballester, A.R.; Falcó, I.; González-Candelas, L.; Sánchez, G.; Lozano-Sánchez, J.; Borrás-Linares, I.; Segura-Carretero, A.; et al. In-Depth Characterization of Bioactive Extracts from Posidonia oceanica Waste Biomass. Mar. Drugs 2019, 17, 409. [Google Scholar] [CrossRef] [PubMed]
- Achamlale, S.; Rezzonico, B.; Dubois, M.G. Evaluation of Zostera detritus as a potential new source of zosteric acid. J. Appl. Phycol. 2009, 21, 347–352. [Google Scholar] [CrossRef]
- Ravn, H.; Pedersen, M.F.; Borum, J.; Andary, C.; Anthoni, U.; Christophen, C.; Nielsen, P.H. Seasonal variation and distribution of two phenolic compounds, rosmarinic acid and caffeic acid, in leaves and roots-rhizomes of eelgrass (Zostera marina L). Ophelia 1994, 40, 51–61. [Google Scholar] [CrossRef]
- Kuo, J.; den Hartog, C.d. Seagrass morphology, anatomy, and ultrastructure. In Seagrasses: Biology, Ecology and Conservation; Springer: Dordrecht, The Netherlands, 2006; pp. 51–87. [Google Scholar] [CrossRef]
- Buia, M.C.; Mazzella, L. Reproductive phenology of the Mediterranean seagrasses Posidonia oceanica (L.) Delile, Cymodocea nodosa (Ucria) Aschers., and Zostera noltii Hornem. Aquat. Bot. 1991, 40, 343–362. [Google Scholar] [CrossRef]
- Zarranz, M.E.; González-Henríquez, N.; García-Jimenez, P.; Robaina, R.R. Restoration of Cymodocea nodosa (Uchria) Ascherson seagrass meadows through seed propagation: Seed storage and influences of plant hormones and mineral nutrients on seedling growth in vitro. Bot. Mar. 2010, 53, 439–448. [Google Scholar] [CrossRef]
- Zarranz, M.E.; Garcia-Jimenez, P.; Robaina, R.R. Endogenous polyamine content and photosynthetic performance under hypo-osmotic conditions reveal Cymodocea nodosa as an obligate halophyte. Aquat. Biol. 2012, 17, 7–17. [Google Scholar] [CrossRef]
- Weatherall, E.J.; Jackson, E.L.; Hendry, R.A.; Campbell, M.L. Quantifying the dispersal potential of seagrass vegetative fragments: A comparison of multiple subtropical species. Estuar. Coast. Shelf Sci. 2016, 169, 207–215. [Google Scholar] [CrossRef]
- Portillo-Hahnefeld, E. Arribazones de Algas y Plantas Marinas en Gran Canaria. Características, Gestión y Posibles Usos; Instituto Tecnológico de Canarias: Las Palmas, Spain, 2008; p. 90. ISBN 978-84-691-5105-1. [Google Scholar]
- Caye, G.; Meinesz, A. Observations sur la floraison et la fructification de Posidonia oceanica dans la Baie de Villefranche et en Corse du Sud. In International Workshop on Posidonia Oceanica Beds; GIS Posidonie: Marseille, France, 1984. [Google Scholar]
- Celdrán, D.; Marín, A. Photosynthetic activity of the non-dormant Posidonia oceanica seed. Mar. Biol. 2011, 158, 853–858. [Google Scholar] [CrossRef]
- Celdrán, D.; Marín, A. Seed photosynthesis enhances Posidonia oceanica seedling growth. Ecosphere 2013, 4, 1–11. [Google Scholar] [CrossRef]
- Dolui, A.K.; Latha, M.; Vijayaraj, P. OsPLB gene expressed during seed germination encodes a phospholipase in rice. 3 Biotech 2020, 10, 30. [Google Scholar] [CrossRef] [PubMed]
- Lin, Y.X.; Xin, X.; Yin, G.K.; He, J.J.; Zhou, Y.C.; Chen, J.Y.; Lu, X.X. Membrane phospholipids remodeling upon imbibition in Brassica napus L. seeds. Biochem. Biophys. Res. Commun. 2019, 515, 289–295. [Google Scholar] [CrossRef] [PubMed]
- Gupta, A.; Bhatla, S.C. Preferential phospholipase A2 activity on the oil bodies in cotyledons during seed germination in Helianthus annuus L.; cv. Morden. Plant Sci. 2007, 172, 535–543. [Google Scholar] [CrossRef]
- Michaud, M.; Prinz, W.A.; Jouhet, J. Glycerolipid synthesis and lipid trafficking in plant mitochondria. FEBS J. 2017, 284, 376–390. [Google Scholar] [CrossRef]
- Garcia-Jimenez, P.; Navarro, E.P.; Santana, C.H.; Luque, A.; Robaina, R.R. Anatomical and nutritional requirements for induction and sustained growth in vitro of Cymodocea nodosa (Ucria) Ascherson. Aquat. Bot. 2006, 84, 79–84. [Google Scholar] [CrossRef]
- de Carvalho, C.C.; Caramujo, M.J. The various roles of fatty acids. Molecules 2018, 23, 2583. [Google Scholar] [CrossRef]
- Quettier, A.L.; Eastmond, P.J. Storage oil hydrolysis during early seedling growth. Plant Physiol. Biochem. 2009, 47, 485–490. [Google Scholar] [CrossRef]
- Nagahashi, G.; Douds, D.D., Jr. Partial separation of root exudate components and their effects upon the growth of germinated spores of AM fungi. Mycol. Res. 2000, 104, 1453–1464. [Google Scholar] [CrossRef]
- Bhalla, T.C.; Kumar, V.; Bhatia, S.K. Hydroxy acids: Production and applications. In Advances in Industrial Biotechnology; Singh, R.S., Pandey, A., Larroche, C., Eds.; IK International Publishing House Pvt. Itd.: Delhi, India, 2014; pp. 56–76. [Google Scholar]
- Motafeghi, F.; Mortazavi, P.; Ghassemi-Barghi, N.; Zahedi, M.; Shokrzadeh, M. Dexamethasone as an anti-cancer or hepatotoxic. Toxicol. Mech. Methods 2023, 33, 161–171. [Google Scholar] [CrossRef] [PubMed]
- Asami, T.; Oh, K.; Jikumaru, Y.; Shimada, Y.; Kaneko, I.; Nakano, T.; Takatsuto, S.; Fujioka, S.; Yoshida, S. A mammalian steroid action inhibitor spironolactone retards plant growth by inhibition of brassinosteroid action and induces light-induced gene expression in the dark. J. Steroid Biochem. Mol. Biol. 2004, 91, 41–47. [Google Scholar] [CrossRef]
- Simelane, S.B.; Moshapo, P.T.; Masuka, R.W. Benzopyran-Core as an Antimycobacterial Agent. Org. Med. Chem. Int. J. 2020, 10, 56–72. [Google Scholar] [CrossRef]
- Gomtsyan, A. Heterocycles in drugs and drug discovery. Chem. Heterocycl. Compd. 2020, 48, 7–10. [Google Scholar] [CrossRef]
- Sun, L.; Gong, M.; Lv, X.; Huang, Z.; Gu, Y.; Li, J.; Du, G.; Liu, L. Current advance in biological production of short-chain organic acid. Appl. Microbiol. Biotechnol. 2020, 104, 9109–9124. [Google Scholar] [CrossRef] [PubMed]
- Marián, F.D.; Garcia-Jimenez, P.; Robaina, R.R. Polyamine levels in the seagrass Cymodocea nodosa. Aquat. Bot. 2000, 68, 179–184. [Google Scholar] [CrossRef]
- Li, L.; Dou, N.; Zhang, H.; Wu, C. The versatile GABA in plants. Plant Signal. Behav. 2021, 16, 1862565. [Google Scholar] [CrossRef]
- Leri, M.; Ramazzotti, M.; Vasarri, M.; Peri, S.; Barletta, E.; Pretti, C.; Degl’Innocenti, D. Bioactive compounds from Posidonia oceanica (L.) delile impair malignant cell migration through autophagy modulation. Mar. Drugs 2018, 16, 137. [Google Scholar] [CrossRef]
- Haznedaroglu, M.Z.; Zeybek, U. HPLC Determination of Chicoric Acid in Leaves of Posidonia oceanica. Pharm. Biol. 2007, 45, 745–748. [Google Scholar] [CrossRef]
- Klap, V.A.; Hemminga, M.A.; Boon, J.J. Retention of lignin in seagrasses: Angiosperms that returned to the sea. Mar. Ecol. Prog. Ser. 2000, 194, 1–11. [Google Scholar] [CrossRef]
- Riaz, U.; Kharal, M.A.; Murtaza, G.; uz Zaman, Q.; Javaid, S.; Malik, H.A.; Humera Aziz, H.A.; Zafar Abbas, Z.A. Prospective roles and mechanisms of caffeic acid in counter plant stress: A mini review. Pak. J. Agric. Res. 2019, 32, 8. [Google Scholar] [CrossRef]
- Grignon-Dubois, M.; Rezzonico, B. Phenolic fingerprint of the seagrass Posidonia oceanica from four locations in the Mediterranean Sea: First evidence for the large predominance of chicoric acid. Bot. Mar. 2015, 58, 379–391. [Google Scholar] [CrossRef]
- Salvador, V.H.; Lima, R.B.; dos Santos, W.D.; Soares, A.R.; Böhm, P.A.F.; Marchiosi, R.; Ferrarese Mde, L.; Ferrarese-Filho, O. Cinnamic acid increases lignin production and inhibits soybean root growth. PLoS ONE 2013, 8, e69105. [Google Scholar] [CrossRef] [PubMed]
- Kannan, R.; Arumugam, R.; Iyapparaj, P.; Thangaradjou, T.; Anantharaman, P. In vitro antibacterial, cytotoxicity and haemolytic activities and phytochemical analysis of seagrasses from the Gulf of Mannar, South India. Food Chem. 2013, 136, 1484–1489. [Google Scholar] [CrossRef]
- Athiperumalsami, T.; Rajeswari, V.D.; Poorna, S.H.; Kumar, V.; Jesudass, L.L. Antioxidant activity of seagrasses and seaweeds. Bot. Mar. 2010, 53, 251–257. [Google Scholar] [CrossRef]
- Abdel Hady, H.H.; Daboor, S.M.; Ghonemy, A.E. Nutritive and antimicrobial profiles of some seagrasses from Bardawil Lake, Egypt. Egypt. J. Aquat. Res. 2007, 33, 103–110. [Google Scholar]
- Kim, D.H.; Mahomoodally, M.F.; Sadeer, N.B.; Seok, P.G.; Zengin, G.; Palaniveloo, K.; Khalil, A.A.; Rauf, A.; Rengasamy, K.R. Nutritional and bioactive potential of seagrasses: A review. S. Afr. J. Bot. 2021, 137, 216–227. [Google Scholar] [CrossRef]
- El Din, N.G.S.; El-Sherif, Z.M. Nutritional value of Cymodocea nodosa and Posidonia oceanica along the western Egyptian Mediterranean coast. Egypt. J. Aquat. Res. 2013, 39, 153–165. [Google Scholar] [CrossRef]
- Smadi, A.; Ciavatta, M.L.; Bitam, F.; Carbone, M.; Villani, G.; Gavagnin, M. Prenylated flavonoids and phenolic compounds from the rhizomes of marine phanerogam Cymodocea nodosa. Planta Med. 2018, 84, 704–709. [Google Scholar] [CrossRef]
- Liu, Q.; Liu, F.; Zhang, L.; Niu, Y.; Liu, Z.; Liu, X. Comparison of chicoric acid, and its metabolites caffeic acid and caftaric acid: In vitro protection of biological macromolecules and inflammatory responses in BV2 microglial cells. Food Sci. Hum. Wellness 2017, 6, 155–166. [Google Scholar] [CrossRef]
- Fernandes, P.A.R.; Coimbra, M.A. The antioxidant activity of polysaccharides: A structure-function relationship overview. Carbohydr. Polym. 2023, 314, 120965. [Google Scholar] [CrossRef] [PubMed]
- He, J.; Xu, Y.; Chen, H.; Sun, P. Extraction, structural characterization, and potential antioxidant activity of the polysaccharides from four seaweeds. Int. J. Mol. Sci. 2016, 17, 1988. [Google Scholar] [CrossRef]
- Gokce, G.; Haznedaroglu, M.Z. Evaluation of antidiabetic, antioxidant and vasoprotective effects of Posidonia oceanica extract. J. Ethnopharmacol. 2008, 115, 122–130. [Google Scholar] [CrossRef] [PubMed]
- Kolsi, R.B.A.; Gargouri, B.; Sassi, S.; Frikha, D.; Lassoued, S.; Belghith, K. In vitro biological properties and health benefits of a novel sulfated polysaccharide isolated from Cymodocea nodosa. Lipids Health Dis. 2017, 16, 252. [Google Scholar] [CrossRef] [PubMed]
- Kontiza, I.; Stavri, M.; Zloh, M.; Vagias, C.; Gibbons, S.; Roussis, V. New metabolites with antibacterial activity from the marine angiosperm Cymodocea nodosa. Tetrahedron 2008, 64, 1696–1702. [Google Scholar] [CrossRef]
- Vasarri, M.; Leri, M.; Barletta, E.; Ramazzotti, M.; Marzocchini, R.; Degl’Innocenti, D. Anti-inflammatory properties of the marine plant Posidonia oceanica (L.) Delile. J. Ethnopharmacol. 2020, 247, 112252. [Google Scholar] [CrossRef]
- Liu, J.; Yang, S.; Li, X.; Yan, Q.; Martin, J.T. Reaney, Zhengqiang Jiang Alginate Oligosaccharides: Production, Biological Activities, and Potential Applications. Compr. Rev. Food Sci. Food Saf. 2019, 18, 1659–2067. [Google Scholar] [CrossRef]
- Shon, M.-Y.; Kim, T.-H.; Sung, N.-J. Antioxidants and free radical scavenging activity of Phellinus baumii (Phellinus of Hymenochaetaceae) extracts. Food Chem. 2003, 82, 593–597. [Google Scholar] [CrossRef]
- Tian, H.; Liu, H.; Song, W.; Zhu, L.; Zhang, T.; Li, R.; Yin, X. Structure, antioxidant and immunostimulatory activities of the polysaccharides from Sargassum carpophyllum. Algal Res. 2020, 49, 101853. [Google Scholar] [CrossRef]
- Wu, S.; Li, F.; Jia, S.; Ren, H.; Gong, G.; Wang, Y.; Lv, Z.; Liu, Y. Drying effects on the antioxidant properties of polysaccharides obtained from Agaricus blazei Murrill. Carbohydr. Polym. 2014, 103, 414–417. [Google Scholar] [CrossRef]
- Carrasco-Acosta, M.; Garcia-Jimenez, P. Maintaining and storing encapsulated cells for propagation of Posidonia oceanica (L.) Delile. Aquat. Biol. 2021, 30, 47–57. [Google Scholar] [CrossRef]
- Gika, H.G.; Theodoridis, G.A.; Earll, M.; Wilson, I.D. A QC approach to the determination of day-to-day reproducibility and robustness of LC–MS methods for global metabolite profiling in metabonomics/metabolomics. Bioanalysis 2012, 4, 2239–2247. [Google Scholar] [CrossRef]
- Wishart, D.S.; Feunang, Y.D.; Marcu, A.; Guo, A.C.; Liang, K. HMDB 4.0—The Human Metabolome Database for 2018. Nucleic Acids Res. 2018, 46, D608–D617. [Google Scholar] [CrossRef]
- Wishart, D.S.; Jewison, T.; Guo, A.C.; Wilson, M.; Knox, C.; Liu, Y.; Djoumbou, Y.; Mandal, R.; Aziat, F.; Dong, E.; et al. HMDB 3.0—The Human Metabolome Database in 2013. Nucleic Acids Res. 2013, 41, D801–D807. [Google Scholar] [CrossRef]
- López-Hidalgo, C.; Lamelas, L.; Cañal, M.J.; Valledor, L.; Meijón, M. Untargeted metabolomics revealed essential biochemical rearrangements towards combined heat and drought stress acclimatization in Pinus pinaster. Environ. Exp. Bot. 2023, 208, 105261. [Google Scholar] [CrossRef]
- Brooks, J.R.; Griffin, V.K.; Kattan, M.W. A Modified Method for Total Carbohydrate Analysis of Glucose Syrups, Maltodextrins, and Other Starch Hydrolysis Products. Cereal Chem. 1986, 63, 465–466. [Google Scholar]
- Julkunen-Tiitto, R. Phenolic constituents in the leaves of northern willows: Methods for the analysis of certain phenolics. J. Agric. Food Chem. 1985, 330, 213–217. [Google Scholar] [CrossRef]
- Li, J.-E.; Fan, S.-T.; Qiu, Z.-H.; Li, C.; Nie, S.-P. Total flavonoids content, antioxidant and antimicrobial activities of extracts from Mosla chinensis Maxim. cv. Jiangxiangru. LWT–Food Sci. Technol. 2015, 64, 1022–1027. [Google Scholar] [CrossRef]
- Sethi, S.; Joshi, A.; Arora, B.; Bhowmik, A.; Sharma, R.R.; Kumar, P. Significance of FRAP, DPPH, and CUPRAC assays for antioxidant activity determination in apple fruit extracts. Eur. Food Res. Technol. 2020, 246, 591–598. [Google Scholar] [CrossRef]
- Pop, A.; Kiss, B.; Loghin, F. Endocrine Disrupting Effects of Butylated Hydroxyanisole (BHA–E320). Clujul Med. 2013, 86, 16–20. [Google Scholar]
- Saiga, A.; Tanabe, S.; Nishimura, T. Antioxidant activity of peptides obtained from porcine myofibrillar proteins by protease treatment. J. Agric. Food Chem. 2003, 51, 3661–3667. [Google Scholar] [CrossRef] [PubMed]
Phenolic Compounds | ||||||
---|---|---|---|---|---|---|
CA | CAA | COU | FA | SYR | Sum | |
Posidonia oceanica | ||||||
Mature leaves | n.d. | 17.00 ± 0.02 ° * | 0.12 ± 0.01 | 0.11 ± 0.01 ° * | 0.03 ± 2 × 10−3 * | 17.27 ± 9 × 10−4 ° * |
Young leaves | n.d. | 1.53 ± 0.02 * | 0.26 ± 9 × 10−4 * | n.d. | n.d. | 1.80 ± 0.01 |
Sheaths | n.d. | 0.12± 0.01 * | 0.11 ± 0.01 * | n.d. | 0.028 ± 2 × 10−3 * | 0.25 ± 0.02 * |
Rhizomes | 0.010 ± 1 × 10−3 | 0.17 ± 0.01 * | 0.02. ± 0.002 * | n.d. | 0.05 ± 4 × 10−3 | 0.35 ± 0.02 * |
Roots | n.d. | 0.28 ± 0.02 * | 0.07 ± 0.01 * | n.d. | 0.03 ± 1 × 10−3 | 0.39 ± 0.02 * |
Whole plant | 0.097 ± 9 × 10−3 | 0.01 ± 9 × 10−4 * | 0.43 ± 0.04 ° * | n.d. | 0.07 ± 3 × 10−3 | 0.62 ± 0.02 * |
Cymodocea nodosa | ||||||
Mature leaves | n.d. | 98.00 ± 0.03 ° | 0.14 ± 0.01 | n.d. | n.d. | 98.14 ± 0.02 |
Young leaves | 0.48 ± 0.01 | 0.26 ± 0.01 | 0.50 ± 0.02 | 0.30 ± 0.01 ° * | 0.04 ± 9.8 × 10−4 * | 1.58 ± 0.01 ° |
Sheaths | 0.07 ± 8.6 × 10−4 | 0.22 ± 0.01 | 0.36 ± 0.02 | 0.08 ± 7 × 10−3 * | n.d. | 0.73 ± 0.03 |
Rhizomes | n.d. | 0.69 ± 0.02 | 0.43 ± 0.02 | n.d. | 0.06 ± 3 × 10−3 | 1.17 ± 0.06 |
Roots | n.d. | 0.54 ± 0.03 | 0.25 ± 0.01 | n.d. | 0.03 ± 0.001 | 0.82 ± 0.07 |
Whole plant | n.d. | 0.04 ± 1 × 10−3 | 1.44 ± 0.02 ° | n.d. | 0.06 ± 2 × 10−3 ° | 1.54 ± 0.21 |
Seagrass Part | Posidonia oceanica | Cymodocea nodosa | ||||
---|---|---|---|---|---|---|
TCH | TPC | FLAV | TCH | TPC | FLAV | |
Mature leaves | 26.97 ± 0.09 | 10.76 ± 0.12 | 7.10 ± 0.50 | 44.10 ± 0.10 | 7.04 ± 0.20 | 3.38 ± 0.01 |
Young leaves | 9.73 ± 0.07 * | 7.80 ± 0.36 | 2.50 ± 0.40 | 44.40 ± 0.20 | 12.77 ± 0.40 | 7.40 ± 0.60 |
Sheaths | 212.30 ± 0.08 * | 17.82 ± 0.26 | 9.10 ± 0.40 | 111.90 ± 0.40 | 14.00 ± 0.06 | 6.50 ± 0.60 |
Rhizomes | 262.50 ± 0.10 ° * | 51.57 ± 0.92 * | 42.00 ± 1.00 ° * | 526.00 ± 1.00 | 20.70 ± 0.18 | 13.00 ± 1.00 |
Roots | 60.70 ± 0.30 * | 32.70 ± 1.27 * | 30.00 ± 1.00 * | 283.00 ± 1.00 | 18.21 ± 0.44 | 13.00 ± 1.00 |
Whole plant | 118.10 ± 0.20 * | 14.00 ± 0.21 | 8.20 ± 0.50 | 137.00 ± 00 | 13.65 ± 0.06 | 8.80 ± 0.30 |
Seagrass Part | Posidonia oceanica | Cymodocea nodosa | ||
---|---|---|---|---|
RSA | t1/2 | RSA | t1/2 | |
Mature leaves | 80.20 ± 0.50 | 107.00 ± 6.00 | 65.00 ± 1.00 | 309.00 ± 2.00 |
Young leaves | 45.10 ± 0.30 | 923.00 ± 53.00 | 70.80 ± 0.60 | 249.00 ± 4.00 |
Sheaths | 84.10 ± 0.30 | 80.00 ± 4.00 | 84.30 ± 0.10 | 138.00 ± 4.00 |
Rhizomes | 87.30 ± 00 | 33.00 ± 00 | 73.70 ± 0.90 | 239.00 ± 19.00 |
Roots | 87.00 ± 0.03 | 38.00 ± 00 | 85.20 ± 0.20 | 131.00 |
Whole plant | 85.90 ± 0.64 | 61.00 ± 6.00 | 73.00 ± 5.00 | 267.00 ± 2.00 |
BHA (0.5 mg mL−1) | 64.40 ± 1.50 | 405.00 ± 6.00 |
Seagrass Part | Posidonia oceanica | Cymodocea nodosa | ||||
---|---|---|---|---|---|---|
FRAP | CUPRAC | CCA | FRAP | CUPRAC | CCA | |
Mature leaves | 40.30 ± 0.50 | 45.00 ± 2.00 | 70.89 ± 8 × 10−3 | 45.70 ± 0.40 | 51.90 ± 0.60 | 51.50 ± 0.40 |
Young leaves | 26.40 ± 8 × 10−3 | 35.20 ± 0.40 | 66.30 ± 0.60 | 37.60 ± 0.40 | 37.80 ± 0.40 | 51.30 ± 0.60 |
Sheaths | 173.00 ± 1.00 * | 144.90 ± 0.10 * | 83.50 ± 0.40 * | 40.22 ± 0.02 | 42.00 ± 1.00 | 62.40 ± 0.90 |
Rhizomes | 234.20 ± 0.62 ° | 199.00 ± 1.00 ° | 87.10 ± 0.30 ° | 222.90 ± 0.40 ° | 181.00 ± 2.00 ° | 93.60 ± 0.20 |
Roots | 121.00 ± 0.60 | 116.00 ± 5.00 | 44.00 ± 0.90 * | 150.00 ± 0.10 | 133.40 ± 0.30 | 90.40 ± 0.30 |
Whole plant | 79.70 ± 0.05 | 96.00 ± 1.00 | 79.80 ± 0.80 | 39.90 ± 0.10 | 50.70 ± 0. 60 | 69.00 ± 0.10 |
Assay | Correlation Coefficients | Posidonia oceanica | Cymodocea nodosa | ||||
---|---|---|---|---|---|---|---|
TCH | TPC | FLAV | TCH | TPC | FLAV | ||
TCH | Pearson’s R | 1.0 | 0.569 | 1.0 | 0.863 * | ||
p-value | - | 0.238 | - | 0.027 | |||
TPC | Pearson’s R | 0.678 | 1.0 | 0.988 *** | 0.863 * | 1.0 | 0.963 ** |
p-value | 0.139 | <0.001 | 0.027 | 0.002 | |||
RSA | Pearson’s R | 0.563 | 0.527 | 0.527 | 0.266 | 0.602 | 0.488 |
p-value | 0.245 | 0.283 | 0.279 | 0.610 | 0.103 | 0.327 | |
FRAP | Pearson’s R | 0.936 ** | 0.854 * | 0.779 | 0.969 ** | 0.814 * | 0.841 * |
p-value | 0.006 | 0.030 | 0.068 | 0.001 | 0.049 | 0.036 | |
CUPRAC | Pearson’s R | 0.935 ** | 0.865 * | 0.794 | 0.965 ** | 0.805 | 0.847 * |
p-value | 0.006 | 0.026 | 0.059 | 0.002 | 0.054 | 0.033 | |
CCA | Pearson’s R | 0.690 | 0.099 | −0.042 | 0.921 ** | 0.902 * | 0.936 ** |
p-value | 0.130 | 0.852 | 0.936 | 0.009 | 0.014 | 0.006 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Garcia-Jimenez, P.; Rico, M.; del Rosario-Santana, D.; Arbona, V.; Carrasco-Acosta, M.; Osca, D. Metabolite Profiling and Antioxidant Activities in Seagrass Biomass. Mar. Drugs 2025, 23, 193. https://doi.org/10.3390/md23050193
Garcia-Jimenez P, Rico M, del Rosario-Santana D, Arbona V, Carrasco-Acosta M, Osca D. Metabolite Profiling and Antioxidant Activities in Seagrass Biomass. Marine Drugs. 2025; 23(5):193. https://doi.org/10.3390/md23050193
Chicago/Turabian StyleGarcia-Jimenez, Pilar, Milagros Rico, Diana del Rosario-Santana, Vicent Arbona, Marina Carrasco-Acosta, and David Osca. 2025. "Metabolite Profiling and Antioxidant Activities in Seagrass Biomass" Marine Drugs 23, no. 5: 193. https://doi.org/10.3390/md23050193
APA StyleGarcia-Jimenez, P., Rico, M., del Rosario-Santana, D., Arbona, V., Carrasco-Acosta, M., & Osca, D. (2025). Metabolite Profiling and Antioxidant Activities in Seagrass Biomass. Marine Drugs, 23(5), 193. https://doi.org/10.3390/md23050193