High Solubility and Bioavailability of Lobster Shell-Derived Calcium for Significantly Proliferating Bone and Skin Cells In Vitro
Abstract
:1. Introduction
2. Results
2.1. Lobster Minerals as a Calcium-Rich Source for Various Applications
2.2. Lobster Mineral as a Functional Ingredient or Nutrient in Foods and Calcium-Fortified Products
2.2.1. Water Holding and Oil Binding Capacity of Lobster Mineral
2.2.2. Higher Solubility of Lobster Mineral Is Promising for Calcium-Fortified Beverages
2.3. High Solubility of Gastric-Digested Lobster Calcium Paired with Its In Vitro Bioavailability Makes Lobster Mineral Favorable for a Dietary or Nutraceutical Calcium Source
2.4. Nutraceutical Effects of Lobster Calcium on Human Bone and Skin Cells
2.4.1. Lobster Calcium Significantly Stimulated the Proliferation of Human Bone Cells
2.4.2. Lobster Calcium Appreciably Mediated the Growth of Human Skin Cells
2.5. Cytotoxicity of Lobster Mineral Evaluated on Macrophage Cells
3. Materials and Methods
3.1. Materials
3.2. Structural Characterization of Lobster Mineral and Analyses of Its Mineral Profile, Calcium, Solubility, Functionalities, and Bioavailability
3.2.1. Scanning Electron Microscopy
3.2.2. Inductively Coupled Plasma Mass Spectrometry (ICP-MS) Analysis of Lobster Minerals
3.2.3. Water and Oil Binding Capacity of Lobster Mineral
3.2.4. Solubility of Lobster Minerals and Commercial Calcium Complex
3.3. In Vitro Simulated Gastrointestinal Digestion
3.4. In Vitro Effects of Lobster Minerals on Response and Proliferation of Bone and Skin Cells
3.4.1. Human Osteoblast-like Bone Cells (MG-63)
3.4.2. Human Keratinocytes (HaCaT Cells)
3.5. Cytotoxicity of the Lobster Mineral Evaluated on Macrophage Cells (THP-1)
3.6. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- FAO. The State of World Fisheries and Aquaculture 2022—Towards Blue Transformation. In The State of World Fisheries and Aquaculture (SOFIA); Food and Agriculture Organization of the United Nations: Rome, Italy, 2022. [Google Scholar]
- Popović, N.T.; Lorencin, V.; Strunjak-Perović, I.; Čož-Rakovac, R. Shell Waste Management and Utilization: Mitigating Organic Pollution and Enhancing Sustainability. Appl. Sci. 2023, 13, 623. [Google Scholar] [CrossRef]
- Nguyen, T.T.; Heimann, K.; Zhang, W. Protein pecovery from underutilised marine bioresources for product development with nutraceutical and pharmaceutical bioactivities. Mar. Drugs 2020, 18, 391. [Google Scholar] [CrossRef]
- Šimat, V.; Vlahović, J.; Soldo, B.; Mekinić, I.G.; Čagalj, M.; Hamed, I.; Skroza, D. Production and characterization of crude oils from seafood processing by-products. Food Biosci. 2020, 33, 100484. [Google Scholar] [CrossRef]
- Nguyen, T.T.; Barber, A.R.; Corbin, K.; Zhang, W. Lobster processing by-products as valuable bioresource of marine functional ingredients, nutraceuticals, and pharmaceuticals. Bioresour. Bioprocess. 2017, 4, 1–19. [Google Scholar] [CrossRef] [Green Version]
- Ya, T.; Simpson, B.K.; Ramaswamy, H.; Yaylayan, V.; Smith, J.P.; Hudon, C. Carotenoproteins from lobster waste as a potential feed supplement for cultured salmonids. Food Biotechnol. 1991, 5, 87–93. [Google Scholar] [CrossRef]
- Kaur, S.; Dhillon, G.S. The versatile biopolimer chitosan: Potential sources, evaluation of extraction methods and applications. Crit. Rev. Microbiol. 2014, 40, 155–175. [Google Scholar] [CrossRef] [PubMed]
- Younes, I.; Rinaudo, M. Chitin and Chitosan Preparation from Marine Sources. Structure, Properties and Applications. Mar. Drugs 2015, 13, 1133–1174. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Broquá, J.; Zanin, B.G.; Flach, A.M.; Mallmann, C.; Taborda, F.G.D.; Machado, L.E.L.; Alves, S.M.L.; Silva, M.M.; Dias, R.J.S.P. Methods of chitin production a short review. Am. J. Biomed. Sci. Res. 2019, 3, 307–314. [Google Scholar]
- Xiao, W.; Han, L.; Shi, B. Microwave-assisted extraction of flavonoids from Radix Astragali. Sep. Purif. Technol. 2008, 62, 614–618. [Google Scholar] [CrossRef]
- Lin, Y.-J.; Le, G.-W.; Wang, J.-Y.; Li, Y.-X.; Shi, Y.-H.; Sun, J. Antioxidative Peptides Derived from Enzyme Hydrolysis of Bone Collagen after Microwave Assisted Acid Pre-Treatment and Nitrogen Protection. Int. J. Mol. Sci. 2010, 11, 4297–4308. [Google Scholar] [CrossRef] [Green Version]
- Roy, I.; Mondal, K.; Gupta, M. Accelerating Enzymatic Hydrolysis of Chitin by Microwave Pretreatment. Biotechnol. Prog. 2003, 19, 1648–1653. [Google Scholar] [CrossRef]
- Horikoshi, S.; Nakamura, T.; Kawaguchi, M.; Serpone, N. Enzymatic proteolysis of peptide bonds by a metallo-endoproteinase under precise temperature control with 5.8-GHz microwave radiation. J. Mol. Catal. B Enzym. 2015, 116, 52–59. [Google Scholar] [CrossRef]
- Lukasiewicz, M.; Osowiec, A.; Marciniak, M. Microwave-assisted enzymatic hydrolysis of starch. Chem. (ECSOC-13) 2009, 1, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Valdez-Peña, A.U.; Espinoza-Perez, J.D.; Sandoval-Fabian, G.C.; Balagurusamy, N.; Hernandez-Rivera, A.; De-la-Garza-Rodriguez, I.M.; Contreras-Esquivel, J.C. Screening of industrial enzymes for deproteinisation of shrimp head for chitin recovery. Food Sci. Biotechnol. 2010, 19, 553–557. [Google Scholar] [CrossRef]
- Contreras-Esquivel, J.C.; Garcia, C.B.; Valdez Pena, A.U.; Flores Davila, C.P. Obtainment of Chitin from Shrimp Waste by Means of Microwave and/or autoclaving in Combination with Organic Acids in a Single Stage, in United States Patent Application. US 2011/0282042 A1, 17 November 2011. [Google Scholar]
- Flores, R.; Barrera-Rodríguez, S.; Shirai, K.; Durán-De-Bazúa, C. Chitin sponge, extraction procedure from shrimp wastes using green chemistry. J. Appl. Polym. Sci. 2007, 104, 3909–3916. [Google Scholar] [CrossRef]
- Nguyen, T.T.; Zhang, W. Techno-economic feasibility analysis of microwave-assisted biorefinery of multiple products from Australian lobster shells. Food Bioprod. Process. 2020, 124, 419–433. [Google Scholar] [CrossRef]
- Nguyen, T.T.; Zhang, W.; Barber, A.R.; Su, P.; He, S. Microwave-Intensified Enzymatic Deproteinization of Australian Rock Lobster Shells (Jasus edwardsii) for the Efficient Recovery of Protein Hydrolysate as Food Functional Nutrients. Food Bioprocess Technol. 2016, 9, 628–636. [Google Scholar] [CrossRef]
- Klomklao, S.; Poonsin, T.; Benjakul, S.; Simpson, B.K. Application and optimization of the highly efficient and environmentally-friendly microwave-intensified lactic acid demineralization of deproteinized Rock lobster shells (Jasusedwardsii) for chitin production. Food Bioprod. Process. 2017, 102, 367–374. [Google Scholar]
- Etcheverry, P.; Grusak, M.A.; Fleige, L.E. Application of in vitro bioaccessibility and bioavailability methods for calcium, carotenoids, folate, iron, magnesium, polyphenols, zinc, and vitamins B6, B12, D, and E. Front. Physiol. 2012, 3, 317. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tremblay, A.; Gilbert, J.-A. Human obesity: Is insufficient calcium/dairy intake part of the problem? J. Am. Coll. Nutr. 2011, 30, 449–453. [Google Scholar] [CrossRef]
- Amalraj, A.; Pius, A. In vitro study on the bioavailability of calcium and its absorption inhibitors in raw and cooked pulses commonly consumed in India. Int. Food Res. J. 2014, 22, 1525–1532. [Google Scholar]
- Ünal, G.; El, S.N.; Kiliç, S. In vitro determination of calcium bioavailability of milk, dairy products and infant formulas. Int. J. Food Sci. Nutr. 2005, 56, 13–22. [Google Scholar] [CrossRef] [PubMed]
- Bosscher, D.; Dyck, K.V.; Robberecht, H.; Caillie-Bertrand, M.V.; Deelstra, H. Bioavailability of calcium and zinc from cow’s milk-based versus soya-based infant food. Int. J. Food Sci. Nutr. 1998, 49, 277–283. [Google Scholar] [CrossRef]
- Shahidi, F.; Kim, S.-K.; Jung, W.-K. Calcium from fish bone and other marine resources. In Marine Nutraceutical and Functional Foods; Shahidi, F., Barrow, C., Eds.; CRC Press: Boca Raton, FL, USA, 2009. [Google Scholar]
- Zalloua, P.A.; Hsu, Y.-H.; Terwedow, H.; Zang, T.; Wu, D.; Tang, G.; Li, Z.; Hong, X.; Azar, S.T.; Wang, B.; et al. Impact of seafood and fruit consumption on bone mineral density. Maturitas 2007, 56, 1–11. [Google Scholar] [CrossRef]
- Larsen, T.; Thilsted, S.H.; Kongsbak, K.; Hansen, M. Whole small fish as a rich calcium source. Br. J. Nutr. 2000, 83, 191–196. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, S.-K.; Mendis, E. Bioactive compounds from marine processing byproducts—A review. Food Res. Int. 2006, 39, 383–393. [Google Scholar] [CrossRef]
- Toppe, J.; Aksnes, A.; Hope, B.; Albrektsen, S. Inclusion of fish bone and crab by-products in diets for Atlantic cod, Gadus morhua. Aquaculture 2006, 253, 636–645. [Google Scholar] [CrossRef]
- Malde, M.K.; Graff, I.E.; Siljander-Rasi, H.; Venäläinen, E.; Julshamn, K.; Pedersen, J.I.; Valaja, J. Fish bones—A highly available calcium source for growing pigs. J. Anim. Physiol. Anim. Nutr. 2010, 94, 66–76. [Google Scholar] [CrossRef]
- Malde, M.K.; Bügel, S.; Kristensen, M.; Malde, K.; Graff, I.E.; Pedersen, J.I. Calcium from salmon and cod bone is well absorbed in young healthy men: A double-blinded randomised crossover design. Nutr. Metab. 2010, 7, 61. [Google Scholar] [CrossRef] [Green Version]
- Menon, V.V.; Lele, S.S. Nutraceuticals and Bioactive Compounds from Seafood Processing Waste. In Springer Handbook of Marine Biotechnology; Kim, S.K., Ed.; Springer: Berlin/Heidelberg, Germany, 2015; pp. 1405–1425. [Google Scholar]
- Currie, C.; Framroze, B.; Bjerknes, C.; Hermansen, E. A Randomized, Blinded, Calcium-Carbonate Controlled Cross over Study of Serum Calcium Levels 24 Hours after CalGotm Oral Supplementation in Post- Menopausal Women. Biomed. J. Sci. Tech. Res. 2022, 41, 32581–32585. [Google Scholar] [CrossRef]
- Gaby, K. Bioavailability and solubility of different calcium-salts as a basis for calcium enrichment of beverages. Food Nutr. Sci. 2010, 2010, 53–58. [Google Scholar]
- Sunyecz, J. The use of calcium and vitamin D in the management of osteoporosis. Ther. Clin. Risk Manag. 2008, 4, 827–836. [Google Scholar] [CrossRef] [Green Version]
- Vannucci, L.; Fossi, C.; Quattrini, S.; Guasti, L.; Pampaloni, B.; Gronchi, G.; Giusti, F.; Romagnoli, C.; Cianferotti, L.; Marcucci, G.; et al. Calcium Intake in Bone Health: A Focus on Calcium-Rich Mineral Waters. Nutrients 2018, 10, 1930. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Subramaniam, T.; Fauzi, M.B.; Lokanathan, Y.; Law, J.X. The role of calcium in wound healing. Int. J. Mol. Sci. 2021, 22, 6486. [Google Scholar] [CrossRef]
- Nguyen, T.T. Biorefinery process development for recovery of functional and bioactive compounds from lobster processing by-products for food and nutraceutical applications. In Medical Biotechnology; Flinders University: Adelaide, Australia, 2017. [Google Scholar]
- Nemati, M.; Huda, N.; Ariffin, F. Development of calcium supplement from fish bone wastes of yellowfin tuna (Thunnus albacares) and characterization of nutritional quality. Int. Food Res. J. 2017, 24, 2419–2426. [Google Scholar]
- Cho, M.G.; Jeong, J.Y. Effects of Calcium Powder Mixtures and Binding Ingredients as Substitutes for Synthetic Phosphate on the Quality Properties of Ground Pork Products. Korean J. Food Sci. Anim. Resour. 2018, 38, 1179. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dave, S.; Sonawane, S.K. Utilization of eggshell in food system as an alternative source of Calcium. Indian Food Ind. Mag 2020, 2, 28–35. [Google Scholar]
- Aditya, S.; Stephen, J.; Radhakrishnan, M. Utilization of eggshell waste in calcium-fortified foods and other industrial applications: A review. Trends Food Sci. Technol. 2021, 115, 422–432. [Google Scholar] [CrossRef]
- Park, S. Effects of natural calcium powder addition on functional properties and storage characteristics of emulsion-type sausages. Master’s Thesis, Chungbuk National University, Cheongju, Korea, 2011. [Google Scholar]
- Bae, S.M.; Cho, M.G.; Jeong, J.Y. Effects of Various Calcium Powders as Replacers for Synthetic Phosphate on the Quality Properties of Ground Pork Meat Products. Korean J. Food Sci. Anim. Resour. 2017, 37, 456. [Google Scholar] [CrossRef] [Green Version]
- Cho, M.G.; Bae, S.M.; Jeong, J.Y. Egg Shell and Oyster Shell Powder as Alternatives for Synthetic Phosphate: Effects on the Quality of Cooked Ground Pork Products. Korean J. Food Sci. Anim. Resour. 2017, 37, 571. [Google Scholar] [CrossRef] [Green Version]
- Warner, R.D. The eating quality of meat: IV—Water holding capacity and juiciness. In Lawrie’s Meat Science; Elsevier: Amsterdam, The Netherlands, 2023; pp. 457–508. [Google Scholar] [CrossRef]
- Southward, C. Uses of casein and caseinates. In Developments in Dairy Chemistry. 4. Functional Milk Proteins; Elsevier Science Publishers Ltd.: London, UK, 1989; pp. 173–244. [Google Scholar]
- Yang, X.; Sebranek, J.G.; Luo, X.; Zhang, W.; Zhang, M.; Xu, B.; Zhang, Y.; Liang, R. Effects of Calcium Salts on the Physicochemical Quality of Cured Beef Sausages during Manufacturing and Storage: A Potential Calcium Application for Sausages with Alginate Casings. Foods 2021, 10, 2783. [Google Scholar] [CrossRef]
- Busca, K.; Wu, S.; Miao, S.; Govindan, A.; Strain, C.; O’donnell, S.; Whooley, J.; Gite, S.; Ross, R.P.; Stanton, C. An in vitro study to assess bioaccessibility and bioavailability of calcium from blue whiting (Micromesistius poutassou) fish bone powder. Ir. J. Agric. Food Res. 2021, 1, 1–12. [Google Scholar] [CrossRef]
- Aenglong, C.; Ngasakul, N.; Limpawattana, M.; Sukketsiri, W.; Chockchaisawasdee, S.; Stathopoulos, C.; Tanasawet, S.; Klaypradit, W. Characterization of novel calcium compounds from tilapia (Oreochromis niloticus) by-products and their effects on proliferation and differentiation of MC3T3-E1 cells. J. Funct. Foods 2023, 100, 105361. [Google Scholar] [CrossRef]
- Mititelu, M.; Moroșan, E.; Nicoară, A.C.; Secăreanu, A.A.; Musuc, A.M.; Atkinson, I.; Cusu, J.P.; Nițulescu, G.M.; Ozon, E.A.; Sarbu, I.; et al. Development of Immediate Release Tablets Containing Calcium Lactate Synthetized from Black Sea Mussel Shells. Mar. Drugs 2022, 20, 45. [Google Scholar] [CrossRef]
- Chaiwanon, P.; Puwastien, P.; Nitithamyong, A.; Sirichakwal, P.P. Calcium Fortification in Soybean Milk and In Vitro Bioavailability. J. Food Compos. Anal. 2000, 13, 319–327. [Google Scholar] [CrossRef]
- Flammini, L.; Martuzzi, F.; Vivo, V.; Ghirri, A.; Salomi, E.; Bignetti, E.; Barocelli, E. Hake fish bone as a calcium source for efficient bone mineralization. Int. J. Food Sci. Nutr. 2016, 67, 265–273. [Google Scholar] [CrossRef]
- TechNyFlex. Kalsio Premium Calcium Supplement. 2010. Available online: http://www.technyflex.com.au/products/kalsio-humans/ (accessed on 20 November 2016).
- NutriZing. Fish Bone Powder—Good for Human and Animals. 2016. Available online: http://nutrizing.co.nz/product/calcium-fish-bone-powder/ (accessed on 10 October 2016).
- Lee, D.-Y.; Oh, J.-H.; Uhm, J.-T.; Kim, I.-H.; Park, M.-J.; Moon, S.-H.; Park, J.W.; Kim, W.-S.; Shim, S.-M. Impact of acidity regulator and excipient nutrients on digestive solubility and intestinal transport of calcium from calcium phosphate and carbonate. Food Funct. 2020, 11, 10655–10664. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.E.; Lee, S.H. Skin barrier and calcium. Ann. Dermatol. 2018, 30, 265–275. [Google Scholar] [CrossRef]
- Kawai, K.; Larson, B.J.; Ishise, H.; Carre, A.L.; Nishimoto, S.; Longaker, M.; Lorenz, H.P. Calcium-Based Nanoparticles Accelerate Skin Wound Healing. PLoS ONE 2011, 6, e27106. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fujisaki, H.; Futaki, S.; Yamada, M.; Sekiguchi, K.; Hayashi, T.; Ikejima, T.; Hattori, S. Respective optimal calcium concentrations for proliferation on type I collagen fibrils in two keratinocyte line cells, HaCaT and FEPE1L-8. Regen. Ther. 2018, 8, 73–79. [Google Scholar] [CrossRef]
- Csernoch, L.; Hunyadi, J.; Kovács, L. Calcium release activated calcium entry in a human skin derived cell line (HaCaT). Exp. Dermatol. 2000, 9, 200–205. [Google Scholar] [CrossRef]
- Leslie, L.J.; Bathrinarayanan, P.V.; Jackson, P.; Muanda, J.A.M.M.; Pallett, R.; Stillman, C.J.P.; Marshall, L.J. A comparative study of electronic cigarette vapor extracts on airway-related cell lines in vitro. Inhal. Toxicol. 2017, 29, 126–136. [Google Scholar] [CrossRef] [Green Version]
- Mititelu, M.; Stanciu, G.; Drăgănescu, D.; Ioniță, A.C.; Neacșu, S.M.; Dinu, M.; Staden, R.-I.S.-V.; Moroșan, E. Mussel Shells, a Valuable Calcium Resource for the Pharmaceutical Industry. Mar. Drugs 2021, 20, 25. [Google Scholar] [CrossRef]
- Ludden, J.N.; Rui, F.; Gauthier, G.; Stix, J.; Lang, S.; Francis, D.; Machado, N.; Wu, G. Application of LAM-ICP-MS analysis to minerals. Can. Mineral. 1995, 33, 419–434. [Google Scholar]
- Geirsdottir, M.; Sigurgisladottir, S.; Hamaguchi, P.Y.; Thorkelsson, G.; Johannsson, R.; Kristinsson, H.G.; Kristjansson, M.M. Enzymatic Hydrolysis of Blue Whiting (Micromesistius poutassou); Functional and Bioactive Properties. J. Food Sci. 2011, 76, C14–C20. [Google Scholar] [CrossRef] [PubMed]
- Beuchat, L.B. Functional and electro phonetic characteristics of succinylated peanut flour proteins. J. Agric. Food Chem. 1977, 25, 258–261. [Google Scholar] [CrossRef]
- Shen, L.H.; Luten, J.; Robberecht, H.; Bindels, J.; Deelstra, H. Modification of an in-vitro method for estimating the bioavailability of zinc and calcium from foods. Eur. Food Res. Technol. 1994, 199, 442–445. [Google Scholar] [CrossRef] [PubMed]
Source | DOF 1 | MG-63 Cells | HaCaT Cells | ||||||
---|---|---|---|---|---|---|---|---|---|
SS 2 | MS 3 | FV 4 | pV 5 | SS | MS | FV | pV | ||
Model | 11 | 25,614.19 | 2328.56 | 82.49 | <0.0001 * | 21,675.77 | 1970.52 | 18.07 | <0.0001 * |
A-Mineral product | 1 | 2366.82 | 2366.82 | 83.85 | <0.0001 * | 1941.87 | 1941.87 | 17.81 | 0.0003 * |
B-Incubated time | 1 | 14,661.17 | 14,661.17 | 519.39 | <0.0001 * | 14,762.25 | 14,762.25 | 135.41 | <0.0001 * |
C-Supplemented ratio | 2 | 4344.90 | 2172.45 | 76.96 | <0.0001 * | 3212.15 | 1606.08 | 14.73 | <0.0001 * |
AB | 1 | 1014.42 | 1014.42 | 35.94 | <0.0001 * | 51.36 | 51.36 | 0.47 | 0.4991 |
AC | 2 | 450.91 | 225.45 | 7.99 | 0.0022 * | 0.77 | 0.39 | 0.00353 | 0.9965 |
BC | 2 | 1909.61 | 954.80 | 33.83 | <0.0001 * | 1563.25 | 781.63 | 7.17 | 0.0036 * |
ABC | 2 | 866.35 | 433.18 | 15.35 | <0.0001 * | 144.11 | 72.06 | 0.66 | 0.5255 |
Pure error | 24 | 677.46 | 28.23 | 2616.47 | 109.02 | ||||
Cor total | 35 | 26,291.65 | 24,292.24 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nguyen, T.T.; Hoang, T.; Pham, T.; Truong, V.K.; Luo, X.; Qin, J.; Zhang, W. High Solubility and Bioavailability of Lobster Shell-Derived Calcium for Significantly Proliferating Bone and Skin Cells In Vitro. Mar. Drugs 2023, 21, 358. https://doi.org/10.3390/md21060358
Nguyen TT, Hoang T, Pham T, Truong VK, Luo X, Qin J, Zhang W. High Solubility and Bioavailability of Lobster Shell-Derived Calcium for Significantly Proliferating Bone and Skin Cells In Vitro. Marine Drugs. 2023; 21(6):358. https://doi.org/10.3390/md21060358
Chicago/Turabian StyleNguyen, Trung T., Thanh Hoang, Tuyet Pham, Vi Khanh Truong, Xuan Luo, Jian Qin, and Wei Zhang. 2023. "High Solubility and Bioavailability of Lobster Shell-Derived Calcium for Significantly Proliferating Bone and Skin Cells In Vitro" Marine Drugs 21, no. 6: 358. https://doi.org/10.3390/md21060358
APA StyleNguyen, T. T., Hoang, T., Pham, T., Truong, V. K., Luo, X., Qin, J., & Zhang, W. (2023). High Solubility and Bioavailability of Lobster Shell-Derived Calcium for Significantly Proliferating Bone and Skin Cells In Vitro. Marine Drugs, 21(6), 358. https://doi.org/10.3390/md21060358