A Sulfated Polysaccharide from the Green Alga Caulerpa taxifolia: Characteristics of Its Structure and Anti-Diabetic Activity
Abstract
1. Introduction
2. Results and Discussion
2.1. Structural Characteristics of the Sulfated Polysaccharide SGC
2.2. Influence of SGC on α-Amylase Activity In Vitro
2.3. Anti-Diabetic Activity of SGC In Vivo
2.3.1. Influences of SGC on Body Weight and Fasting Blood Glucose Level
2.3.2. Effect of SGC on Glucose Tolerance
2.3.3. Effect of SGC on Insulin Resistance
2.3.4. Effect of SGC on Serum Lipid
2.3.5. Effect of SGC on Oxidative Stress
2.3.6. Histopathological Analysis of Liver and Pancreas
3. Materials and Methods
3.1. Materials
3.2. Animals
3.3. Extraction and Isolation of SGC
3.4. Assay of Physicochemical Property
3.5. Methylation Analysis
3.6. NMR Spectroscopy
3.7. α-Amylase Inhibitory Assay
3.8. Animal Experiment
3.9. Analyses of Glucose and Insulin Tolerance
3.10. Determination of Lipid Metabolic Parameters
3.11. Measurement of Oxidative Stress Parameters
3.12. Histopathological Analysis and Immunofluorescence Staining
3.13. Statistical Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Fei, Z.; Xu, Y.; Zhang, G.; Liu, Y.; Li, H.; Chen, L. Natural products with potential hypoglycemic activity in T2DM: 2019–2023. Phytochemistry 2024, 223, 114130. [Google Scholar] [CrossRef]
- He, F.; Su, S.; Song, R.; Li, Y.; Zou, L.; Li, Z.; Xiao, Y.; Hou, A.; Li, K.; Wang, Y. Elucidating key components and mechanisms underlying the synergistic anti-type 2 diabetes effect of Morus alba L. and Siraitia grosvenorii combination: An integrated in vitro enzymology, untargeted metabolomics, and network pharmacology approach. Antioxidants 2025, 14, 1065. [Google Scholar] [CrossRef]
- Aschner, P.; Karuranga, S.; James, S.; Simmons, D.; Basit, A.; Shaw, J.E.; Wild, S.H.; Ogurtsova, K.; Saeedi, P. The international diabetes federation’s guide for diabetes epidemiological studies. Diabetes Res. Clin. Pract. 2021, 172, 108630. [Google Scholar] [CrossRef]
- Tuomilehto, J.; Lindstrom, J.; Eriksson, J.G.; Valle, T.T.; Hamalainen, H.; Ilanne-Parikka, P.; Keinanen-Kiukaanniemi, S.; Laakso, M.; Louheranta, A.; Rastas, M.; et al. Prevention of type 2 diabetes mellitus by changes in lifestyle among subjects with impaired glucose tolerance. N. Engl. J. Med. 2001, 344, 1343–1350. [Google Scholar] [CrossRef]
- Tjandrawinata, R.R.; Harbuwono, D.S.; Soegondo, S.; Taslim, N.A.; Nurkolis, F. Phytocannabinoids as novel SGLT2 modulators for renal glucose reabsorption in type 2 diabetes management. Pharmaceuticals 2025, 18, 1101. [Google Scholar] [CrossRef] [PubMed]
- Sun, L.; Jiang, J.; Jing, T.; Hu, D.; Zhu, J.; Zeng, Y.; Pang, Y.; Huang, D.; Cheng, S.; Cao, C. A polysaccharide nap-3 from Naematelia aurantialba: Structural characterization and adjunctive hypoglycemic activity. Carbohydr. Polym. 2023, 318, 121124. [Google Scholar] [CrossRef]
- He, D.; Cui, C. Plant heteropolysaccharides as potential anti-diabetic agents: A review. Curr. Issues Mol. Biol. 2025, 47, 533. [Google Scholar] [CrossRef]
- Pozharitskaya, O.N.; Obluchinskaya, E.D.; Shikov, A.N. Mechanisms of bioactivities of fucoidan from the brown seaweed Fucus vesiculosus L. Of the barents sea. Mar. Drugs 2020, 18, 275. [Google Scholar] [CrossRef] [PubMed]
- Obluchinskaya, E.D.; Pozharitskaya, O.N.; Lapina, I.M.; Kulminskaya, A.A.; Zhurishkina, E.V.; Shikov, A.N. Comparative evaluation of dynamic maceration and ultrasonic assisted extraction of fucoidan from four arctic brown algae on its antioxidant and anticancer properties. Mar. Drugs 2025, 23, 230. [Google Scholar] [CrossRef]
- Jia, R.; Li, Z.; Wu, J.; Ou, Z.; Zhu, Q.; Sun, B.; Lin, L.; Zhao, M. Physicochemical properties of polysaccharide fractions from Sargassum fusiforme and their hypoglycemic and hypolipidemic activities in type 2 diabetic rats. Int. J. Biol. Macromol. 2020, 147, 428–438. [Google Scholar] [CrossRef] [PubMed]
- He, M.; Hao, J.; Feng, C.; Yang, Y.; Shao, Z.; Wang, L.; Mao, W. Anti-diabetic activity of a sulfated galactoarabinan with unique structural characteristics from Cladophora oligoclada (Chlorophyta). Carbohydr. Polym. 2022, 278, 118933. [Google Scholar] [CrossRef]
- Pillay, L.R.; Olasehinde, T.A.; Olofinsan, K.A.; Erukainure, O.L.; Islam, M.S.; Olaniran, A.O. Antidiabetic potentials of crude and purified sulphated polysaccharides isolated from Gracilaria gracilis, a seaweed from South Africa. Heliyon 2024, 10, e35729. [Google Scholar] [CrossRef]
- Hao, H.; Han, Y.; Yang, L.; Hu, L.; Duan, X.; Yang, X.; Huang, R. Structural characterization and immunostimulatory activity of a novel polysaccharide from green alga Caulerpa racemosa var peltata. Int. J. Biol. Macromol. 2019, 134, 891–900. [Google Scholar] [CrossRef]
- You, Y.; Song, H.; Wang, L.; Peng, H.; Sun, Y.; Ai, C.; Wen, C.; Zhu, B.; Song, S. Structural characterization and SARS-CoV-2 inhibitory activity of a sulfated polysaccharide from Caulerpa lentillifera. Carbohydr. Polym. 2022, 280, 119006. [Google Scholar] [CrossRef]
- Chaves Filho, G.P.; Batista, L.A.N.C.; de Medeiros, S.R.B.; Rocha, H.A.O.; Moreira, S.M.G. Sulfated glucan from the green seaweed Caulerpa sertularioides inhibits adipogenesis through suppression of adipogenic and lipogenic key factors. Mar. Drugs 2022, 20, 470. [Google Scholar] [CrossRef] [PubMed]
- Chaiklahan, R.; Chirasuwan, N.; Srinorasing, T.; Suaisom, C. An efficient method for producing polysaccharides with high antioxidant activity from Caulerpa lentillifera and evaluating their stability. Algal Res. 2025, 90, 104153. [Google Scholar] [CrossRef]
- Cao, M.; Li, Y.; Famurewa, A.C.; Olatunji, O.J. Antidiabetic and nephroprotective effects of polysaccharide extract from the seaweed Caulerpa racemosa in high fructose-streptozotocin induced diabetic nephropathy. Diabetes Metab. Syndr. Obes. 2021, 14, 2121–2131. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Chen, L.; Shang, N.; Wu, K.; Liao, W. Recent advances in the structure, extraction, and biological activity of Sargassum fusiforme polysaccharides. Mar. Drugs 2025, 23, 98. [Google Scholar] [CrossRef]
- Lu, X. Changes in the structure of polysaccharides under different extraction methods. eFood 2023, 4, e82. [Google Scholar] [CrossRef]
- Liu, F.; Chen, H.; Qin, L.; Al-Haimi, A.A.N.M.; Xu, J.; Zhou, W.; Zhu, S.; Wang, Z. Effect and characterization of polysaccharides extracted from Chlorella sp. by hot-water and alkali extraction methods. Algal Res. 2023, 70, 102970. [Google Scholar] [CrossRef]
- He, M.; Yang, Y.; Shao, Z.; Zhang, J.; Feng, C.; Wang, L.; Mao, W. Chemical structure and anticoagulant property of a novel sulfated polysaccharide from the green alga Cladophora oligoclada. Mar. Drugs 2021, 19, 554. [Google Scholar] [CrossRef]
- Fernández, P.V.; Raffo, M.P.; Alberghina, J.; Ciancia, M. Polysaccharides from the green seaweed Codium decorticatum. Structure and cell wall distribution. Carbohydr. Polym. 2015, 117, 836–844. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Qin, L.; Lu, X.; Lu, L.; Mao, W. A pyruvylated and sulfated galactan from the green alga Dictyosphaeria cavernosa: Structure, anticoagulant property and inhibitory effect on zebrafish thrombosis. Carbohydr. Polym. 2024, 324, 121492. [Google Scholar] [CrossRef]
- Maurya, A.K.; Ahmed, H.A.; Dewitt, A.; Shami, A.A.; Misra, S.K.; Pomin, V.H. Structure and binding properties to blood co-factors of the least sulfated galactan found in the cell wall of the red alga Botryocladia occidentalis. Mar. Drugs 2024, 22, 81. [Google Scholar] [CrossRef]
- Nagar, S.; Hensel, A.; Mischnick, P.; Kumar, V. A unique polysaccharide containing 3-O-methylarabinose and 3-O-methylgalactose from Tinospora sinensis. Carbohydr. Polym. 2018, 193, 326–335. [Google Scholar] [CrossRef]
- Chattopadhyay, K.; Adhikari, U.; Lerouge, P.; Ray, B. Polysaccharides from Caulerpa racemosa: Purification and structural features. Carbohydr. Polym. 2006, 68, 407–415. [Google Scholar] [CrossRef]
- Fajriah, S.; Rizki, I.F.; Sinurat, E. Characterization and analysis of the antidiabetic activities of sulphated polysaccharide extract from Caulerpa lentillifera. Pharmacia 2021, 68, 869–875. [Google Scholar] [CrossRef]
- Chuang, E.; Nguyen, G.T.H.; Su, F.; Lin, K.; Chen, C.; Mi, F.; Yen, T.; Juang, J.; Sung, H. Combination therapy via oral co-administration of insulin- and exendin-4-loaded nanoparticles to treat type 2 diabetic rats undergoing OGTT. Biomaterials 2013, 34, 7994–8001. [Google Scholar] [CrossRef]
- Chen, L.; Shen, L.; Zhu, L.; Li, F.; Ge, X.; Xia, X.; Yan, H.; Liu, T.; Xu, W.; Shao, R. Hyperglycemia symptom amelioration by Ascophyllum nodosum polysaccharides in mice with type 2 diabetes. Algal Res. 2023, 75, 103278. [Google Scholar] [CrossRef]
- Zhu, R.; Ouyang, Y.; Chen, Y.; Zhang, L.; Nie, J.; Farag, M.A.; Capanoglu, E.; Zhao, C. The therapeutic potential for senescence-associated diabetes of green alga Enteromorpha prolifera polysaccharide. Int. J. Biol. Macromol. 2023, 232, 123465. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Tian, R.; Liang, C.; Jia, Y.; Zhao, L.; Xie, Q.; Huang, F.; Yuan, H. Biomimetic nanoplatform with microbiome modulation and antioxidant functions ameliorating insulin resistance and pancreatic β-cell dysfunction for T2DM management. Biomaterials 2025, 313, 122804. [Google Scholar] [CrossRef]
- Liu, M.; Chen, M.; An, L.; Ma, S.; Mei, J.; Huang, W.; Zhang, W. Effects of apolipoprotein E on regulating insulin sensitivity via regulating insulin receptor signalosome in caveolae. Life Sci. 2022, 308, 120929. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Lai, J.; Fan, X.; Wang, S.; Zhang, H.; Wang, L.; Wang, H. Extraction of polysaccharides from Polygonum cuspidatum with activity against type 2 diabetes via alterations in gut microbiota. Food Chem. 2025, 470, 140047. [Google Scholar] [CrossRef] [PubMed]
- Sun, L.; Deng, H.; He, L.; Hu, X.; Huang, Q.; Xue, J.; Chen, J.; Shi, X.; Xu, Y. The relationship between NR2E1 and subclinical inflammation in newly diagnosed type 2 diabetic patients. J. Diabetes. Complicat. 2014, 29, 589–594. [Google Scholar] [CrossRef]
- Yin, Y.; Hao, H.; Cheng, Y.; Gao, J.; Liu, J.; Xie, Z.; Zhang, Q.; Zang, L.; Han, W.; Mu, Y. The homing of human umbilical cord-derived mesenchymal stem cells and the subsequent modulation of macrophage polarization in type 2 diabetic mice. Int. Immunopharmacol. 2018, 60, 235–245. [Google Scholar] [CrossRef]
- Amrutkar, M.; Cansby, E.; Chursa, U.; Nunez-Duran, E.; Chanclon, B.; Stahlman, M.; Friden, V.; Manneras-Holm, L.; Wickman, A.; Smith, U.; et al. Genetic disruption of protein kinase STK25 ameliorates metabolic defects in a diet-induced type 2 diabetes model. Diabetes 2015, 64, 2791–2804. [Google Scholar] [CrossRef]
- Lin, M.; Wang, L.; Guan, B.; Tang, S.; Lin, L.; Wu, K.; Huang, Q.; He, G.; Zhang, Z.; Gao, R.; et al. Effect of PAI-1 inhibitor on pancreatic islet function and hepatic insulin resistance in db/db mice. Biochem. Pharmacol. 2025, 237, 116906. [Google Scholar] [CrossRef]
- Chaiklahan, R.; Srinorasing, T.; Chirasuwan, N.; Tamtin, M.; Bunnag, B. The potential of polysaccharide extracts from Caulerpa lentillifera waste. Int. J. Biol. Macromol. 2020, 161, 1021–1028. [Google Scholar] [CrossRef]
- Ruan, Q.; Chen, Y.; Wen, J.; Qiu, Y.; Huang, Y.; Zhang, Y.; Farag, M.A.; Zhao, C. Regulatory mechanisms of the edible alga Ulva lactuca polysaccharide via modulation of gut microbiota in diabetic mice. Food Chem. 2023, 409, 135287. [Google Scholar] [CrossRef]
- Dubois, M.; Gilles, K.; Hamilton, J.K.; Rebers, P.A.; Smith, F. A colorimetric method for the determination of sugars. Nature 1951, 168, 167. [Google Scholar] [CrossRef] [PubMed]
- Terho, T.T.; Hartiala, K. Method for determination of the sulfate content of glycosaminoglycans. Anal. Biochem. 1971, 41, 471–476. [Google Scholar] [CrossRef]
- Bitter, T.; Muir, H.M. A modified uronic acid carbazole reaction. Anal. Biochem. 1962, 4, 330–334. [Google Scholar] [CrossRef]
- Anthon, G.E.; Barrett, D.M. Modified method for the determination of pyruvic acid with dinitrophenylhydrazine in the assessment of onion pungency. J. Sci. Food. Agric. 2003, 83, 1210–1213. [Google Scholar] [CrossRef]
- Qin, L.; Yang, Y.; Hao, J.; He, X.; Liu, S.; Chu, X.; Mao, W. Antidiabetic-activity sulfated polysaccharide from Chaetomorpha linum: Characteristics of its structure and effects on oxidative stress and mitochondrial function. Int. J. Biol. Macromol. 2022, 207, 333–345. [Google Scholar] [CrossRef]
- Liu, X.; Cao, S.; Qin, L.; He, M.; Sun, H.; Yang, Y.; Liu, X.; Mao, W. A sulfated heterorhamnan with novel structure isolated from the green alga Monostroma angicava. Carbohydr. Res. 2018, 466, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Falshaw, R.; Furneaux, R.H.; Stevenson, D.E. Structural analysis of carrageenans from the red alga, Callophyllis hombroniana Mont. Kütz (Kallymeniaceae, Rhodophyta). Carbohydr. Res. 2005, 340, 1149–1158. [Google Scholar] [CrossRef]
- Harris, P.J.; Henry, R.J.; Blakeney, A.B.; Stone, B.A. An improved procedure for the methylation analysis of oligosaccharides and polysaccharides. Carbohydr. Res. 1984, 127, 59–73. [Google Scholar] [CrossRef] [PubMed]
- Pang, H.; Li, J.; Miao, Z.; Li, S.J. Inhibitory effects of chondroitin sulfate on α-amylase activity: A potential hypoglycemic agent. Int. J. Biol. Macromol. 2021, 184, 289–296. [Google Scholar] [CrossRef]
- Hu, W.; Li, M.; Sun, W.; Li, Q.; Xi, H.; Qiu, Y.; Wang, R.; Ding, Q.; Wang, Z.; Yu, Y.; et al. Hirsutine ameliorates hepatic and cardiac insulin resistance in high-fat diet-induced diabetic mice and in vitro models. Pharmacol. Res. 2022, 177, 105917. [Google Scholar] [CrossRef]
- Katsuki, A.; Sumida, Y.; Gabazza, E.C.; Murashima, S.; Urakawa, H.; Morioka, K.; Kitagawa, N.; Tanaka, T.; Araki-Sasaki, R.; Hori, Y.; et al. QUICKI is useful for following improvements in insulin sensitivity after therapy in patients with type 2 diabetes mellitus. J. Clin. Endocrinol. Metab. 2002, 87, 2906–2908. [Google Scholar] [CrossRef] [PubMed]
- Shao, Z.; Tian, Y.; Liu, S.; Chu, X.; Mao, W. Anti-diabetic activity of a novel exopolysaccharide produced by the mangrove endophytic fungus Penicillium janthinellum N29. Mar. Drugs 2023, 21, 270. [Google Scholar] [CrossRef] [PubMed]
- Matthews, D.R.; Hosker, J.P.; Rudenski, A.S.; Naylor, B.A.; Treacher, D.F.; Turner, R.C. Homeostasis model assessment: Insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia 1985, 28, 412–419. [Google Scholar] [CrossRef]
- Long, H.; Huang, R.; Zhu, S.; Wang, Z.; Liu, X.; Zhu, Z. Polysaccharide from Caulerpa lentillifera alleviates hyperlipidaemia through altering bile acid metabolism mediated by gut microbiota. Int. J. Biol. Macromol. 2025, 306, 141663. [Google Scholar] [CrossRef]
- Lin, Q.; Zhong, L.L.D.; Zeng, M.; Kraithong, S.; Xia, X.; Kuang, W.; Wang, Q.; Huang, R. Seaweed polysaccharides as potential prebiotics: Rationale, factors, prebiotic activity manifestations, gut health mechanisms and extraintestinal impacts. Trends Food Sci. Technol. 2025, 163, 105202. [Google Scholar] [CrossRef]
- Wang, Z.; Ling, N.; Guo, C.; Tian, H.; Gao, M.; Li, W.; Ji, C. Deciphering inulin from jerusalem artichoke: Extraction, structural characteristics, bioactivities, structure-activity relationship, modifications, pharmacokinetics and applications. Phytomedicine 2025, 147, 157219. [Google Scholar] [CrossRef] [PubMed]
- Pozharitskaya, O.N.; Shikov, A.N.; Faustova, N.M.; Obluchinskaya, E.D.; Kosman, V.M.; Vuorela, H.; Makarov, V.G. Pharmacokinetic and tissue distribution of fucoidan from Fucus vesiculosus after oral administration to rats. Mar. Drugs 2018, 16, 132. [Google Scholar] [CrossRef] [PubMed]
Methylated Alditol Acetate | Molar Percentage | Type of Linkage | |||
---|---|---|---|---|---|
SGC | dsSGC | dpSGC | dsdpSGC | ||
1,5-Di-O-acetyl-2,3,4,6-tetra-O-methyl-galactitol | 17.2 | 16.9 | 18.3 | 18.9 | Galp-(1→ |
1,3,5-Tri-O-acetyl-2,4,6-tri-O-methyl-galactitol | 34.1 | 35.5 | 40.2 | 39.1 | →3)-Galp-(1→ |
1,5,6-Tri-O-acetyl-2,3,4-tri-O-methyl-galactitol | 15.8 | 21.7 | 14.7 | 23.3 | →6)-Galp-(1→ |
1,2,5,6-Tetra-O-acetyl-3,4-di-O-methyl-galactitol | 6.3 | - a | 5.7 | - a | →2,6)-Galp-(1→ |
1,3,5,6-Tetra-O-acetyl-2,4-di-O-methyl-galactitol | 12.3 | 19.4 | 12.9 | 18.7 | →3,6)-Galp-(1→ |
1,3,4,5,6-Penta-O-acetyl-2-O-methyl-galactitol | 6.1 | 6.5 | - a | - a | →3,4,6)-Galp-(1→ |
1,2,3,5,6-Penta-O-acetyl-4-O-methyl-galactitol | 8.2 | - a | 8.2 | - a | →2,3,6)-Galp-(1→ |
Sugar Residues | Chemical Shifts (δ) a | ||||||
---|---|---|---|---|---|---|---|
H1/C1 | H2/C2 | H3/C3 | H4/C4 | H5/C5 | H6/C6 | ||
A | →6)-β-d-Galp(2SO4)-(1→ | 4.93/103.93 | 4.36/79.71 | 3.75/73.87 | 4.27/70.21 | 3.81/76.29 | 4.00/69.89 |
B | →3,6)-β-d-Galp(2SO4)-(1→ | 4.87/101.89 | 4.36/79.71 | 3.95/83.51 | 4.27/70.21 | 3.81/76.29 | 4.05/68.39 |
C | →6)-β-d-Galp(3OMe)-(1→ | 4.73/103.26 | 3.73/70.92 | 3.47/81.72 | 4.18/68.37 | 3.76/74.01 | 4.09/69.89 |
D | →3,6)-β-d-Galp-(1→ | 4.70/104.76 | 3.71/71.80 | 3.93/83.42 | 4.18/68.37 | 3.76/74.01 | 3.94/69.96 |
E | →3)-β-d-Galp-(1→ | 4.57/104.45 | 3.74/71.90 | 3.90/84.09 | 4.18/68.37 | 3.96/74.11 | 3.80/62.57 |
F | →3)-β-d-Galp(4,6-Pyr)-(1→ | 4.53/104.77 | 3.61/72.11 | 4.38/77.25 | 4.17/72.56 | 3.73/67.19 | 3.99/66.67 |
G | β-d-Galp-(1→ | 4.51/105.44 | 3.61/72.11 | 3.60/72.53 | 4.18/68.37 | 3.70/74.41 | 3.78/62.57 |
Sugar Residues | Chemical Shifts (δ) a | ||||||
---|---|---|---|---|---|---|---|
H1/C1 | H2/C2 | H3/C3 | H4/C4 | H5/C5 | H6/C6 | ||
C | →6)-β-d-Galp(3OMe)-(1→ | 4.72/105.36 | 3.65/71.89 | 3.47/81.62 | 4.26/69.98 | 3.71/74.46 | 3.92, 4.09/70.24 |
D | →3,6)-β-d-Galp-(1→ | 4.71/104.78 | 3.75/71.32 | 3.84/83.68 | 4.19/70.15 | 3.76/76.31 | 3.97, 4.09/70.95 |
E | →3)-β-d-Galp-(1→ | 4.55/105.70 | 3.72/72.72 | 3.89/83.52 | 4.16/70.14 | 3.94/75.51 | 3.82, 3.92/62.57 |
F | →3)-β-d-Galp(4,6-Pyr)-(1→ | 4.52/104.33 | 3.60/72.23 | 4.29/79.75 | 4.20/72.44 | 3.67/67.42 | 3.98, 4.08/66.69 |
G | β-d-Galp-(1→ | 4.50/105.96 | 3.62/72.24 | 3.76/72.61 | 4.19/70.15 | 3.71/74.46 | 3.75, 3.92/62.39 |
H | →6)-β-d-Galp-(1→ | 4.46/105.03 | 3.67/71.71 | 3.72/73.26 | 4.22/70.20 | 3.94/75.51 | 3.92, 4.09/70.24 |
Groups a | Fasting Insulin Content (mlU/L) | HOMA-IR | HOMA-β | QUICKI |
---|---|---|---|---|
NC | 20.31 ± 2.82 | 4.67 ± 0.40 | 245.03 ± 73.96 | 0.495 ± 0.009 |
MC | 57.79 ± 2.81 ## | 50.38 ± 3.56 ## | 71.78 ±0.34 ## | 0.327 ± 0.004 ## |
PC | 30.73 ± 2.79 ** | 13.28 ± 1.97 ** | 99.13 ± 0.06 ** | 0.404 ± 0.011 ** |
SGC-H | 35.80 ± 1.85 #** | 16.62 ± 0.30 ** | 103.30 ± 10.57 ** | 0.389 ± 0.001 ** |
SGC-M | 46.99 ± 3.13 ## | 27.14 ± 1.51 ## | 98.99 ± 8.05 # | 0.359 ± 0.003 ## |
SGC-L | 50.56 ± 4.02 ## | 31.73 ± 3.79 ## | 95.33 ± 2.49 ## | 0.351 ± 0.006 ## |
Groups a | SOD (U/mL) | CAT (U/mL) | MDA (nM) | GSH (μM) |
---|---|---|---|---|
NC | 138.37 ± 6.86 | 12.55 ± 1.87 | 9.22 ± 1.25 | 163.46 ± 7.07 |
MC | 50.54 ± 3.62 ## | 5.43 ± 0.53 # | 16.47 ± 1.63 ## | 67.19 ± 8.49 ## |
PC | 119.86 ± 6.17 ** | 10.63 ± 1.86 * | 9.79 ± 0.30 ** | 137.05 ± 4.70 #** |
SGC-H | 111.99 ± 2.39 #** | 10.56 ± 0.64 * | 11.47 ± 0.79 * | 114.87 ± 3.76 ##** |
SGC-M | 89.46 ± 3.66 ##** | 8.29 ± 1.31 | 14.38 ± 1.13 # | 84.39 ± 0.83 ## |
SGC-L | 68.96 ± 6.77 ## | 6.59 ± 0.85 # | 14.19 ± 0.97 # | 70.80± 6.72 ## |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, S.; Qin, L.; Li, D.; Lu, F.; Liang, M.; Hao, J. A Sulfated Polysaccharide from the Green Alga Caulerpa taxifolia: Characteristics of Its Structure and Anti-Diabetic Activity. Mar. Drugs 2025, 23, 374. https://doi.org/10.3390/md23100374
Liu S, Qin L, Li D, Lu F, Liang M, Hao J. A Sulfated Polysaccharide from the Green Alga Caulerpa taxifolia: Characteristics of Its Structure and Anti-Diabetic Activity. Marine Drugs. 2025; 23(10):374. https://doi.org/10.3390/md23100374
Chicago/Turabian StyleLiu, Shan, Ling Qin, Dan Li, Fang Lu, Mengdi Liang, and Jiejie Hao. 2025. "A Sulfated Polysaccharide from the Green Alga Caulerpa taxifolia: Characteristics of Its Structure and Anti-Diabetic Activity" Marine Drugs 23, no. 10: 374. https://doi.org/10.3390/md23100374
APA StyleLiu, S., Qin, L., Li, D., Lu, F., Liang, M., & Hao, J. (2025). A Sulfated Polysaccharide from the Green Alga Caulerpa taxifolia: Characteristics of Its Structure and Anti-Diabetic Activity. Marine Drugs, 23(10), 374. https://doi.org/10.3390/md23100374