GC/MS Fatty Acid Profile of Marine-Derived Actinomycetes from Extreme Environments: Chemotaxonomic Insights and Biotechnological Potential
Abstract
:1. Introduction
2. Results and Discussion
2.1. Analysis of FAME Profiles of Actinomycetes Species Using GC/MS
2.1.1. Saturated Fatty Acids (SFAs)
2.1.2. Monounsaturated Fatty Acids (MUFAs)
2.1.3. Polyunsaturated Fatty Acid (PUFAs)
2.1.4. Omega Families
2.1.5. Branched-Chain Fatty Acids (BCFAs)
2.1.6. Cyclic Chain Fatty Acids (CCFAs)
2.1.7. Odd Chain Fatty Acids (OCFAs)
2.2. Analysis of FAME Profiles of Actinomycete Genera Using GC/MS
3. Materials and Methods
3.1. Ocean Sediments Collection, Strain Taxonomic Characterization and Crude Extract Preparation
3.2. Saponification and Derivatization of Crude Actinomycetes Extracts’ Fatty Acids in FAMEs for GC/MS Analysis
3.3. Analysis of FAMEs by GC/MS
3.4. Statistical Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Declaration of Generative AI and AI-Assisted Technologies in the Writing Process
References
- Kavitha, A.; Savithri, H.S. Biological Significance of Marine Actinobacteria of East Coast of Andhra Pradesh, India. Front. Microbiol. 2017, 8, 1201. [Google Scholar] [CrossRef]
- Barreca, M.; Spanò, V.; Montalbano, A.; Cueto, M.; Díaz Marrero, A.R.; Deniz, I.; Erdoğan, A.; Lukić Bilela, L.; Moulin, C.; Taffin-de-Givenchy, E.; et al. Marine Anticancer Agents: An Overview with a Particular Focus on Their Chemical Classes. Mar. Drugs 2020, 18, 619. [Google Scholar] [CrossRef] [PubMed]
- Jimenez, P.C.; Wilke, D.V.; Branco, P.C.; Bauermeister, A.; Rezende-Teixeira, P.; Gaudêncio, S.P.; Costa-Lotufo, L.V. Enriching Cancer Pharmacology with Drugs of Marine Origin. Br. J. Pharmacol. 2020, 177, 3–27. [Google Scholar] [CrossRef] [PubMed]
- Rotter, A.; Barbier, M.; Bertoni, F.; Bones, A.M.; Cancela, M.L.; Carlsson, J.; Carvalho, M.F.; Cegłowska, M.; Chirivella-Martorell, J.; Conk Dalay, M.; et al. The Essentials of Marine Biotechnology. Front. Mar. Sci. 2021, 8, 1–53. [Google Scholar] [CrossRef]
- Dholakiya, R.N.; Kumar, R.; Mishra, A.; Mody, K.H.; Jha, B. Antibacterial and Antioxidant Activities of Novel Actinobacteria Strain Isolated from Gulf of Khambhat, Gujarat. Front. Microbiol. 2017, 8, 2420. [Google Scholar] [CrossRef] [PubMed]
- Manivasagan, P.; Kang, K.-H.; Sivakumar, K.; Li-Chan, E.C.Y.; Oh, H.-M.; Kim, S.-K. Marine Actinobacteria: An Important Source of Bioactive Natural Products. Environ. Toxicol. Pharmacol. 2014, 38, 172–188. [Google Scholar] [CrossRef] [PubMed]
- Anandan, R. Anandan, R. An Introduction to Actinobacteria. In Actinobacteria—Basics and Biotechnological Applications; Dharumadurai, D., Ed.; IntechOpen: Rijeka, Croatia, 2016. [Google Scholar]
- Mendes, T.D.; Borges, W.S.; Rodrigues, A.; Solomon, S.E.; Vieira, P.C.; Duarte, M.C.T.; Pagnocca, F.C. Anti-Candida Properties of Urauchimycins from Actinobacteria Associated with Trachymyrmex Ants. BioMed Res. Int. 2013, 2013, 835081. [Google Scholar] [CrossRef] [PubMed]
- Prieto-Davó, A.; Dias, T.; Gomes, S.E.; Rodrigues, S.; Parera-Valadez, Y.; Borralho, P.M.; Pereira, F.; Rodrigues, C.M.P.; Santos-Sanches, I.; Gaudêncio, S.P. The Madeira Archipelago As a Significant Source of Marine-Derived Actinomycete Diversity with Anticancer and Antimicrobial Potential. Front. Microbiol. 2016, 7, 1594. [Google Scholar] [CrossRef]
- Gramlich, L.; Ireton-Jones, C.; Miles, J.M.; Morrison, M.; Pontes-Arruda, A. Essential Fatty Acid Requirements and Intravenous Lipid Emulsions. J. Parenter. Enter. Nutr. 2019, 43, 697–707. [Google Scholar] [CrossRef]
- Chu, M.-Y.; Zhang, L.-S.; Lou, W.-Y.; Zong, M.-H.; Tang, Y.-Q.; Yang, J.-G. Preparation and Characterization of Oil Rich in Odd Chain Fatty Acids from Rhodococcus opacus PD630. J. Am. Oil Chem. Soc. 2020, 97, 25–33. [Google Scholar] [CrossRef]
- Sangkanu, S.; Rukachaisirikul, V.; Suriyachadkun, C.; Phongpaichit, S. Evaluation of Antibacterial Potential of Mangrove Sediment-Derived Actinomycetes. Microb. Pathog. 2017, 112, 303–312. [Google Scholar] [CrossRef]
- Voytsekhovskaya, I.V.; Axenov-Gribanov, D.V.; Murzina, S.A.; Pekkoeva, S.N.; Protasov, E.S.; Gamaiunov, S.V.; Timofeyev, M.A. Estimation of Antimicrobial Activities and Fatty Acid Composition of Actinobacteria Isolated from Water Surface of Underground Lakes from Badzheyskaya and Okhotnichya Caves in Siberia. PeerJ 2018, 6, e5832. [Google Scholar] [CrossRef] [PubMed]
- Sangkanu, S.; Rukachaisirikul, V.; Suriyachadkun, C.; Phongpaichit, S. Antifungal Activity of Marine-Derived Actinomycetes against Talaromyces marneffei. J. Appl. Microbiol. 2021, 130, 1508–1522. [Google Scholar] [CrossRef]
- Gong, X.; Xiang, W.; Cao, X.; Yu, Y.; Hao, Y.; Li, L.; Wang, Q.; Zou, H.; Qian, C. Microbispora cellulosiformans sp. Nov., a Novel Actinomycete with Cellulase Activity Isolated from Soil in the Cold Region. Antonie Leeuwenhoek 2020, 113, 2053–2062. [Google Scholar] [CrossRef]
- Pedrosa, R.; Gaudêncio, S.P.; Vasconcelos, V. XVI International Symposium on Marine Natural Products|XI European Conference on Marine Natural Products. Mar. Drugs 2020, 18, 40. [Google Scholar] [CrossRef]
- Magalhães, V.; Duarte, D.; Freitas, M.; Escada, C.; Terrinha, P.; Ribeiro, C.; Pinheiro, L.; Cepeda, C.; Correia, R. Pockmarks and Fluid Migration in the Estremadura Spur, Western Iberian Margin. In Proceedings of the IX Simpósio MIA2018, Coimbra, Portugal, 4–7 September 2018. [Google Scholar]
- Wang, M.; Carver, J.J.; Phelan, V.V.; Sanchez, L.M.; Garg, N.; Peng, Y.; Nguyen, D.D.; Watrous, J.; Kapono, C.A.; Luzzatto-Knaan, T.; et al. Sharing and Community Curation of Mass Spectrometry Data with Global Natural Products Social Molecular Networking. Nat. Biotechnol. 2016, 34, 828–837. [Google Scholar] [CrossRef]
- Gaudêncio, S.P.; Pereira, F. Dereplication: Racing to Speed up the Natural Products Discovery Process. Nat. Prod. Rep. 2015, 32, 779–810. [Google Scholar] [CrossRef] [PubMed]
- Gaudêncio, S.P.; Bayram, E.; Lukić Bilela, L.; Cueto, M.; Díaz-Marrero, A.R.; Haznedaroglu, B.Z.; Jimenez, C.; Mandalakis, M.; Pereira, F.; Reyes, F.; et al. Advanced Methods for Natural Products Discovery: Bioactivity Screening, Dereplication, Metabolomics Profiling, Genomic Sequencing, Databases and Informatic Tools, and Structure Elucidation. Mar. Drugs 2023, 21, 308. [Google Scholar] [CrossRef] [PubMed]
- Pinto-Almeida, A.; Bauermeister, A.; Luppino, L.; Grilo, I.R.; Oliveira, J.; Sousa, J.R.; Petras, D.; Rodrigues, C.F.; Prieto-Davó, A.; Tasdemir, D.; et al. The Diversity, Metabolomics Profiling, and the Pharmacological Potential of Actinomycetes Isolated from the Estremadura Spur Pockmarks (Portugal). Mar. Drugs 2022, 20, 21. [Google Scholar] [CrossRef] [PubMed]
- Dando, P.R.; Austen, M.C.; Burke, R.A., Jr.; Kendall, M.A.; Kennicutt, M.C., II; Judd, A.G.; Moore, D.C.; O’Hara, S.C.M.; Schmaljohann, R.; Southward, A.J. Ecology of a North Sea Pockmark with an Active Methane Seep. Mar. Ecol. Prog. Ser. 1991, 70, 49–63. [Google Scholar] [CrossRef]
- Dando, P.R.; Hughes, J.A.; Thiermann, F. Preliminary Observations on Biological Communities at Shallow Hydrothermal Vents in the Aegean Sea. Geol. Soc. Lond. Spec. Publ. 1995, 87, 303–317. [Google Scholar] [CrossRef]
- Sayed, A.M.; Hassan, M.H.A.; Alhadrami, H.A.; Hassan, H.M.; Goodfellow, M.; Rateb, M.E. Extreme Environments: Microbiology Leading to Specialized Metabolites. J. Appl. Microbiol. 2020, 128, 630–657. [Google Scholar] [CrossRef] [PubMed]
- Cong, M.; Pang, X.; Zhao, K.; Song, Y.; Liu, Y.; Wang, J. Deep-Sea Natural Products from Extreme Environments: Cold Seeps and Hydrothermal Vents. Mar. Drugs 2022, 20, 404. [Google Scholar] [CrossRef] [PubMed]
- Martins, E.; Almeida, P.R.; Quintella, B.R.; da Silva, M.G.; Lança, M.J. Muscle Fatty Acid Profiles of Sea Lamprey (Petromyzon marinus L.) Indicate the Use of Fast Metabolized Energy during Ontogenesis. Fish Physiol. Biochem. 2019, 45, 849–862. [Google Scholar] [CrossRef] [PubMed]
- Jorge, A.; Machado, M.G.; Alexandre, C.M.; da Silva, M.G.; Almeida, P.R.; Lança, M.J. Proximate Composition, Nutritional Lipid Quality, and Health Indices of Largemouth Bass (Micropterus salmoides Lacépède, 1802) from Several Mediterranean Reservoirs. J. Aquat. Food Prod. Technol. 2022, 31, 19–34. [Google Scholar] [CrossRef]
- Mateus, E.; Barata, R.C.; Zrostlíková, J.; Gomes da Silva, M.D.R.; Paiva, M.R. Characterization of the Volatile Fraction Emitted by Pinus Spp. by One- and Two-Dimensional Chromatographic Techniques with Mass Spectrometric Detection. J. Chromatogr. A 2010, 1217, 1845–1855. [Google Scholar] [CrossRef] [PubMed]
- Wei, J.; Xiang, L.; Li, X.; Song, Y.; Yang, C.; Ji, F.; Chung, A.C.K.; Li, K.; Lin, Z.; Cai, Z. Derivatization Strategy Combined with Parallel Reaction Monitoring for the Characterization of Short-Chain Fatty Acids and Their Hydroxylated Derivatives in Mouse. Anal. Chim. Acta 2020, 1100, 66–74. [Google Scholar] [CrossRef]
- Calder, P.C.; Yaqoob, P. Omega-3 Polyunsaturated Fatty Acids and Human Health Outcomes. BioFactors 2009, 35, 266–272. [Google Scholar] [CrossRef] [PubMed]
- Zárate, R.; El Jaber-Vazdekis, N.; Tejera, N.; Pérez, J.A.; Rodríguez, C. Significance of Long Chain Polyunsaturated Fatty Acids in Human Health. Clin. Transl. Med. 2017, 6, 25. [Google Scholar] [CrossRef] [PubMed]
- Hoving, L.R.; Heijink, M.; van Harmelen, V.; van Dijk, K.W.; Giera, M. GC-MS Analysis of Short-Chain Fatty Acids in Feces, Cecum Content, and Blood Samples. Methods Mol. Biol. 2018, 1730, 247–256. [Google Scholar] [CrossRef]
- Pereira, H.; Barreira, L.; Figueiredo, F.; Custódio, L.; Vizetto-Duarte, C.; Polo, C.; Rešek, E.; Engelen, A.; Varela, J. Polyunsaturated Fatty Acids of Marine Macroalgae: Potential for Nutritional and Pharmaceutical Applications. Mar. Drugs 2012, 10, 1920–1935. [Google Scholar] [CrossRef]
- Altieri, C.; Cardillo, D.; Bevilacqua, A.; Sinigaglia, M. Inhibition of Aspergillus spp. and Penicillium spp. by Fatty Acids and Their Monoglycerides. J. Food Prot. 2007, 70, 1206–1212. [Google Scholar] [CrossRef] [PubMed]
- Sharma, J.; Kumar, V.; Kumar, S.S.; Malyan, S.K.; Mathimani, T.; Bishnoi, N.R.; Pugazhendhi, A. Microalgal Consortia for Municipal Wastewater Treatment—Lipid Augmentation and Fatty Acid Profiling for Biodiesel Production. J. Photochem. Photobiol. B 2020, 202, 111638. [Google Scholar] [CrossRef]
- Degwert, J.; Jacob, J.; Steckel, F. Use of Cis-9-Heptadecenoic Acid for Treating Psoriasis and Allergies. Patent No. WO1994021247A1, 13 January 1998. [Google Scholar]
- Shete, P.B.; Patil, R.M.; Tiwale, B.M.; Pawar, S.H. Water Dispersible Oleic Acid-Coated Fe3O4 Nanoparticles for Biomedical Applications. J. Magn. Magn. Mater. 2015, 377, 406–410. [Google Scholar] [CrossRef]
- Huang, T.-H.; Wang, P.-W.; Yang, S.-C.; Chou, W.-L.; Fang, J.-Y. Cosmetic and Therapeutic Applications of Fish Oil’s Fatty Acids on the Skin. Mar. Drugs 2018, 16, 256. [Google Scholar] [CrossRef] [PubMed]
- Nagappan, S.; Kumar Verma, S. Co-Production of Biodiesel and Alpha-Linolenic Acid (Omega-3 Fatty Acid) from Microalgae, Desmodesmus sp. MCC34. Energy Sources Part A Recover. Util. Environ. Eff. 2018, 40, 2933–2940. [Google Scholar] [CrossRef]
- Hosseinzadeh Gharajeh, N.; Valizadeh, M.; Dorani, E.; Hejazi, M.A. Biochemical Profiling of Three Indigenous Dunaliella Isolates with Main Focus on Fatty Acid Composition towards Potential Biotechnological Application. Biotechnol. Rep. 2020, 26, e00479. [Google Scholar] [CrossRef] [PubMed]
- Yao, L.; Hammond, E.G. Isolation and Melting Properties of Branched-Chain Esters from Lanolin. J. Am. Oil Chem. Soc. 2006, 83, 547–552. [Google Scholar] [CrossRef]
- Wang, D.H.; Wang, Z.; Chen, R.; Kothapalli, K.S.D.; Brenna, J.T. Very Long-Chain Branched-Chain Fatty Acids in Chia Seeds: Implications for Human Use. J. Agric. Food Chem. 2020, 68, 13871–13878. [Google Scholar] [CrossRef] [PubMed]
- Park, Y.-K.; Bordes, F.; Letisse, F.; Nicaud, J.-M. Engineering Precursor Pools for Increasing Production of Odd-Chain Fatty Acids in Yarrowia Lipolytica. Metab. Eng. Commun. 2021, 12, e00158. [Google Scholar] [CrossRef]
- de Carvalho, C.C.C.R.; Caramujo, M.J. The Various Roles of Fatty Acids. Molecules 2018, 23, 2583. [Google Scholar] [CrossRef] [PubMed]
- Bauermeister, A.; Pereira, F.; Grilo, I.R.; Godinho, C.C.; Paulino, M.; Almeida, V.; Gobbo-Neto, L.; Prieto-Davó, A.; Sobral, R.G.; Lopes, N.P.; et al. Intra-Clade Metabolomic Profiling of MAR4 Streptomyces from the Macaronesia Atlantic Region Reveals a Source of Anti-Biofilm Metabolites. Environ. Microbiol. 2019, 21, 1099–1112. [Google Scholar] [CrossRef]
- Pereira, F.; Almeida, J.R.; Paulino, M.; Grilo, I.R.; Macedo, H.; Cunha, I.; Sobral, R.G.; Vasconcelos, V.; Gaudêncio, S.P. Antifouling Napyradiomycins from Marine-Derived Actinomycetes Streptomyces Aculeolatus. Mar. Drugs 2020, 18, 63. [Google Scholar] [CrossRef] [PubMed]
- Wissner, J.L.; Almeida, J.R.; Grilo, I.R.; Oliveira, J.F.; Brízida, C.; Escobedo-Hinojosa, W.; Pissaridou, P.; Vasquez, M.I.; Cunha, I.; Sobral, R.G.; et al. Novel Metabolite Madeirone and Neomarinone Extracted from Streptomyces aculeoletus as Marine Antibiofilm and Antifouling Agents. Front. Chem. 2024, 12, 1425953. [Google Scholar] [CrossRef] [PubMed]
- Sobolevskaya, M.P.; Lipko (Terkina), I.A.; Moiseenko, O.P.; Parfenova, V.V.; Afiyatullov, S.S. Fatty-Acid Composition of Several Lake Baikal Streptomycetes. Chem. Nat. Compd. 2012, 47, 880–882. [Google Scholar] [CrossRef]
- Sazak, A.; Camas, M.; Spröer, C.; Klenk, H.-P.; Sahin, N. Actinomadura geliboluensis sp. Nov., Isolated from Soil. Int. J. Syst. Evol. Microbiol. 2012, 62, 2011–2017. [Google Scholar] [CrossRef]
- Deng, S.; Chang, X.; Zhang, Y.; Ren, L.; Jiang, F.; Qu, Z.; Peng, F. Nocardioides Antarcticus sp. Nov., Isolated from Marine Sediment. Int. J. Syst. Evol. Microbiol. 2015, 65, 2615–2621. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.; Guo, L.; Sun, P.; Han, C.; Bai, L.; Liu, C.; Li, Y.; Xiang, W.; Wang, X. Actinomadura jiaoheensis sp. Nov. and Actinomadura sporangiiformans sp. Nov., Two Novel Actinomycetes Isolated from Muddy Soil and Emended Description of the Genus Actinomadura. Antonie Leeuwenhoek 2015, 108, 1331–1339. [Google Scholar] [CrossRef]
- Songsumanus, A.; Kuncharoen, N.; Kudo, T.; Yuki, M.; Ohkuma, M.; Igarashi, Y.; Tanasupawat, S. Actinomadura decatromicini sp. Nov., Isolated from Mountain Soil in Thailand. J. Antibiot. 2021, 74, 51–58. [Google Scholar] [CrossRef]
- Duronio, R.J.; Towler, D.A.; Heuckeroth, R.O.; Gordon, J.I. Disruption of the Yeast N-Myristoyl Transferase Gene Causes Recessive Lethality. Science 1989, 243, 796–800. [Google Scholar] [CrossRef]
- Duronio, R.J.; Rudnick, D.A.; Johnson, R.L.; Johnson, D.R.; Gordon, J.I. Myristic Acid Auxotrophy Caused by Mutation of S. Cerevisiae Myristoyl-CoA:Protein N-Myristoyltransferase. J. Cell Biol. 1991, 113, 1313–1330. [Google Scholar] [CrossRef] [PubMed]
- Maurer-Stroh, S.; Gouda, M.; Novatchkova, M.; Schleiffer, A.; Schneider, G.; Sirota, F.L.; Wildpaner, M.; Hayashi, N.; Eisenhaber, F. MYRbase: Analysis of Genome-Wide Glycine Myristoylation Enlarges the Functional Spectrum of Eukaryotic Myristoylated Proteins. Genome Biol. 2004, 5, R21. [Google Scholar] [CrossRef] [PubMed]
- Yang, S.H.; Shrivastav, A.; Kosinski, C.; Sharma, R.K.; Chen, M.-H.; Berthiaume, L.G.; Peters, L.L.; Chuang, P.-T.; Young, S.G.; Bergo, M.O. N-Myristoyltransferase 1 Is Essential in Early Mouse Development. J. Biol. Chem. 2005, 280, 18990–18995. [Google Scholar] [CrossRef] [PubMed]
- Wright, M.H.; Heal, W.P.; Mann, D.J.; Tate, E.W. Protein Myristoylation in Health and Disease. J. Chem. Biol. 2010, 3, 19–35. [Google Scholar] [CrossRef]
- Kosciuk, T.; Lin, H. N-Myristoyltransferase as a Glycine and Lysine Myristoyltransferase in Cancer, Immunity, and Infections. ACS Chem. Biol. 2020, 15, 1747–1758. [Google Scholar] [CrossRef] [PubMed]
- Arif, M.; Li, Y.; El-Dalatony, M.M.; Zhang, C.; Li, X.; Salama, E.-S. A Complete Characterization of Microalgal Biomass through FTIR/TGA/CHNS Analysis: An Approach for Biofuel Generation and Nutrients Removal. Renew. Energy 2021, 163, 1973–1982. [Google Scholar] [CrossRef]
- Liu, M.J.; Jin, C.Z.; Park, D.J.; Asem, M.D.; Xiao, M.; Salam, N.; Li, W.J.; Kim, C.J. Stackebrandtia soli sp. Nov., a Novel Actinobacterium Isolated from a Soil Sample. Int. J. Syst. Evol. Microbiol. 2018, 68, 1215–1219. [Google Scholar] [CrossRef] [PubMed]
- Peltola, J.S.; Andersson, M.A.; Kämpfer, P.; Auling, G.; Kroppenstedt, R.M.; Busse, H.J.; Salkinoja-Salonen, M.S.; Rainey, F.A. Isolation of Toxigenic Nocardiopsis Strains from Indoor Environments and Description of Two New Nocardiopsis Species, N. Exhalans sp. Nov. and N. Umidischolae sp. Nov. Appl. Environ. Microbiol. 2001, 67, 4293–4304. [Google Scholar] [CrossRef] [PubMed]
- Rainey, F.A.; Ward-Rainey, N.; Kroppenstedt, R.M.; Stackebrandt, E. The Genus Nocardiopsis Represents a Phylogenetically Coherent Taxon and a Distinct Actinomycete Lineage: Proposal of Nocardiopsaceae Fam. Nov. Int. J. Syst. Bacteriol. 1996, 46, 1088–1092. [Google Scholar] [CrossRef] [PubMed]
- Xiong, Z.-J.; Miao, C.-P.; Zheng, Y.-K.; Liu, K.; Li, W.-J.; Liu, W.-H.; Xu, L.-H.; Zhao, L.-X. Stackebrandtia endophytica sp. Nov., an Actinobacterium Isolated from Tripterygium wilfordii. Int. J. Syst. Evol. Microbiol. 2015, 65, 1709–1713. [Google Scholar] [CrossRef] [PubMed]
- Veyisoglu, A.; Cetin, D.; Inan Bektas, K.; Guven, K.; Sahin, N. Streptomyces ovatisporus sp. Nov., Isolated from Deep Marine Sediment. Int. J. Syst. Evol. Microbiol. 2016, 66, 4856–4863. [Google Scholar] [CrossRef]
- Zhao, J.; Guo, L.; He, H.; Liu, C.; Zhang, Y.; Li, C.; Wang, X.; Xiang, W. Micromonospora taraxaci sp. Nov., a Novel Endophytic Actinomycete Isolated from Dandelion Root (Taraxacum mongolicum Hand.-Mazz.). Antonie Leeuwenhoek 2014, 106, 667–674. [Google Scholar] [CrossRef] [PubMed]
- de Kluijver, A.; Nierop, K.G.J.; Morganti, T.M.; Bart, M.C.; Slaby, B.M.; Hanz, U.; de Goeij, J.M.; Mienis, F.; Middelburg, J.J. Bacterial Precursors and Unsaturated Long-Chain Fatty Acids Are Biomarkers of North-Atlantic Deep-Sea Demosponges. PLoS ONE 2021, 16, e0241095. [Google Scholar] [CrossRef] [PubMed]
- Dahal, R.H.; Shim, D.S.; Kim, J.Y.; Kim, J. Calidifontibacter Terrae sp. Nov., an Actinomycete Isolated from Soil, with Potential Applications in Cosmetics. Int. J. Syst. Evol. Microbiol. 2017, 67, 1925–1931. [Google Scholar] [CrossRef] [PubMed]
- Xie, F.; Pei, S.; Huang, X.; Wang, L.; Kou, J.; Zhang, G. Microcella flavibacter sp. Nov., Isolated from Marine Sediment, and Reclassification of Chryseoglobus frigidaquae, Chryseoglobus indicus, and Yonghaparkia alkaliphila as Microcella frigidaquae Comb. Nov., Microcella indica Nom. Nov., and Microcella alkali. Antonie Leeuwenhoek 2021, 114, 2133–2145. [Google Scholar] [CrossRef] [PubMed]
- Groß-Schmölders, M.; von Sengbusch, P.; Krüger, J.P.; Klein, K.; Birkholz, A.; Leifeld, J.; Alewell, C. Switch of Fungal to Bacterial Degradation in Natural, Drained and Rewetted Oligotrophic Peatlands Reflected in Δ15N and Fatty Acid Composition. Soil 2020, 6, 299–313. [Google Scholar] [CrossRef]
- Tanasupawat, S.; Jongrungruangchok, S.; Kudo, T. Micromonospora Marina sp. Nov., Isolated from Sea Sand. Int. J. Syst. Evol. Microbiol. 2010, 60, 648–652. [Google Scholar] [CrossRef] [PubMed]
- Altenburger, P.; Kämpfer, P.; Schumann, P.; Vybiral, D.; Lubitz, W.; Busse, H.-J. Georgenia muralis Gen. Nov., Sp. Nov., a Novel Actinobacterium Isolated from a Medieval Wall Painting. Int. J. Syst. Evol. Microbiol. 2002, 52, 875–881. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.-X.; Zhi, X.-Y.; Chen, H.-H.; Zhang, Y.-Q.; Tang, S.K.; Jiang, C.-L.; Xu, L.-H.; Li, W.-J. Streptomyces serianimatus sp. Nov., Isolated from a Rhizophere soil. Antonie Leeuwenhoek 2007, 92, 201–206. [Google Scholar] [CrossRef]
- Huang, C.B.; George, B.; Ebersole, J.L. Antimicrobial Activity of N-6, n-7 and n-9 Fatty Acids and Their Esters for Oral Microorganisms. Arch. Oral Biol. 2010, 55, 555–560. [Google Scholar] [CrossRef] [PubMed]
- Saha Tchinda, J.-B.; Mbitnkeu Fetngna Tchebe, T.; Tchoukoua, A.; Cheumani Yona, A.M.; Fauconnier, M.L.; Ndikontar Kor, M.; Richel, A. Fatty Acid Profiles, Antioxidant, and Phenolic Contents of Oils Extracted from Acacia polyacantha and Azadirachta indica (Neem) Seeds Using Green Solvents. J. Food Process. Preserv. 2021, 45, e15115. [Google Scholar] [CrossRef]
- Zielińska, A.; Nowak, I. Abundance of Active Ingredients in Sea-Buckthorn Oil. Lipids Health Dis. 2017, 16, 95. [Google Scholar] [CrossRef] [PubMed]
- Rontani, J.F.; Christodoulou, S.; Koblizek, M. GC-MS Structural Characterization of Fatty Acids from Marine Aerobic Anoxygenic Phototrophic Bacteria. Lipids 2005, 40, 97–108. [Google Scholar] [CrossRef] [PubMed]
- Yu, X.; Zheng, H.; Zhou, F.; Hu, P.; Wang, H.; Li, N.; He, J.; Wang, P.; Zhang, L.; Men, H.; et al. Phenotypic and Molecular Characterisation of a Novel Species, Mycobacterium hubeiense sp., Isolated from the Sputum of a Patient with Secondary Tuberculosis in Hubei of China. Epidemiol. Infect. 2020, 148, e49. [Google Scholar] [CrossRef] [PubMed]
- Sammra, O.; Balbutskaya, A.; Ülbegi-Mohyla, H.; Nagib, S.; Lämmler, C.; Kämpfer, P.; Glaeser, S.P.; Golke, J.; Busse, H.-J.; Prenger-Berninghoff, E.; et al. Arcanobacterium pinnipediorum sp. Nov., Isolated from a Harbour Seal. Int. J. Syst. Evol. Microbiol. 2015, 65, 4539–4543. [Google Scholar] [CrossRef]
- Sammra, O.; Rau, J.; Wickhorst, J.-P.; Alssahen, M.; Hassan, A.A.; Lämmler, C.; Kämpfer, P.; Glaeser, S.P.; Busse, H.-J.; Kleinhagauer, T.; et al. Arcanobacterium wilhelmae sp. Nov., Isolated from the Genital Tract of a Rhinoceros (Rhinoceros unicornis). Int. J. Syst. Evol. Microbiol. 2017, 67, 2093–2097. [Google Scholar] [CrossRef]
- Liu, C.; Guo, Y.; Li, L.; Wang, X.; Lin, J.; Wang, X.; Li, J.; Chu, Y. Catellatospora sichuanensis sp. Nov., a Novel Actinobacterium Isolated from Soil. Int. J. Syst. Evol. Microbiol. 2020, 70, 3309–3315. [Google Scholar] [CrossRef] [PubMed]
- Gámez-Meza, N.; Noriega-Rodríguez, J.A.; Medina-Juárez, L.A.; Ortega-García, J.; Monroy-Rivera, J.; Toro-Vázquez, F.J.; García, H.S.; Angulo-Guerrero, O. Concentration of Eicosapentaenoic Acid and Docosahexaenoic Acid from Fish Oil by Hydrolysis and Urea Complexation. Food Res. Int. 2003, 36, 721–727. [Google Scholar] [CrossRef]
- Skeaff, C.M.; Miller, J. Dietary Fat and Coronary Heart Disease: Summary of Evidence from Prospective Cohort and Randomised Controlled Trials. Ann. Nutr. Metab. 2009, 55, 173–201. [Google Scholar] [CrossRef] [PubMed]
- Adarme-Vega, T.C.; Lim, D.K.Y.; Timmins, M.; Vernen, F.; Li, Y.; Schenk, P.M. Microalgal Biofactories: A Promising Approach towards Sustainable Omega-3 Fatty Acid Production. Microb. Cell Fact. 2012, 11, 96. [Google Scholar] [CrossRef] [PubMed]
- Garg, M.L.; Wood, L.G.; Singh, H.; Moughan, P.J. Means of Delivering Recommended Levels of Long Chain N-3 Polyunsaturated Fatty Acids in Human Diets. J. Food Sci. 2006, 71, R66–R71. [Google Scholar] [CrossRef]
- Abidizadegan, M.; Peltomaa, E.; Blomster, J. The Potential of Cryptophyte Algae in Biomedical and Pharmaceutical Applications. Front. Pharmacol. 2021, 11, 618836. [Google Scholar] [CrossRef] [PubMed]
- Patil, V.; Reitan, K.; Knutsen; Mortensen, L.; Källqvist, T.; Olsen, Y.; Vogt, G.; Gislerød, H. Microalgae as a Source of Polyunsaturated Fatty Acids for Aquaculture. Curr. Top. Plant Biol. 2005, 6, 57–65. [Google Scholar]
- Guertin, M.-H.; Robitaille, K.; Pelletier, J.-F.; Duchesne, T.; Julien, P.; Savard, J.; Bairati, I.; Fradet, V. Effects of Concentrated Long-Chain Omega-3 Polyunsaturated Fatty Acid Supplementation before Radical Prostatectomy on Prostate Cancer Proliferation, Inflammation, and Quality of Life: Study Protocol for a Phase IIb, Randomized, Double-Blind, Placebo-Contr. BMC Cancer 2018, 18, 64. [Google Scholar] [CrossRef]
- Eroldoğan, O.T.; Glencross, B.; Novoveska, L.; Gaudêncio, S.P.; Rinkevich, B.; Varese, G.C.; de Fátima Carvalho, M.; Tasdemir, D.; Safarik, I.; Nielsen, S.L.; et al. From the Sea to Aquafeed: A Perspective Overview. Rev. Aquac. 2023, 15, 1028–1057. [Google Scholar] [CrossRef]
- Hennessy, A.A.; Ross, R.P.; Devery, R.; Stanton, C. The Health Promoting Properties of the Conjugated Isomers of α-Linolenic Acid. Lipids 2011, 46, 105–119. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Morita, S.; Yamada, H.; Koga, K.; Ota, W.; Furuta, T.; Yamatsu, A.; Kim, M. Free Linoleic Acid and Oleic Acid Reduce Fat Digestion and Absorption In Vivo as Potent Pancreatic Lipase Inhibitors Derived from Sesame Meal. Molecules 2022, 27, 4910. [Google Scholar] [CrossRef] [PubMed]
- Steffens, W. Effects of Variation in Essential Fatty Acids in Fish Feeds on Nutritive Value of Freshwater Fish for Humans. Aquaculture 1997, 151, 97–119. [Google Scholar] [CrossRef]
- Ackman, R.G. Comparison of Lipids in Marine and Freshwater Organisms BT—Lipids in Freshwater Ecosystems; Arts, M.T., Wainman, B.C., Eds.; Springer: New York, NY, USA, 1999; pp. 263–298. [Google Scholar]
- Ozogul, Y.; Polat, A.; Uçak, İ.; Ozogul, F. Seasonal Fat and Fatty Acids Variations of Seven Marine Fish Species from the Mediterranean Sea. Eur. J. Lipid Sci. Technol. 2011, 113, 1491–1498. [Google Scholar] [CrossRef]
- Olsen, Y. Lipids and Essential Fatty Acids in Aquatic Food Webs: What Can Freshwater Ecologists Learn from Mariculture? BT—Lipids in Freshwater Ecosystems; Arts, M.T., Wainman, B.C., Eds.; Springer: New York, NY, USA, 1999; pp. 161–202. ISBN 978-1-4612-0547-0. [Google Scholar]
- Tocher, D.R. Metabolism and Functions of Lipids and Fatty Acids in Teleost Fish. Rev. Fish. Sci. 2003, 11, 107–184. [Google Scholar] [CrossRef]
- Sargent, J.; Bell, G.; McEvoy, L.; Tocher, D.; Estevez, A. Recent Developments in the Essential Fatty Acid Nutrition of Fish. Aquaculture 1999, 177, 191–199. [Google Scholar] [CrossRef]
- Bell, M.V.; Henderson, R.J.; Sargent, J.R. The Role of Polyunsaturated Fatty Acids in Fish. Comp. Biochem. Physiol. B 1986, 83, 711–719. [Google Scholar] [CrossRef] [PubMed]
- Simopoulos, A.P. The Importance of the Omega-6/Omega-3 Fatty Acid Ratio in Cardiovascular Disease and Other Chronic Diseases. Exp. Biol. Med. 2008, 233, 674–688. [Google Scholar] [CrossRef] [PubMed]
- Certik, M.; Shimizu, S. Biosynthesis and Regulation of Microbial Polyunsaturated Fatty Acid Production. J. Biosci. Bioeng. 1999, 87, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Paul, A.; Banerjee, K.; Goon, A.; Saha, S. Chemo-Profiling of Anthocyanins and Fatty Acids Present in Pomegranate Aril and Seed Grown in Indian Condition and Its Bioaccessibility Study. J. Food Sci. Technol. 2018, 55, 2488–2496. [Google Scholar] [CrossRef]
- Zamora-López, K.; Noriega, L.G.; Estanes-Hernández, A.; Escalona-Nández, I.; Tobón-Cornejo, S.; Tovar, A.R.; Barbero-Becerra, V.; Pérez-Monter, C.; Punica Granatum, L. Derived Omega-5 Nanoemulsion Improves Hepatic Steatosis in Mice Fed a High Fat Diet by Increasing Fatty Acid Utilization in Hepatocytes. Sci. Rep. 2020, 10, 15229. [Google Scholar] [CrossRef] [PubMed]
- Price, N.P.J.; Jackson, M.A.; Hartman, T.M.; Brändén, G.; Ek, M.; Koch, A.A.; Kennedy, P.D. Branched Chain Lipid Metabolism As a Determinant of the N-Acyl Variation of Streptomyces Natural Products. ACS Chem. Biol. 2021, 16, 116–124. [Google Scholar] [CrossRef] [PubMed]
- Srinivas, T.N.R.; Anil Kumar, P.; Tank, M.; Sunil, B.; Poorna, M.; Zareena, B.; Shivaji, S. Aquipuribacter nitratireducens sp. Nov., Isolated from a Soil Sample of a Mud Volcano. Int. J. Syst. Evol. Microbiol. 2015, 65, 2391–2396. [Google Scholar] [CrossRef] [PubMed]
- Lee, L.-H.; Zainal, N.; Azman, A.-S.; Eng, S.-K.; Ab Mutalib, N.-S.; Yin, W.-F.; Chan, K.-G. Streptomyces pluripotens sp. Nov., a Bacteriocin-Producing Streptomycete That Inhibits Meticillin-Resistant Staphylococcus Aureus. Int. J Syst. Evol. Microbiol. 2014, 64, 3297–3306. [Google Scholar] [CrossRef]
- Ruan, C.; Zhang, L.; Ye, W.; Xie, X.; Srivibool, R.; Duangmal, K.; Pathom-aree, W.; Deng, Z.; Hong, K. Streptomyces ferrugineus sp. Nov., Isolated from Mangrove Soil in Thailand. Antonie Leeuwenhoek 2015, 107, 39–45. [Google Scholar] [CrossRef]
- Pereira, P.H.F.; Macrae, A.; Reinert, F.; de Souza, R.F.; Coelho, R.R.R.; Pötter, G.; Klenk, H.-P.; Labeda, D.P. Streptomyces odonnellii sp. Nov., a Proteolytic Streptomycete Isolated from Soil under Cerrado (Savanna) Vegetation Cover. Int. J. Syst. Evol. Microbiol. 2017, 67, 5211–5215. [Google Scholar] [CrossRef] [PubMed]
- Ma, L.; Zeng, H.; Xia, Z.; Luo, X.; Zhang, L.; Wan, C. Streptomyces Lycii sp. Nov., an Endogenous Actinomycete Isolated from Lycium ruthenicum. Int. J. Syst. Evol. Microbiol. 2020, 70, 5197–5204. [Google Scholar] [CrossRef]
- Jani, K.; Kajale, S.; Shetye, M.; Palkar, S.; Sharma, A. Marisediminicola senii sp. Nov. Isolated from Queen Maud Land, Antarctica. Int. J. Syst. Evol. Microbiol. 2021, 71. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Ruan, C.; Peng, F.; Deng, Z.; Hong, K. Streptomyces Arcticus sp. Nov., Isolated from Frozen Soil. Int. J. Syst. Evol. Microbiol. 2016, 66, 1482–1487. [Google Scholar] [CrossRef]
- Zhang, L.-Y.; Ming, H.; Zhao, Z.-L.; Ji, W.-L.; Salam, N.; Jiao, J.-Y.; Fang, B.-Z.; Li, W.-J.; Nie, G.-X. Nocardioides allogilvus sp. Nov., a Novel Actinobacterium Isolated from a Karst Cave. Int. J. Syst. Evol. Microbiol. 2018, 68, 2485–2490. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.-H.; Fang, B.-Z.; Mohamad, O.A.A.; Zhang, Y.-G.; Jiao, J.-Y.; Dong, Z.-Y.; Xiao, M.; Li, L.; Li, W.-J. Nocardioides ferulae sp. Nov., Isolated from Root of an Endangered Medicinal Plant Ferula songorica Pall. Ex Spreng. Int. J. Syst. Evol. Microbiol. 2019, 69, 1253–1258. [Google Scholar] [CrossRef] [PubMed]
- Tseng, M.; Chiang, W.-P.; Liao, H.-C.; Hsieh, S.-Y.; Yuan, G.-F. Saccharomonospora piscinae sp. Nov., a Novel Actinobacterium from Fishpond Sediment in Taiwan. Int. J. Syst. Evol. Microbiol. 2018, 68, 1418–1422. [Google Scholar] [CrossRef]
- Xu, J.; Wang, Y.; Xie, S.-J.; Xu, J.; Xiao, J.; Ruan, J.-S. Streptomyces xiamenensis sp. Nov., Isolated from Mangrove Sediment. Int. J. Syst. Evol. Microbiol. 2009, 59, 472–476. [Google Scholar] [CrossRef]
- Winkelman, D.C.; Nikolau, B.J. The Effects of Carbon Source and Growth Temperature on the Fatty Acid Profiles of Thermobifida fusca. Front. Mol. Biosci. 2022, 9, 896226. [Google Scholar] [CrossRef] [PubMed]
- Singh, N.; Choudhury, B. Valorization of Food-Waste Hydrolysate by Lentibacillus salarius NS12IITR for the Production of Branched Chain Fatty Acid Enriched Lipid with Potential Application as a Feedstock for Improved Biodiesel. Waste Manag. 2019, 94, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Mika, A.; Stepnowski, P.; Kaska, L.; Proczko, M.; Wisniewski, P.; Sledzinski, M.; Sledzinski, T. A Comprehensive Study of Serum Odd- and Branched-Chain Fatty Acids in Patients with Excess Weight. Obesity 2016, 24, 1669–1676. [Google Scholar] [CrossRef] [PubMed]
- Su, X.; Magkos, F.; Zhou, D.; Eagon, J.C.; Fabbrini, E.; Okunade, A.L.; Klein, S. Adipose Tissue Monomethyl Branched-Chain Fatty Acids and Insulin Sensitivity: Effects of Obesity and Weight Loss. Obesity 2015, 23, 329–334. [Google Scholar] [CrossRef] [PubMed]
- Pakiet, A.; Wilczynski, M.; Rostkowska, O.; Korczynska, J.; Jabłonska, P.; Kaska, L.; Proczko-Stepaniak, M.; Sobczak, E.; Stepnowski, P.; Magkos, F.; et al. The Effect of One Anastomosis Gastric Bypass on Branched-Chain Fatty Acid and Branched-Chain Amino Acid Metabolism in Subjects with Morbid Obesity. Obes. Surg. 2020, 30, 304–312. [Google Scholar] [CrossRef]
- Yan, Y.; Wang, Z.; Greenwald, J.; Kothapalli, K.S.D.; Park, H.G.; Liu, R.; Mendralla, E.; Lawrence, P.; Wang, X.; Brenna, J.T. BCFA Suppresses LPS Induced IL-8 MRNA Expression in Human Intestinal Epithelial Cells. Prostaglandins leukot. Essent. Fat. Acids 2017, 116, 27–31. [Google Scholar] [CrossRef] [PubMed]
- Lennen, R.M.; Pfleger, B.F. Microbial Production of Fatty Acid-Derived Fuels and Chemicals. Curr. Opin. Biotechnol. 2013, 24, 1044–1053. [Google Scholar] [CrossRef] [PubMed]
- El-Sheekh, M.M.; Allam, N.G.; Shabana, S.A.; Azab, M.M. Efficiency of Lipid Accumulating Actinomycetes Isolated from Soil for Biodiesel Production: Comparative Study with Microalgae. Energy Sources Part A Recover. Util. Environ. Eff. 2017, 39, 883–892. [Google Scholar] [CrossRef]
- Takahashi, M.; Shinohara, S.; Hamada, M.; Tamura, T.; Dohra, H.; Kodani, S.; Nakagawa, Y.; Kokubo, S.; Hayakawa, M.; Yamamura, H. Streptomyces pacificus sp. Nov., a Novel Spongiicolazolicin-Producing Actinomycete Isolated from a Coastal Sediment. J. Antibiot. 2023, 76, 93–100. [Google Scholar] [CrossRef] [PubMed]
- Teo, W.F.A.; Devaraj, K.; Nor, M.N.M.; Li, W.-J.; Tan, G.Y.A. Sciscionella sediminilitoris sp. Nov., a Marine Actinomycete Isolated from Cape Rochado, Malaysia, and the Emendations to the Description of the Genus Sciscionella. Curr. Microbiol. 2024, 81, 124. [Google Scholar] [CrossRef] [PubMed]
- Ngamcharungchit, C.; Matsumoto, A.; Suriyachadkun, C.; Panbangred, W.; Inahashi, Y.; Intra, B. Nonomuraea corallina sp. Nov., Isolated from Coastal Sediment in Samila Beach, Thailand: Insights into Secondary Metabolite Synthesis as Anticancer Potential. Front. Microbiol. 2023, 14, 1226945. [Google Scholar] [CrossRef] [PubMed]
- Takahashi, M.; Hoshino, K.; Hamada, M.; Tamura, T.; Moriuchi, R.; Dohra, H.; Nakagawa, Y.; Kokubo, S.; Yamazaki, M.; Nakagawa, H.; et al. Streptomyces yaizuensis sp. Nov., a Berninamycin C-Producing Actinomycete Isolated from Sponge. J. Antibiot. 2024, 78, 35–44. [Google Scholar] [CrossRef]
- Loughran, R.M.; Diefendorf, C.M.; Reill-VanSise, J.R.; Mitchell, E.A.; Vining, O.B.; Gallegos, D.A.; Miller, G.; Koyack, M.J.; Oline, D.K.; Rivers, O.S.; et al. Streptomyces spiramenti sp. Nov., Isolated from a Deep-Sea Microbial Mat. Arch. Microbiol. 2022, 204, 717. [Google Scholar] [CrossRef] [PubMed]
- de Castro, I.; Ribeiro, S.; Oliveira, V.; Coelho, F.J.R.C.; de Lurdes Dapkevicius, M.; de Azevedo, E.B.; Barcelos, E.; Ramos, J. Brachybacterium atlanticum sp. Nov., a Novel Marine Bacterium Isolated from the Atlantic Ocean. Int. J. Syst. Evol. Microbiol. 2023, 73. [Google Scholar] [CrossRef]
- Xie, Q.-Y.; Ma, Q.-Y.; Yi, K.-X.; Yang, L.; Dai, H.-F.; Zhao, Y.-X. Actinoplanes maris sp. Nov., Isolated from Marine Sediment. Int. J. Syst. Evol. Microbiol. 2023, 73. [Google Scholar] [CrossRef]
- Dos Santos, J.D.N.; Vitorino, I.R.; Kallscheuer, N.; Srivastava, A.; Krautwurst, S.; Marz, M.; Jogler, C.; Lobo-da-Cunha, A.; Catita, J.; Gonçalves, H.; et al. Streptomyces marispadix sp. Nov., Isolated from Marine Beach Sediment. Int. J. Syst. Evol. Microbiol. 2023, 73. [Google Scholar] [CrossRef] [PubMed]
- Yi, K.-X.; Xie, Q.-Y.; Ma, Q.-Y.; Yang, L.; Dai, H.-F.; Hao, Y.-E.; Zhao, Y.-X. Phytohabitans maris sp. Nov., Isolated from Marine Sediment. Int. J. Syst. Evol. Microbiol. 2024, 74. [Google Scholar] [CrossRef]
- Chen, Y.-G.; Zhang, Y.-Q.; Tang, S.-K.; Liu, Z.-X.; Xu, L.-H.; Zhang, L.-X.; Li, W.-J. Nocardiopsis terrae sp. Nov., a Halophilic Actinomycete Isolated from Saline Soil. Antonie Leeuwenhoek 2010, 98, 31–38. [Google Scholar] [CrossRef] [PubMed]
- Zhao, A.; Cai, H.; Huang, Y.; Yang, Q.; Zhu, Z.; Zhou, Y.; Jiang, M.; Jiang, Y.; Huang, W. Nesterenkonia marinintestina sp. Nov., Isolated from the Fish Intestine. Arch. Microbiol. 2024, 206, 110. [Google Scholar] [CrossRef]
- Liu, Z.; Li, Y.; Zheng, L.-Q.; Huang, Y.-J.; Li, W.-J. Saccharomonospora marina sp. Nov., Isolated from an Ocean Sediment of the East China Sea. Int. J. Syst. Evol. Microbiol. 2010, 60, 1854–1857. [Google Scholar] [CrossRef] [PubMed]
- Al-Dhabi, N.A.; Esmail, G.A.; Ghilan, A.-K.M.; Arasu, M.V.; Duraipandiyan, V.; Ponmurugan, K. Chemical Constituents of Streptomyces sp. Strain Al-Dhabi-97 Isolated from the Marine Region of Saudi Arabia with Antibacterial and Anticancer Properties. J. Infect. Public Health 2020, 13, 235–243. [Google Scholar] [CrossRef]
- Law, J.W.-F.; Ser, H.-L.; Ab Mutalib, N.-S.; Saokaew, S.; Duangjai, A.; Khan, T.M.; Chan, K.-G.; Goh, B.-H.; Lee, L.-H. Streptomyces monashensis sp. Nov., a Novel Mangrove Soil Actinobacterium from East Malaysia with Antioxidative Potential. Sci. Rep. 2019, 9, 3056. [Google Scholar] [CrossRef]
- Ozcan, U.; Yilmaz, E.; Ozcan, L.; Furuhashi, M.; Vaillancourt, E.; Smith, R.O.; Görgün, C.Z.; Hotamisligil, G.S. Chemical Chaperones Reduce ER Stress and Restore Glucose Homeostasis in a Mouse Model of Type 2 Diabetes. Science 2006, 313, 1137–1140. [Google Scholar] [CrossRef]
- Kolb, P.S.; Ayaub, E.A.; Zhou, W.; Yum, V.; Dickhout, J.G.; Ask, K. The Therapeutic Effects of 4-Phenylbutyric Acid in Maintaining Proteostasis. Int. J. Biochem. Cell Biol. 2015, 61, 45–52. [Google Scholar] [CrossRef]
- Mimori, S.; Koshikawa, Y.; Mashima, Y.; Mitsunaga, K.; Kawada, K.; Kaneko, M.; Okuma, Y.; Nomura, Y.; Murakami, Y.; Kanzaki, T.; et al. Evaluation of Synthetic Naphthalene Derivatives as Novel Chemical Chaperones That Mimic 4-Phenylbutyric Acid. Bioorg. Med. Chem. Lett. 2015, 25, 811–814. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Wu, H.; Zang, J.; Yang, G.; Zhu, Y.; Wu, Y.; Chen, X.; Lan, D.; Li, T. 4-Phenylbutyric Acid Reveals Good Beneficial Effects on Vital Organ Function via Anti-Endoplasmic Reticulum Stress in Septic Rats. Crit. Care Med. 2016, 44, e689–e701. [Google Scholar] [CrossRef]
- Tang, Y.-H.; Yue, Z.-S.; Zheng, W.-J.; Shen, H.-F.; Zeng, L.-R.; Hu, Z.-Q.; Xiong, Z.-F. 4-Phenylbutyric Acid Presents Therapeutic Effect on Osteoarthritis via Inhibiting Cell Apoptosis and Inflammatory Response Induced by Endoplasmic Reticulum Stress. Biotechnol. Appl. Biochem. 2018, 65, 540–546. [Google Scholar] [CrossRef]
- Ozcan, L.; Ergin, A.S.; Lu, A.; Chung, J.; Sarkar, S.; Nie, D.; Myers, M.G.J.; Ozcan, U. Endoplasmic Reticulum Stress Plays a Central Role in Development of Leptin Resistance. Cell Metab. 2009, 9, 35–51. [Google Scholar] [CrossRef] [PubMed]
- Takada, A.; Miki, T.; Kuno, A.; Kouzu, H.; Sunaga, D.; Itoh, T.; Tanno, M.; Yano, T.; Sato, T.; Ishikawa, S.; et al. Role of ER Stress in Ventricular Contractile Dysfunction in Type 2 Diabetes. PLoS ONE 2012, 7, e39893. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.-S.; Liang, S.; Zong, M.-H.; Yang, J.-G.; Lou, W.-Y. Microbial Synthesis of Functional Odd-Chain Fatty Acids: A Review. World J. Microbiol. Biotechnol. 2020, 36, 35. [Google Scholar] [CrossRef] [PubMed]
- Bhatia, S.K.; Gurav, R.; Choi, T.-R.; Han, Y.H.; Park, Y.-L.; Jung, H.-R.; Yang, S.-Y.; Song, H.-S.; Yang, Y.-H. A Clean and Green Approach for Odd Chain Fatty Acids Production in Rhodococcus sp. YHY01 by Medium Engineering. Bioresour. Technol. 2019, 286, 121383. [Google Scholar] [CrossRef] [PubMed]
- Santaren, I.D.; Watkins, S.M.; Liese, A.D.; Wagenknecht, L.E.; Rewers, M.J.; Haffner, S.M.; Lorenzo, C.; Hanley, A.J. Serum Pentadecanoic Acid (15:0), a Short-Term Marker of Dairy Food Intake, Is Inversely Associated with Incident Type 2 Diabetes and Its Underlying Disorders. Am. J. Clin. Nutr. 2014, 100, 1532–1540. [Google Scholar] [CrossRef]
- Venn-Watson, S.; Lumpkin, R.; Dennis, E.A. Efficacy of Dietary Odd-Chain Saturated Fatty Acid Pentadecanoic Acid Parallels Broad Associated Health Benefits in Humans: Could It Be Essential? Sci. Rep. 2020, 10, 8161. [Google Scholar] [CrossRef]
- Schieber, M.; Chandel, N.S. ROS Function in Redox Signaling and Oxidative Stress. Curr. Biol. 2014, 24, R453–R462. [Google Scholar] [CrossRef] [PubMed]
- Tang, D.; Chen, M.; Huang, X.; Zhang, G.; Zeng, L.; Zhang, G.; Wu, S.; Wang, Y. SRplot: A Free Online Platform for Data Visualization and Graphing. PLoS ONE 2023, 18, e0294236. [Google Scholar] [CrossRef] [PubMed]
- Ortiz, S.C.A.; Hokka, C.O.; Badino, A.C. Utilization of Soybean Derivatives on Clavulanic Acid Production by Streptomyces clavuligerus. Enzyme Microb. Technol. 2007, 40, 1071–1077. [Google Scholar] [CrossRef]
- Hamedi, J.; Imanparast, F.; Tirandaz, H.; Laamerad, B.; Sadrai, S. Improvement of Clavulanic Acid Production by Streptomyces clavuligerus with Peanut Derivatives. Ann. Microbiol. 2012, 62, 1227–1234. [Google Scholar] [CrossRef]
- Morrison, W.R.; Smith, L.M. Preparation of Fatty Acid Methyl Esters and Dimethylacetals from Lipids with Boron Fluoride–Methanol. J. Lipid Res. 1964, 5, 600–608. [Google Scholar] [CrossRef]
Fatty Acids | Applications | References |
---|---|---|
SFA | Biofuel, food industry | [34,35] |
MUFA | Cosmetics, biofuel, pharmaceutical, biomedicine | [35,36,37] |
PUFA | Aquaculture, pharmaceutical, nutraceutical, cosmetics, biofuel | [33,38,39,40] |
BCFA | Biofuel, cosmetics | [41,42] |
OCFA | Cosmetics, pharmaceutical, food, nutraceutical, chemistry | [11,43] |
Fatty Acid | Content (%) | Species | References |
---|---|---|---|
i-C16:0 | 43.82 | Streptomyces xiamenensis | [113] |
28.40 | Streptomyces pacificus | [122] | |
59.50 | Sciscionella sediminilitoris | [123] | |
40.40 | Nonomuraea corallina | [124] | |
16.00 | Streptomyces yaizuensis | [125] | |
>10.00 | Streptomyces spiramenti | [126] | |
13.70 | Brachybacterium atlanticum | [127] | |
>5.00 | Actinoplanes maris | [128] | |
26.90 | Streptomyces marispadix | [129] | |
>5.00 | Phytohabitans maris | [130] | |
38.01 | Saccharomonospora piscinae | Present study | |
36.90 | Streptomyces xiamenensis | Present study | |
C18:1ω9 | 36.15 | Stackebrandtia endophytica | Present study |
2.40 | Stackebrandtia endophytica | [60] | |
34.83 | Nocardiopsis prasina | Present study | |
4.40 | Nocardiopsis prasina | [131] | |
C16:0 | 24.64 | Actinomadura geliboluensis | Present study |
22.03 | Actinomadura geliboluensis | Present study | |
21.20 | Actinomadura sporangiiformans | [51] | |
13.28 | Actinomadura geliboluensis | [49] | |
a-C15:0 | 15.00 | Streptomyces pacificus | [122] |
75.50 | Saccharomonospora xinjiangensis | Present study | |
44.80 | Nesterenkonia marinintestina | [132] | |
46.04 | Brachybacterium atlanticum | [127] | |
17.70 | Streptomyces marispadix | [129] | |
5.91 | Saccharomonospora xinjiangensis | [133] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cunha, M.B.; Jorge, A.F.; Nunes, M.J.; Sousa, J.R.; Lança, M.J.; Gomes da Silva, M.; Gaudêncio, S.P. GC/MS Fatty Acid Profile of Marine-Derived Actinomycetes from Extreme Environments: Chemotaxonomic Insights and Biotechnological Potential. Mar. Drugs 2025, 23, 1. https://doi.org/10.3390/md23010001
Cunha MB, Jorge AF, Nunes MJ, Sousa JR, Lança MJ, Gomes da Silva M, Gaudêncio SP. GC/MS Fatty Acid Profile of Marine-Derived Actinomycetes from Extreme Environments: Chemotaxonomic Insights and Biotechnological Potential. Marine Drugs. 2025; 23(1):1. https://doi.org/10.3390/md23010001
Chicago/Turabian StyleCunha, Marlene B., André F. Jorge, Maria João Nunes, Joana R. Sousa, Maria João Lança, Marco Gomes da Silva, and Susana P. Gaudêncio. 2025. "GC/MS Fatty Acid Profile of Marine-Derived Actinomycetes from Extreme Environments: Chemotaxonomic Insights and Biotechnological Potential" Marine Drugs 23, no. 1: 1. https://doi.org/10.3390/md23010001
APA StyleCunha, M. B., Jorge, A. F., Nunes, M. J., Sousa, J. R., Lança, M. J., Gomes da Silva, M., & Gaudêncio, S. P. (2025). GC/MS Fatty Acid Profile of Marine-Derived Actinomycetes from Extreme Environments: Chemotaxonomic Insights and Biotechnological Potential. Marine Drugs, 23(1), 1. https://doi.org/10.3390/md23010001