Marine Natural Products as Innovative Cosmetic Ingredients
Abstract
:1. Introduction
2. Materials and Methods
3. Target Biological Properties of Cosmetic Ingredients
4. Natural Products
Compound Class | Compound | Findings | Bioactivity | Phylum | Refs. |
---|---|---|---|---|---|
Mycosporin-like amino acids (MAAs) | Porphyra-334 | A cream containing both Porphyra-334 and Shinorine (Helioguard 365®, Aqua (and) Lecithin (and) Alcohol (and) Sodium Lactate (and) Porphyra Umbilicalis (and) Phenoxyethanol, Mibelle AG Biochemistry, Germany) improved keratinocytes cell viability and diminished DNA damage in a dose-dependent manner upon UVA irradiation in vitro. Human studies revealed that Helioguard 365® reduced lipid perioxidation by 35% in a single application and, after a 4-week application, skin firmness and smoothness improved by 10% and wrinkle depth was reduced by 20%. Helioguard 365® also presented in vitro anti-inflammatory activity by promoting or inhibiting anti- and pro-inflammatory mediators. | Photoprotective, anti-aging, antioxidant, and anti-inflammatory. | Rhodophyta | [44,45] |
Shinorine | |||||
Palythine | Palythine at 10% presented an in vitro SPF of 17.9. In vitro, it was shown to inhibit solar radiation-induced cell death of keratinocytes and DNA damage. Solar radiation-induced oxidative stress and pro-inflammatory gene expression were also reduced in vitro. A cream containing palythine (Helinori®, Water (and) Porphyra Umbilicalis Extract, Gelyma, France) prevented the formation of sunburn cells by 94% after three days of application, and protected fibroblasts and keratinocytes from UVA-induced oxidative stress in vitro. | [46,47] | |||
Mycosporine-glycine | Suppressed the expression of UV-induced age-related genes and inflammation-related genes in vitro. Reduced radiation-induced oxidative stress in vitro. Presented, in vitro, wound healing in keratinocytes. Inhibited lipid peroxidase in a dose-dependent manner in vitro, with moderate activity at 30 µM. | Rhodophyta Chlrophyta Chordata Ascomycota Cyanobacteria | [45,47,48,49] | ||
Mycosporine-2-glycine | Reduced inflammation in keratinocytes upon irradiation in vitro. Presented antioxidant activity similar to ascorbic acid, in vitro and in vivo. Higher free radical scavenging activity than Trolox, determined by ABTS assay. Was shown in vitro to protect against oxidative stress-induced DNA damage. | Cyanobacteria | [45,50,51,52,53] | ||
13-O-β-galactosyl-Porphyra | Presented high protection for keratinocytes against UVA and UVB in vitro. | Photoprotective | [2,54] | ||
Collemin A | Provided protection for keratinocytes against UVA and UVB in vitro. Prevented complete formation of erythema, in humans, when applied 15 min prior to irradiation at a concentration of 6 µg/cm2 in vivo. | Ascomycota | [2,55] | ||
Polyssacharides | Alginates | Alginates present applications as gelling agents in cosmetics. Hydrogel formation, promoting wound healing. | Gelling agent, wound healing | Ochrophyta | [56,57] |
Chitin | Skin humectant and rejuvenant with many commercialized applications. | Moisturizers | Arthopoda | [56,58,59,60] | |
Chitosan | Arthopoda Zygomycota Chlorophyta | ||||
Fucoidan | Promotes fibroblast proliferation and collagen deposition in vitro. Protects the elastic fiber network of the skin in vitro. Was shown in vitro to regulate MPPs’ activity and secretion. Inhibited tyrosinase activity and presented anti-melanogenesis activity in an in vitro B16 model. | Anti-aging, whitening, and wound healing. | Chlorophyta Rhodophyta Phaeophyta | [44,61,62] | |
Carrageenan | Shown to scavenge free radicals and reduce DPPH levels in vitro. Provides photoprotection by diminishing ROS levels in UVB-irradiated keratinocytes in vitro. Injections of carrageenan resulted in removal of dermal melanin in guinea pigs. Applications as viscosifier and binder in toothpastes. Facilitates and improves water absorption by the skin. | Antioxidant, anti-photoaging, and whitening. | Rhodophyta | [63,64] | |
Hyaluronic acid | Forms a film in the stratum corneum that not only protects the skin but also prevents transepidermal water loss and moisturizes the epidermis. Vastly present in many commercialized formulations. | Skin rejuvenant, wound healing, and anti-aging. | Gyrista | [56] | |
Gracilaria lemaneiformis polysaccharide fraction 2 (GLP-2) | Promotes keratinocytes proliferation during in vitro wound healing assays. | Wound healing | Rhodophyta | [62,65] | |
Laminarin | Presents high DPPH scavenging activity and potent ROS absorbance capacity in vitro. Protects against UVB damage by regulating MMP activity in vivo. | Antioxidant, anti-aging, and anti-photoaging. | Ochrophyta | [61,66] | |
Carotenoids | β-carotene | Delays skin aging by reducing the expression of MMP and, consequently, extracellular matrix degradation, in vitro, upon irradiation or when not irradiated. Protects against UVA damage in vitro. | Anti-aging, antioxidant, and photoprotective. | Chlorophyta Tracheophyta Cyanobacteria Mollusca Arthropoda Echinodermata Euryarchaeota | [67] |
Astaxanthin | Very strong antioxidant activity. Reduced the production of melanin in vitro. | Antioxidant, anti-photoaging, and whitening. | Chlorophyta Pseudomonadota | [27,68,69] | |
Fucoxanthin | Strong antioxidant activity and protective effect against oxidative stress in vitro using Vero cells. Significantly reduced UV-induced DNA damage in vitro. Presented in vivo antioxidant activity, translated in the decrease of lipid peroxidation. | Antioxidant and photoprotective. | Ochrophyta | [27,70,71] | |
Zeaxanthin | Presented activity against UVB-induced skin damage in vivo. Inhibits tyrosinase in vitro. | Antioxidant, photoprotective, and whitening. | [71,72] | ||
Polyphenols | Dieckol | Shown to promote hair growth in mice in vivo. Inhibits hyaluronidase in vitro. | Hair growth and anti-aging. | [73,74] | |
Phlorotannins | Protected HaCat from UV-induced apoptosis in vitro. Inhibitors of tyrosinase and hyaluronidase in vitro. | Whitening, anti-aging, and photoprotective. | [74,75] | ||
Sargachromanol E | Inhibition of MMPs after UV irradiation of dermal fibroblasts in vitro. Anti-melanogenic activity in vitro. | Anti-photoaging and whitening. | [76] | ||
Fatty Acids | Omega-3 polyunsaturated fatty acids | With dietary consumption of these fatty acids, the production of proinflammatory eicosanoids is decreased upon UV irradiation. Suppress UV-induced keratinocyte damage in vitro. Shown to reduce erythema and polymorphic light eruption in humans when taken orally. Accelerated wound healing in vivo when administered by IV in rats. | Anti-photoaging, anti-aging, and wound healing. | Chordata | [77] |
Docosahexaenoic acid | Increased photoprotection by increasing resistance to UV-induced apoptosis and reducing proinflammatory mediators in human keratinocytes in vitro. Prevents UV-induced photoaging by reducing MMPs in vitro. Reduced erythema and proinflammatory factors in mouse skin upon irradiation in vivo. Decreased erythema in human skin in vivo. Accelerated wound healing in mice by modulating inflammation in vivo. | Anti-photoaging, anti-aging, and wound healing. | [77,78,79] | ||
Eicosapentaenoic acid | Reduced inflammation mediators upon irradiation in keratinocytes and fibroblasts in vitro. Modulated MMPs’ expression in dermal fibroblasts upon irradiation in vitro. Oral administration suppressed ear edema upon irradiation in mice in vivo. Prevents skin moisture loss. | Anti-photoaging, anti-aging, photoprotective, and moisturizer. | [76,79,80,81] | ||
Linoleic Acid | When administered orally or topically, reduced UV-induced skin erythema in hairless mice in vivo. Improved wound healing when applied topically by reducing the thickness of the necrotic cell layer in vivo. | Anti-photoaging, photoprotective, anti-aging, and wound healing. | [77] | ||
α-Linoleic Acid | |||||
Omega-6 polyunsaturated fatty acids | Modulates and/or enhances inflammatory infection in the wound, accelerating wound healing. Restores transepidermal water loss. | Wound healing and moisturizer. | Ochrophyta | [68,77,82] | |
Proteins and Peptides | Collagen | Enhances skin regeneration in wounds when incorporated into dressings in vivo. Reduces skin pigmentation by inhibiting tyrosinase. Modulates MMPs. Prevents photoaging in mice irradiated with UV rays by modulating induced oxidative stress in vivo. | Whitening, wound healing, anti-aging, antioxidant, and anti-photoaging. | Mollusca Chordata Porifera Cnidaria | [83,84,85,86,87,88,89] |
Carnosine | Presented in vitro antioxidant activity. | Antioxidant | Chordata | [83,90] | |
Anserine | |||||
Gelatin | Reduced photoaging in mice skin and suppressed UV-induced injury upon irradiation in vivo. | Anti-photoaging and photoprotective. | [83] | ||
Gelatin peptides | |||||
Aosa biopeptide | Stimulates collagen production in fibroblasts in vitro. | Anti-aging | Chlorophyta | [90] | |
B-phycoerythrin | Used as pigments in makeup formulations and other cosmetics. | N/A | Rhodophyta | [91] | |
Alkaloids | Golmaenone | Presented radical scavenging activity and protected from UVA radiation in vitro. | Antioxidant and photoprotective. | Ascomycota | [16,92] |
Dihydroxyisoechinulin A | |||||
Echinulin | |||||
Terpenoids | Tetraprenyltoluquinol | Reduced ROS production in fibroblasts in vitro. | Anti-photoaging, antioxidant, and photoprotective. | Ochrophyta | [93] |
Spatane diterpenoids | Induces apoptosis on cells that suffered photodamage in vitro. | Photoprotective | [31,93] |
4.1. Marine Natural Products by Compound Class (Table 1)
4.1.1. Mycosporine-like Amino Acids (MAAs)
4.1.2. Polysaccharides
4.1.3. Carotenoids
4.1.4. Polyphenolic Compounds
4.1.5. Fatty Acids
4.1.6. Proteins and Peptides
4.1.7. Alkaloids
4.1.8. Terpenoids
4.2. Marine Natural Products by Phylum
4.2.1. Porifera
4.2.2. Chordata
4.2.3. Cnidaria
4.2.4. Echinoderms
4.2.5. Algae
4.2.6. Bacteria
4.2.7. Fungi
4.2.8. Corals
4.2.9. Phytoplankton
4.2.10. Sea Water and Sea Mud
5. Challenges and Opportunities
6. Regulatory Requirements
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Jesumani, V.; Du, H.; Aslam, M.; Pei, P.; Huang, N. Potential use of seaweed bioactive compounds in skincare—A review. Mar. Drugs 2019, 17, 688. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alves, A.; Sousa, M.E.; Kijjoa, A.; Pinto, M. Marine-derived compounds with potential use as cosmeceuticals and nutricosmetics. Molecules 2020, 25, 2536. [Google Scholar] [CrossRef] [PubMed]
- Lintner, K.; Mas-Chamberlin, C.; Mondon, P.; Peschard, O.; Lamy, L. Cosmeceuticals and active ingredients. Clin. Dermatol. 2009, 27, 461–468. [Google Scholar] [CrossRef] [PubMed]
- Mohd-Setapar, S.H.; John, C.P.; Mohd-Nasir, H.; Azim, M.M.; Ahmad, A.; Alshammari, M.B. Application of Nanotechnology Incorporated with Natural Ingredients in Natural Cosmetics. Cosmetics 2022, 9, 110. [Google Scholar] [CrossRef]
- Khan, A.D.; Alam, M.N. Cosmetics and Their Associated Adverse Effects: A review. J. Appl. Pharm. Sci. Res. 2019, 2, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Savary, G.; Grisel, M.; Picard, C. Cosmetics and Personal Care Products. In Natural Polymers; Springer International Publishing: Cham, Switzerland, 2016; pp. 219–261. [Google Scholar]
- Martins, A.; Vieira, H.; Gaspar, H.; Santos, S. Marketed marine natural products in the pharmaceutical and cosmeceutical industries: Tips for success. Mar. Drugs 2014, 12, 1066–1101. [Google Scholar] [CrossRef] [Green Version]
- Mohd-Nasir, H.; Mohd-Setapar, S.H. Natural Ingredients in Cosmetics from Malaysian Plants: A Review. Sains Malays. 2018, 47, 951–959. [Google Scholar] [CrossRef]
- Bom, S.; Jorge, J.; Ribeiro, H.M.; Marto, J. A step forward on sustainability in the cosmetics industry: A review. J. Clean. Prod. 2019, 225, 270–290. [Google Scholar] [CrossRef]
- Regulation (EC) No 1223/2009 of the European Parliament and of the Council of 30 November 2009 on cosmetic products. Off. J. Eur. Union 2009, L 342/59.
- Wang, L.; Jayawardena, T.U.; Yang, H.-W.; Lee, H.-G.; Jeon, Y.-J. The Potential of Sulfated Polysaccharides Isolated from the Brown Seaweed Ecklonia maxima in Cosmetics: Antioxidant, Anti-melanogenesis, and Photoprotective Activities. Antioxidants 2020, 9, 724. [Google Scholar] [CrossRef]
- Balakrishnan, D.; Kandasamy, D.; Nithyanand, P. A review on Antioxidant activity of marine organisms. Int. J. ChemTech Res. 2014, 6, 974–4290. [Google Scholar]
- Brunt, E.G.; Burgess, J.G. The promise of marine molecules as cosmetic active ingredients. Int. J. Cosmet. Sci. 2018, 40, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Kusumawati, I.; Indrayanto, G. Natural Antioxidants in Cosmetics. In Studies in Natural Products Chemistry; Elsevier: Amsterdam, The Netherlands, 2013; pp. 485–505. [Google Scholar]
- Pandel, R.; Poljšak, B.; Godic, A.; Dahmane, R. Skin Photoaging and the Role of Antioxidants in Its Prevention. ISRN Dermatol. 2013, 2013, 930164. [Google Scholar] [CrossRef] [Green Version]
- Corinaldesi, C.; Barone, G.; Marcellini, F.; Dell’Anno, A.; Danovaro, R. Marine microbial-derived molecules and their potential use in cosmeceutical and cosmetic products. Mar. Drugs 2017, 15, 118. [Google Scholar] [CrossRef]
- Draelos, Z.D. Cosmeceuticals What’s Real, What’s Not. Dermatol. Clin. 2019, 37, 107–115. [Google Scholar] [CrossRef]
- Ebanks, J.P.; Wickett, R.R.; Boissy, R.E. Mechanisms regulating skin pigmentation: The rise and fall of complexion coloration. Int. J. Mol. Sci. 2009, 10, 4066–4087. [Google Scholar] [CrossRef] [Green Version]
- Baghel, M.; Badwaik, H.; Patil, S.; Azajuddin, A. Plant Bioactives as Inhibitors of Matrix Metalloproteases and their Anti-skin Photoaging Potential. Pharmacogn. Rev. 2022, 16, 126–138. [Google Scholar] [CrossRef]
- Geng, R.; Kang, S.-G.; Huang, K.; Tong, T. Boosting the Photoaged Skin: The Potential Role of Dietary Components. Nutrients 2021, 13, 1691. [Google Scholar] [CrossRef]
- Lee, H.; Hong, Y.; Kim, M. Structural and Functional Changes and Possible Molecular Mechanisms in Aged Skin. Int. J. Mol. Sci. 2021, 22, 12489. [Google Scholar] [CrossRef]
- Singh, B.; Schoeb, T.R.; Bajpai, P.; Slominski, A.; Singh, K.K. Reversing wrinkled skin and hair loss in mice by restoring mitochondrial function. Cell Death Dis. 2018, 9, 735. [Google Scholar] [CrossRef] [Green Version]
- Tobin, D.J. Introduction to skin aging. J. Tissue Viability 2017, 26, 37–46. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, M.-K.; Ryu, H.; Lee, J.Y.; Jeong, H.H.; Baek, J.; Van, J.Y.; Kim, M.-J.; Jung, W.-K.; Lee, B. Potential Beneficial Effects of Sargassum spp. in Skin Aging. Mar. Drugs 2022, 20, 540. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.T.; Neo, B.H.; Betts, R.J. Glycosaminoglycans: Sweet as Sugar Targets for Topical Skin Anti-Aging. Clin. Cosmet. Investig. Dermatol. 2021, 14, 1227–1246. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, M.S.; Magalhães, M.C.; Sousa-Lobo, J.M.; Almeida, I.F. Trending Anti-Aging Peptides. Cosmetics 2020, 7, 91. [Google Scholar] [CrossRef]
- Guillerme, J.-B.; Couteau, C.; Coiffard, L. Applications for Marine Resources in Cosmetics. Cosmetics 2017, 4, 35. [Google Scholar] [CrossRef] [Green Version]
- Juncan, A.M.; Moisă, D.G.; Santini, A.; Morgovan, C.; Rus, L.-L.; Vonica-Țincu, A.L.; Loghin, F. Advantages of Hyaluronic Acid and Its Combination with Other Bioactive Ingredients in Cosmeceuticals. Molecules 2021, 26, 4429. [Google Scholar] [CrossRef]
- Jang, M.; Baek, S.; Kang, G.; Yang, H.; Kim, S.; Jung, H. Dissolving microneedle with high molecular weight hyaluronic acid to improve skin wrinkles, dermal density and elasticity. Int. J. Cosmet. Sci. 2020, 42, 302–309. [Google Scholar] [CrossRef]
- Yasin, A.; Ren, Y.; Li, J.; Sheng, Y.; Cao, C.; Zhang, K. Advances in Hyaluronic Acid for Biomedical Applications. Front. Bioeng. Biotechnol. 2022, 10, 910290. [Google Scholar] [CrossRef]
- Wang, H.-M.D.; Li, X.-C.; Lee, D.-J.; Chang, J.-S. Potential biomedical applications of marine algae. Bioresour. Technol. 2017, 244, 1407–1415. [Google Scholar] [CrossRef]
- Kamei, Y.; Sueyoshi, M.; Hayashi, K.-I.; Terada, R.; Nozaki, H. The novel anti-Propionibacterium acnes compound, Sargafuran, found in the marine brown alga Sargassum macrocarpum. J. Antibiot. 2009, 62, 259–263. [Google Scholar] [CrossRef]
- Chen, L.-W.; Chung, H.-L.; Wang, C.-C.; Su, J.-H.; Chen, Y.-J.; Lee, C.-J. Anti-Acne Effects of Cembrene Diterpenoids from the Cultured Soft Coral Sinularia flexibilis. Mar. Drugs 2020, 18, 487. [Google Scholar] [CrossRef]
- Ragusa, I.; Nardone, G.; Zanatta, S.; Bertin, W.; Amadio, E. Spirulina for Skin Care: A Bright Blue Future. Cosmetics 2021, 8, 7. [Google Scholar] [CrossRef]
- Kim, S.-K. Marine cosmeceuticals. J. Cosmet. Dermatol. 2014, 13, 56–67. [Google Scholar] [CrossRef]
- Yanti, C.; Vendy, V.; Hwang, J.K. In Vitro Anti-Acne Activity of Marine Sponge Acanthella cavernosa Extracts. Int. J. Biol. Pharm. Res. 2015, 6, 388–392. [Google Scholar]
- Kim, S.-K. Marine Cosmeceuticals, 1st ed.; CRC Press: Boca Raton, FL, USA, 2016. [Google Scholar]
- de Oliveira Silva, E.; Batista, R. Ferulic Acid and Naturally Occurring Compounds Bearing a Feruloyl Moiety: A Review on Their Structures, Occurrence, and Potential Health Benefits. Compr. Rev. Food Sci. Food Saf. 2017, 16, 580–616. [Google Scholar] [CrossRef] [Green Version]
- Rezayian, M.; Niknam, V.; Ebrahimzadeh, H. Oxidative damage and antioxidative system in algae. Toxicol. Rep. 2019, 6, 1309–1313. [Google Scholar] [CrossRef]
- Atanasov, A.G.; Zotchev, S.B.; Dirsch, V.M.; Supuran, C.T. Natural products in drug discovery: Advances and opportunities. Nat. Rev. Drug Discov. 2021, 20, 200–216. [Google Scholar] [CrossRef]
- Liu, J.-K. Natural products in cosmetics. Nat. Prod. Bioprospect. 2022, 12, 40. [Google Scholar] [CrossRef]
- Merquiol, L.; Romano, G.; Ianora, A.; D’Ambra, I. Biotechnological applications of scyphomedusae. Mar. Drugs 2019, 17, 604. [Google Scholar] [CrossRef] [Green Version]
- Ghareeb, M.A.; Tammam, M.A.; El-Demerdash, A.; Atanasov, A.G. Insights about clinically approved and Preclinically investigated marine natural products. Curr. Res. Biotechnol. 2020, 2, 88–102. [Google Scholar] [CrossRef]
- Schmid, D.; Schürch, C.; Zülli, F. Mycosporine-like amino acids from red algae protect against premature skin-aging. Euro Cosmet. 2006, 9, 1–4. [Google Scholar]
- Rosic, N.N. Mycosporine-Like Amino Acids: Making the Foundation for Organic Personalised Sunscreens. Mar. Drugs 2019, 17, 638. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lawrence, K.; Gacesa, R.; Long, P.; Young, A. Molecular photoprotection of human keratinocytes in vitro by the naturally occurring mycosporine-like amino acid palythine. Br. J. Dermatol. 2018, 178, 1353–1363. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chrapusta, E.; Kaminski, A.; Duchnik, K.; Bober, B.; Adamski, M.; Bialczyk, J. Mycosporine-Like Amino Acids: Potential Health and Beauty Ingredients. Mar. Drugs 2017, 15, 326. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Suh, S.-S.; Hwang, J.; Park, M.; Seo, H.H.; Kim, H.-S.; Lee, J.H.; Moh, S.H.; Lee, T.-K. Anti-Inflammation Activities of Mycosporine-Like Amino Acids (MAAs) in Response to UV Radiation Suggest Potential Anti-Skin Aging Activity. Mar. Drugs 2014, 12, 5174–5187. [Google Scholar] [CrossRef] [Green Version]
- Wada, N.; Sakamoto, T.; Matsugo, S. Mycosporine-Like Amino Acids and Their Derivatives as Natural Antioxidants. Antioxidants 2015, 4, 603–646. [Google Scholar] [CrossRef]
- Rosic, N.N. Recent advances in the discovery of novel marine natural products and mycosporine-like amino acid UV-absorbing compounds. Appl. Microbiol. Biotechnol. 2021, 105, 7053–7067. [Google Scholar] [CrossRef]
- Ngoennet, S.; Nishikawa, Y.; Hibino, T.; Waditee-Sirisattha, R.; Kageyama, H. A Method for the Isolation and Characterization of Mycosporine-Like Amino Acids from Cyanobacteria. Methods Protoc. 2018, 1, 46. [Google Scholar] [CrossRef] [Green Version]
- Tarasuntisuk, S.; Palaga, T.; Kageyama, H.; Waditee-Sirisattha, R. Mycosporine-2-glycine exerts anti-inflammatory and antioxidant effects in lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophages. Arch. Biochem. Biophys. 2019, 662, 33–39. [Google Scholar] [CrossRef]
- Cheewinthamrongrod, V.; Kageyama, H.; Palaga, T.; Takabe, T.; Waditee-Sirisattha, R. DNA damage protecting and free radical scavenging properties of mycosporine-2-glycine from the Dead Sea cyanobacterium in A375 human melanoma cell lines. J. Photochem. Photobiol. B Biol. 2016, 164, 289–295. [Google Scholar] [CrossRef]
- Ishihara, K.; Watanabe, R.; Uchida, H.; Suzuki, T.; Yamashita, M.; Takenaka, H.; Nazifi, E.; Matsugo, S.; Yamaba, M.; Sakamoto, T. Novel glycosylated mycosporine-like amino acid, 13-O-(β-galactosyl)-porphyra-334, from the edible cyanobacterium Nostoc sphaericum-protective activity on human keratinocytes from UV light. J. Photochem. Photobiol. B Biol. 2017, 172, 102–108. [Google Scholar] [CrossRef]
- Torres, A.; Hochberg, M.; Pergament, I.; Smoum, R.; Niddam, V.; Dembitsky, V.M.; Temina, M.; Dor, I.; Lev, O.; Srebnik, M.; et al. A new UV-B absorbing mycosporine with photo protective activity from the lichenized ascomycete Collema cristatum. Eur. J. Biochem. 2004, 271, 780–784. [Google Scholar] [CrossRef]
- Ahsan, H. The significance of complex polysaccharides in personal care formulations. J. Carbohydr. Chem. 2019, 38, 213–233. [Google Scholar] [CrossRef]
- Pereira, R.; Carvalho, A.; Vaz, D.C.; Gil, M.; Mendes, A.; Bártolo, P. Development of novel alginate based hydrogel films for wound healing applications. Int. J. Biol. Macromol. 2013, 52, 221–230. [Google Scholar] [CrossRef]
- Ruocco, N.; Costantini, S.; Guariniello, S.; Costantini, M. Polysaccharides from the Marine Environment with Pharmacological, Cosmeceutical and Nutraceutical Potential. Molecules 2016, 21, 551. [Google Scholar] [CrossRef]
- Guzmán, E.; Ortega, F.; Rubio, R.G. Chitosan: A Promising Multifunctional Cosmetic Ingredient for Skin and Hair Care. Cosmetics 2022, 9, 99. [Google Scholar] [CrossRef]
- Morin-Crini, N.; Lichtfouse, E.; Torri, G.; Crini, G. Applications of chitosan in food, pharmaceuticals, medicine, cosmetics, agriculture, textiles, pulp and paper, biotechnology, and environmental chemistry. Environ. Chem. Lett. 2019, 17, 1667–1692. [Google Scholar] [CrossRef] [Green Version]
- Priyan Shanura Fernando, I.; Kim, K.-N.; Kim, D.; Jeon, Y.-J. Algal polysaccharides: Potential bioactive substances for cosmeceutical applications. Crit. Rev. Biotechnol. 2019, 39, 99–113. [Google Scholar] [CrossRef]
- Yao, Y.; Xu, B. Skin Health Promoting Effects of Natural Polysaccharides and Their Potential Application in the Cosmetic Industry. Polysaccharides 2022, 3, 818–830. [Google Scholar] [CrossRef]
- Shafie, M.H.; Kamal, M.L.; Zulkiflee, F.F.; Hasan, S.; Uyup, N.H.; Abdullah, S.; Hussin, N.A.M.; Tan, Y.C.; Zafarina, Z. Application of Carrageenan extract from red seaweed (Rhodophyta) in cosmetic products: A review. J. Indian Chem. Soc. 2022, 99, 100613. [Google Scholar] [CrossRef]
- Pangestuti, R.; Kim, S.-K. Biological Activities of Carrageenan. In Advances in Food and Nutrition Research; Elsevier: Amsterdam, The Netherlands, 2014; pp. 113–124. [Google Scholar]
- Veeraperumal, S.; Qiu, H.-M.; Zeng, S.-S.; Yao, W.-Z.; Wang, B.-P.; Liu, Y.; Cheong, K.-L. Polysaccharides from Gracilaria lemaneiformis promote the HaCaT keratinocytes wound healing by polarised and directional cell migration. Carbohydr. Polym. 2020, 241, 116310. [Google Scholar] [CrossRef] [PubMed]
- Kadam, S.; O’Donnell, C.; Rai, D.; Hossain, M.; Burgess, C.; Walsh, D.; Tiwari, B. Laminarin from Irish Brown Seaweeds Ascophyllum nodosum and Laminaria hyperborea: Ultrasound Assisted Extraction, Characterization and Bioactivity. Mar. Drugs 2015, 13, 4270–4280. [Google Scholar] [CrossRef] [Green Version]
- Wertz, K.; Hunziker, P.B.; Seifert, N.; Riss, G.; Neeb, M.; Steiner, G.; Hunziker, W.; Goralczyk, R. β-Carotene Interferes with Ultraviolet Light A-Induced Gene Expression by Multiple Pathways. J. Investig. Dermatol. 2005, 124, 428–434. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Higuera-Ciapara, I.; Félix-Valenzuela, L.; Goycoolea, F.M. Astaxanthin: A Review of its Chemistry and Applications. Crit. Rev. Food Sci. Nutr. 2006, 46, 185–196. [Google Scholar] [CrossRef] [PubMed]
- Galasso, C.; Corinaldesi, C.; Sansone, C. Carotenoids from Marine Organisms: Biological Functions and Industrial Applications. Antioxidants 2017, 6, 96. [Google Scholar] [CrossRef] [Green Version]
- Heo, S.-J.; Jeon, Y.-J. Protective effect of fucoxanthin isolated from Sargassum siliquastrum on UV-B induced cell damage. J. Photochem. Photobiol. B Biol. 2009, 95, 101–107. [Google Scholar] [CrossRef]
- Jacob-Lopes, E.; Queiroz, M.I.; Zepka, L.Q. Pigments from Microalgae Handbook; Springer International Publishing: Cham, Switzerland, 2020. [Google Scholar]
- Shen, C.-T.; Chen, P.-Y.; Wu, J.-J.; Lee, T.-M.; Hsu, S.-L.; Chang, C.-M.J.; Young, C.-C.; Shieh, C.-J. Purification of algal anti-tyrosinase zeaxanthin from Nannochloropsis oculata using supercritical anti-solvent precipitation. J. Supercrit. Fluids 2011, 55, 955–962. [Google Scholar] [CrossRef]
- Kang, J.-I.; Kim, S.-C.; Kim, M.-K.; Boo, H.-J.; Jeon, Y.-J.; Koh, Y.-S.; Yoo, E.-S.; Kang, S.-M.; Kang, H.-K. Effect of Dieckol, a Component of Ecklonia cava, on the Promotion of Hair Growth. Int. J. Mol. Sci. 2012, 13, 6407–6423. [Google Scholar] [CrossRef] [Green Version]
- Ferreres, F.; Lopes, G.; Gil-Izquierdo, A.; Andrade, P.B.; Sousa, C.; Mouga, T.; Valentão, P. Phlorotannin Extracts from Fucales Characterized by HPLC-DAD-ESI-MSn: Approaches to Hyaluronidase Inhibitory Capacity and Antioxidant Properties. Mar. Drugs 2012, 10, 2766–2781. [Google Scholar] [CrossRef] [Green Version]
- Cotas, J.; Leandro, A.; Monteiro, P.; Pacheco, D.; Figueirinha, A.; Gonçalves, A.M.M.; Da Silva, G.J.; Pereira, L. Seaweed Phenolics: From Extraction to Applications. Mar. Drugs 2020, 18, 384. [Google Scholar] [CrossRef]
- Kalasariya, H.S.; Pereira, L.; Patel, N.B. Pioneering Role of Marine Macroalgae in Cosmeceuticals. Phycology 2022, 2, 172–203. [Google Scholar] [CrossRef]
- Huang, T.-H.; Wang, P.-W.; Yang, S.-C.; Chou, W.-L.; Fang, J.-Y. Cosmetic and Therapeutic Applications of Fish Oil’s Fatty Acids on the Skin. Mar. Drugs 2018, 16, 256. [Google Scholar] [CrossRef] [Green Version]
- Serini, S.; Donato, V.; Piccioni, E.; Trombino, S.; Monego, G.; Toesca, A.; Innocenti, I.; Missori, M.; De Spirito, M.; Celleno, L.; et al. Docosahexaenoic acid reverts resistance to UV-induced apoptosis in human keratinocytes: Involvement of COX-2 and HuR. J. Nutr. Biochem. 2011, 22, 874–885. [Google Scholar] [CrossRef]
- Amano, S. Characterization and mechanisms of photoageing-related changes in skin. Damages of basement membrane and dermal structures. Exp. Dermatol. 2016, 25, 14–19. [Google Scholar] [CrossRef]
- Couteau, C.; Coiffard, L. Phycocosmetics and other marine cosmetics, specific cosmetics formulated using marine resources. Mar. Drugs 2020, 18, 322. [Google Scholar] [CrossRef]
- Kim, H.H.; Shin, C.M.; Park, C.-H.; Kim, K.H.; Cho, K.H.; Eun, H.C.; Chung, J.H. Eicosapentaenoic acid inhibits UV-induced MMP-1 expression in human dermal fibroblasts. J. Lipid Res. 2005, 46, 1712–1720. [Google Scholar] [CrossRef] [Green Version]
- Ding, J.; Wu, B.; Chen, L. Application of Marine Microbial Natural Products in Cosmetics. Front. Microbiol. 2022, 13, 892505. [Google Scholar] [CrossRef]
- Venkatesan, J.; Anil, S.; Kim, S.-K.; Shim, M.S. Marine Fish Proteins and Peptides for Cosmeceuticals: A Review. Mar. Drugs 2017, 15, 143. [Google Scholar] [CrossRef]
- Shen, X.; Nagai, N.; Murata, M.; Nishimura, D.; Sugi, M.; Munekata, M. Development of salmon milt DNA/salmon collagen composite for wound dressing. J. Mater. Sci. Mater. Med. 2008, 19, 3473–3479. [Google Scholar] [CrossRef]
- Kim, M.-M.; Van Ta, Q.; Mendis, E.; Rajapakse, N.; Jung, W.-K.; Byun, H.-G.; Jeon, Y.-J.; Kim, S.-K. Phlorotannins in Ecklonia cava extract inhibit matrix metalloproteinase activity. Life Sci. 2006, 79, 1436–1443. [Google Scholar] [CrossRef]
- Ryu, B.; Qian, Z.-J.; Kim, S.-K. SHP-1, a novel peptide isolated from seahorse inhibits collagen release through the suppression of collagenases 1 and 3, nitric oxide products regulated by NF-κB/p38 kinase. Peptides 2010, 31, 79–87. [Google Scholar] [CrossRef] [PubMed]
- Zhuang, Y.; Hou, H.; Zhao, X.; Zhang, Z.; Li, B. Effects of Collagen and Collagen Hydrolysate from Jellyfish (Rhopilema esculentum) on Mice Skin Photoaging Induced by UV Irradiation. J. Food Sci. 2009, 74, H183–H188. [Google Scholar] [CrossRef] [PubMed]
- Fan, J.; Zhuang, Y.; Li, B. Effects of Collagen and Collagen Hydrolysate from Jellyfish Umbrella on Histological and Immunity Changes of Mice Photoaging. Nutrients 2013, 5, 223–233. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, H.-C.; Chen, H.-M.; Shiau, C.-Y. Free amino acids and peptides as related to antioxidant properties in protein hydrolysates of mackerel (Scomber austriasicus). Food Res. Int. 2003, 36, 949–957. [Google Scholar] [CrossRef]
- Bedoux, G.; Hardouin, K.; Burlot, A.S.; Bourgougnon, N. Bioactive Components from Seaweeds. Cosmetic applications and future development. Adv. Bot. Res. 2014, 71, 345–378. [Google Scholar] [CrossRef]
- Jeon, Y.-J.; Samarakoon, K. Recovery of Proteins and their Biofunctionalities from Marine Algae. In Marine Proteins and Peptides; John Wiley & Sons, Ltd.: Chichester, UK, 2013; pp. 253–269. [Google Scholar]
- Agrawal, S.; Adholeya, A.; Barrow, C.J.; Deshmukh, S.K. Marine fungi: An untapped bioresource for future cosmeceuticals. Phytochem. Lett. 2018, 23, 15–20. [Google Scholar] [CrossRef]
- Lourenço-Lopes, C.; Fraga-Corral, M.; Jimenez-Lopez, C.; Pereira, A.; Garcia-Oliveira, P.; Carpena, M.; Prieto, M.; Simal-Gandara, J. Metabolites from Macroalgae and Its Applications in the Cosmetic Industry: A Circular Economy Approach. Resources 2020, 9, 101. [Google Scholar] [CrossRef]
- Oren, A.; Gunde-Cimerman, N. Mycosporines and mycosporine-like amino acids: UV protectants or multipurpose secondary metabolites? FEMS Microbiol. Lett. 2007, 269, 1–10. [Google Scholar] [CrossRef]
- Daniel, S.; Cornelia, S.; Fred, Z. UV-A Sunscreen from Red Algae for Protection against Premature Skin Aging; Mibelle AG Biochemistry: Buchs, Switzerland, 2004. [Google Scholar]
- Waditee-Sirisattha, R.; Kageyama, H. Protective effects of mycosporine-like amino acid-containing emulsions on UV-treated mouse ear tissue from the viewpoints of antioxidation and antiglycation. J. Photochem. Photobiol. B Biol. 2021, 223, 112296. [Google Scholar] [CrossRef]
- Mcreynolds, C. Invasive Marine Macroalgae and their Current and Potential Use in Cosmetics. Master’s Thesis, Escola Superior de Turismo e Tecnologia do Mar, Peniche, Portugal, 2017. [Google Scholar]
- Xie, X.-T.; Zhang, X.; Liu, Y.; Chen, X.-Q.; Cheong, K.-L. Quantification of 3,6-anhydro-galactose in red seaweed polysaccharides and their potential skin-whitening activity. 3 Biotech 2020, 10, 189. [Google Scholar] [CrossRef]
- Hentati, F.; Tounsi, L.; Djomdi, D.; Pierre, G.; Delattre, C.; Ursu, A.V.; Fendri, I.; Abdelkafi, S.; Michaud, P. Molecules Bioactive Polysaccharides from Seaweeds. Molecules 2020, 25, 3152. [Google Scholar] [CrossRef]
- Salehi, B.; Sharifi-Rad, J.; Seca, A.M.L.; Pinto, D.C.G.A.; Michalak, I.; Trincone, A.; Mishra, A.P.; Nigam, M.; Zam, W.; Martins, N. Current Trends on Seaweeds: Looking at Chemical Composition, Phytopharmacology, and Cosmetic Applications. Molecules 2019, 24, 4182. [Google Scholar] [CrossRef] [Green Version]
- Pangestuti, R.; Siahaan, E.A.; Kim, S.-K. Photoprotective substances derived from marine algae. Mar. Drugs 2018, 16, 399. [Google Scholar] [CrossRef] [Green Version]
- Jesumani, V.; Du, H.; Pei, P.; Zheng, C.; Cheong, K.L.; Huang, N. Unravelling property of polysaccharides from Sargassum sp. as an anti-wrinkle and skin whitening property. Int. J. Biol. Macromol. 2019, 140, 216–224. [Google Scholar] [CrossRef]
- Chen, Q.; Kou, L.; Wang, F.; Wang, Y. Size-dependent whitening activity of enzyme-degraded fucoidan from Laminaria japonica. Carbohydr. Polym. 2019, 225, 115211. [Google Scholar] [CrossRef]
- Zhang, T.; Guo, Q.; Xin, Y.; Liu, Y. Comprehensive review in moisture retention mechanism of polysaccharides from algae, plants, bacteria and fungus. Arab. J. Chem. 2022, 15, 104163. [Google Scholar] [CrossRef]
- Casadidio, C.; Peregrina, D.V.; Gigliobianco, M.R.; Deng, S.; Censi, R.; Di Martino, P. Chitin and Chitosans: Characteristics, Eco-Friendly Processes, and Applications in Cosmetic Science. Mar. Drugs 2019, 17, 369. [Google Scholar] [CrossRef] [Green Version]
- Maia Campos, P.M.B.G.; de Melo, M.O.; de Camargo Junior, F.B. Effects of Polysaccharide-Based Formulations on Human Skin. In Polysaccharides; Springer International Publishing: Cham, Switzerland, 2014; pp. 1–18. [Google Scholar]
- Pagels, F.; Almeida, C.; Vasconcelos, V.; Guedes, A.C. Cosmetic Potential of Pigments Extracts from the Marine Cyanobacterium Cyanobium sp. Mar. Drugs 2022, 20, 481. [Google Scholar] [CrossRef]
- Kikukawa, H.; Okaya, T.; Maoka, T.; Miyazaki, M.; Murofushi, K.; Kato, T.; Hirono-Hara, Y.; Katsumata, M.; Miyahara, S.; Hara, K.Y. Carotenoid Nostoxanthin Production by Sphingomonas sp. SG73 Isolated from Deep Sea Sediment. Mar. Drugs 2021, 19, 274. [Google Scholar] [CrossRef]
- Thiyagarasaiyar, K.; Mahendra, C.; Goh, B.-H.; Gew, L.; Yow, Y.-Y. UVB Radiation Protective Effect of Brown Alga Padina australis: A Potential Cosmeceutical Application of Malaysian Seaweed. Cosmetics 2021, 8, 58. [Google Scholar] [CrossRef]
- Jeong, S.W.; Yang, J.E.; Choi, Y.J. Isolation and Characterization of a Yellow Xanthophyll Pigment-Producing Marine Bacterium, Erythrobacter sp. SDW2 Strain, in Coastal Seawater. Mar. Drugs 2022, 20, 73. [Google Scholar] [CrossRef] [PubMed]
- Viera, I.; Pérez-Gálvez, A.; Roca, M. Bioaccessibility of Marine Carotenoids. Mar. Drugs 2018, 16, 397. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kalasariya, H.S.; Pereira, L. Dermo-Cosmetic Benefits of Marine Macroalgae-Derived Phenolic Compounds. Appl. Sci. 2022, 12, 11954. [Google Scholar] [CrossRef]
- Jesumani, V.; Du, H.; Pei, P.; Aslam, M.; Huang, N. Comparative study on skin protection activity of polyphenol-rich extract and polysaccharide-rich extract from Sargassum vachellianum. PLoS ONE 2020, 15, e0227308. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arguelles, E.; Sapin, A. Bioprospecting of Turbinaria ornata (Fucales, phaeophyceae) for cosmetic application: Antioxidant, tyrosinase inhibition and antibacterial activities. J. Int. Soc. Southeast Asian Agric. Sci. 2020, 26, 30–41. [Google Scholar]
- Castejón, N.; Thorarinsdottir, K.A.; Einarsdóttir, R.; Kristbergsson, K.; Marteinsdóttir, G. Exploring the Potential of Icelandic Seaweeds Extracts Produced by Aqueous Pulsed Electric Fields-Assisted Extraction for Cosmetic Applications. Mar. Drugs 2021, 19, 662. [Google Scholar] [CrossRef]
- Vega, J.; Bonomi-Barufi, J.; Gómez-Pinchetti, J.L.; Figueroa, F.L. Cyanobacteria and Red Macroalgae as Potential Sources of Antioxidants and UV Radiation-Absorbing Compounds for Cosmeceutical Applications. Mar. Drugs 2020, 18, 659. [Google Scholar] [CrossRef]
- Soleimani, S.; Yousefzadi, M.; Nezhad, S.B.M.; Pozharitskaya, O.N.; Shikov, A.N. Potential of the Ethyl Acetate Fraction of Padina boergesenii as a Natural UV Filter in Sunscreen Cream Formulation. Life 2023, 13, 239. [Google Scholar] [CrossRef]
- Swanson, D.; Block, R.; Mousa, S.A. Omega-3 fatty acids EPA and DHA: Health benefits throughout life. Adv. Nutr. 2012, 3, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Ochsenreither, K.; Glück, C.; Stressler, T.; Fischer, L.; Syldatk, C. Production Strategies and Applications of Microbial Single Cell Oils. Front. Microbiol. 2016, 7, 1539. [Google Scholar] [CrossRef] [Green Version]
- Garay, L.A.; Boundy-Mills, K.L.; German, J.B. Accumulation of High-Value Lipids in Single-Cell Microorganisms: A Mechanistic Approach and Future Perspectives. J. Agric. Food Chem. 2014, 62, 2709–2727. [Google Scholar] [CrossRef]
- Barcelos, R.C.; de Mello-Sampayo, C.; Antoniazzi, C.T.; Segat, H.J.; Silva, H.; Veit, J.C.; Piccolo, J.; Emanuelli, T.; Bürger, M.E.; Lima, B.S.; et al. Oral supplementation with fish oil reduces dryness and pruritus in the acetone-induced dry skin rat model. J. Dermatol. Sci. 2015, 79, 298–304. [Google Scholar] [CrossRef]
- Asadpour, Y. Squid (Loligo loligo): The new source to extract omega-3 and omega-6 rich marine oils. Iran. J. Fish. Sci. 2016, 15, 100–107. [Google Scholar] [CrossRef]
- Alves, A.L.; Marques, A.L.P.; Martins, E.; Silva, T.H.; Reis, R.L. Cosmetic Potential of Marine Fish Skin Collagen. Cosmetics 2017, 4, 39. [Google Scholar] [CrossRef] [Green Version]
- Silva, T.H.; Moreira-Silva, J.; Marques, A.L.P.; Domingues, A.; Bayon, Y.; Reis, R.L. Marine origin collagens and its potential applications. Mar. Drugs 2014, 12, 5881–5901. [Google Scholar] [CrossRef] [Green Version]
- Shah, S.A.A.; Hassan, S.S.U.; Bungau, S.; Si, Y.; Xu, H.; Rahman, H.; Behl, T.; Gitea, D.; Pavel, F.-M.; Aron, R.A.C.; et al. Chemically diverse and biologically active secondary metabolites from marine phylum chlorophyta. Mar. Drugs 2020, 18, 493. [Google Scholar] [CrossRef]
- Pathak, J.; Pandey, A.; Maurya, P.K.; Rajneesh, R.; Sinha, R.P.; Singh, S.P. Cyanobacterial Secondary Metabolite Scytonemin: A Potential Photoprotective and Pharmaceutical Compound. Proc. Natl. Acad. Sci. India Sect. B Boil. Sci. 2020, 90, 467–481. [Google Scholar] [CrossRef]
- Lanier, R.K.; Cohen, A.E.; Weinkle, S.H. Effects of a facial cream containing the minor alkaloid anatabine on improving the appearance of the skin in mild to moderate rosacea: An open-label case series study. Case Rep. Dermatol. 2013, 5, 347–356. [Google Scholar] [CrossRef]
- Hwang, J.; Kim, D.; Park, J.S.; Park, H.J.; Shin, J.; Lee, S.K. Photoprotective Activity of Topsentin, A Bis(Indole) Alkaloid from the Marine Sponge Spongosorites genitrix, by Regulation of COX-2 and Mir-4485 Expression in UVB-Irradiated Human Keratinocyte Cells. Mar. Drugs 2020, 18, 87. [Google Scholar] [CrossRef] [Green Version]
- Teixeira, T.R.; Rangel, K.C.; Tavares, R.S.N.; Kawakami, C.M.; dos Santos, G.S.; Maria-Engler, S.S.; Colepicolo, P.; Gaspar, L.R.; Debonsi, H.M. In Vitro Evaluation of the Photoprotective Potential of Quinolinic Alkaloids Isolated from the Antarctic Marine Fungus Penicillium echinulatum for Topical Use. Mar. Biotechnol. 2021, 23, 357–372. [Google Scholar] [CrossRef]
- Is the Topical Use of Terpenes Effective?|Lab Effects. Available online: https://labeffects.com/topical-terpenes/ (accessed on 3 January 2023).
- Cleaning Up Cosmetics: Using Terpenes in Topicals|AbstraxTech—Abstrax Tech. Available online: https://abstraxtech.com/blogs/learn/terpenes-in-topicals (accessed on 3 January 2023).
- Balboa, E.; Li, Y.-X.; Ahn, B.-N.; Eom, S.-H.; Domínguez, H.; Jiménez, C.; Rodríguez, J. Photodamage attenuation effect by a tetraprenyltoluquinol chromane meroterpenoid isolated from Sargassum muticum. J. Photochem. Photobiol. B Biol. 2015, 148, 51–58. [Google Scholar] [CrossRef] [PubMed]
- Murti, Y.B. Isolation and Structure Elucidation of Bioactive Secondary Metabolites from Sponges Collected at Ujungpandang and in the Bali Sea, Indonesia. Doctorate Thesis, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany, July 2006. [Google Scholar]
- Zhang, H.; Dong, M.; Chen, J.; Wang, H.; Tenney, K.; Crews, P. Bioactive Secondary Metabolites from the Marine Sponge Genus Agelas. Mar. Drugs 2017, 15, 351. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Webster, N.S.; Taylor, M.W. Marine sponges and their microbial symbionts: Love and other relationships. Environ. Microbiol. 2012, 14, 335–346. [Google Scholar] [CrossRef] [PubMed]
- Dou, X.; Dong, B. Origins and bioactivities of natural compounds derived from marine ascidians and their symbionts. Mar. Drugs 2019, 17, 670. [Google Scholar] [CrossRef] [Green Version]
- Prameswari, N.; Handayani, B. Stichopus hermanii stimulation to Runx2 expression as Periodontal Remodeling Biomarkers to accelerate Orthodontic Tooth Movement. IOP Conf. Ser. Earth Environ. Sci. 2019, 217, 012058. [Google Scholar] [CrossRef]
- Frazão, B.; Antunes, A. Jellyfish bioactive compounds: Methods for wet-lab work. Mar. Drugs 2016, 14, 75. [Google Scholar] [CrossRef] [Green Version]
- Leone, A.; Lecci, R.M.; Milisenda, G.; Piraino, S. Mediterranean jellyfish as novel food: Effects of thermal processing on antioxidant, phenolic, and protein contents. Eur. Food Res. Technol. 2019, 245, 1611–1627. [Google Scholar] [CrossRef] [Green Version]
- Ibrahim, N.‘I.; Wong, S.K.; Mohamed, I.N.; Mohamed, N.; Chin, K.Y.; Ima-Nirwana, S.; Shuid, A.N. Wound healing properties of selected natural products. Int. J. Environ. Res. Public Health 2018, 15, 2360. [Google Scholar] [CrossRef] [Green Version]
- Motuhi, S.-E.; Mehiri, M.; Payri, C.E.; La Barre, S.; Bach, S. Marine Natural Products from New Caledonia—A Review. Mar. Drugs 2016, 14, 58. [Google Scholar] [CrossRef] [Green Version]
- Rachmin, I.; Ostrowski, S.M.; Weng, Q.Y.; Fisher, D.E. Topical treatment strategies to manipulate human skin pigmentation. Adv. Drug Deliv. Rev. 2020, 153, 65–71. [Google Scholar] [CrossRef]
- Ariede, M.B.; Candido, T.M.; Jacome, A.L.M.; Velasco, M.V.R.; De Carvalho, J.C.M.; Baby, A.R. Cosmetic attributes of algae—A review. Algal Res. 2017, 25, 483–487. [Google Scholar] [CrossRef]
- Cunha, S.A.; Coscueta, E.R.; Nova, P.; Silva, J.L.; Pintado, M.M. Bioactive Hydrolysates from Chlorella vulgaris: Optimal Process and Bioactive Properties. Molecules 2022, 27, 2505. [Google Scholar] [CrossRef]
- Salvador, A.; Chisvert, A. Analysis of Cosmetic Products, 1st ed.; Elsevier: Amsterdam, The Netherlands, 2007. [Google Scholar]
- Asmat, S.; Shah, A.; Shams Ul Hassan, S.; Bungau, S.; Si, Y.; Xu, H.; Rahman, M.H.; Behl, T.; Gitea, D.; Pavel, F.-M.; et al. Marine Drugs Chemically Diverse and Biologically Active Secondary Metabolites from Marine Phylum chlorophyta. Mar. Drugs 2020, 18, 493. [Google Scholar]
- Uppala, L. A Review on Active Ingredients from Marine Sources used in Cosmetics. SOJ Pharm. Pharm. Sci. 2015, 2, 1–3. [Google Scholar] [CrossRef] [Green Version]
- Galloway, A.W.E.; Winder, M. Partitioning the Relative Importance of Phylogeny and Environmental Conditions on Phytoplankton Fatty Acids. PLoS ONE 2015, 10, e0130053. [Google Scholar] [CrossRef] [Green Version]
- Favas, R.; Morone, J.; Martins, R.; Vasconcelos, V.; Lopes, G. Cyanobacteria Secondary Metabolites as Biotechnological Ingredients in Natural Anti-Aging Cosmetics: Potential to Overcome Hyperpigmentation, Loss of Skin Density and UV Radiation-Deleterious Effects. Mar. Drugs 2022, 20, 183. [Google Scholar] [CrossRef]
- Kim, S.-K.; Venkatesan, J.; Sudha, P. Sea Water and Sea Mud. In Marine Cosmeceuticals; CRC Press: Boca Raton, FL, USA, 2011; pp. 241–256. [Google Scholar]
- Nani, S.Z.M.; Zura, D.; Majid, F.A.A.; Jaafar, A.B.; Mahdzir, A.; Musa, M.N. Potential Health Benefits of Deep Sea Water: A Review. Evid.-Based Complement. Altern. Med. 2016, 2016, 6520475. [Google Scholar] [CrossRef] [Green Version]
- Bak, J.-P.; Kim, Y.-M.; Son, J.; Kim, C.-J.; Kim, E.-H. Application of concentrated deep sea water inhibits the development of atopic dermatitis-like skin lesions in NC/Nga mice. BMC Complement. Altern. Med. 2012, 12, 108. [Google Scholar] [CrossRef] [Green Version]
- Mourelle, M.L.; Gómez, C.P.; Legido, J.L. Microalgal Peloids for Cosmetic and Wellness Uses. Mar. Drugs 2021, 19, 666. [Google Scholar] [CrossRef]
- Abdel-Fattah, A.; Pingitore, N.E. Low levels of toxic elements in Dead Sea black mud and mud-derived cosmetic products. Environ. Geochem. Health 2009, 31, 487–492. [Google Scholar] [CrossRef]
- Katz, U.; Shoenfeld, Y.; Zakin, V.; Sherer, Y.; Sukenik, S. Scientific Evidence of the Therapeutic Effects of Dead Sea Treatments: A Systematic Review. Semin. Arthritis Rheum. 2012, 42, 186–200. [Google Scholar] [CrossRef] [PubMed]
- Al Bawab, A.; Bozeya, A.; Abu-Mallouh, S.; Abu Irmaileh, B.; Daqour, I.; Abu-Zurayk, R.A. The Dead Sea Mud and Salt: A Review of Its Characterization, Contaminants, and Beneficial Effects. IOP Conf. Ser. Mater. Sci. Eng. 2018, 305, 012003. [Google Scholar] [CrossRef]
- Thiyagarasaiyar, K.; Goh, B.-H.; Jeon, Y.-J.; Yow, Y.-Y. Algae metabolites in cosmeceutical: An overview of current applications and challenges. Mar. Drugs 2020, 18, 323. [Google Scholar] [CrossRef] [PubMed]
- Marine Biotechnology: A New Vision and Strategy for Europe. Available online: http://www.marinebiotech.eu/sites/marinebiotech.eu/files/public/library/MBT%20publications/2010%20ESF%20Position%20Paper.pdf (accessed on 3 January 2023).
- Juliano, C.; Magrini, G.A. Cosmetic Ingredients as Emerging Pollutants of Environmental and Health Concern. A Mini-Review. Cosmetics 2017, 4, 11. [Google Scholar] [CrossRef]
- Cinelli, P.; Coltelli, M.B.; Signori, F.; Morganti, P.; Lazzeri, A. Cosmetic Packaging to Save the Environment: Future Perspectives. Cosmetics 2019, 6, 26. [Google Scholar] [CrossRef] [Green Version]
- Rodil, R.; Quintana, J.B.; López-Mahía, P.; Muniategui-Lorenzo, S.; Prada-Rodríguez, D. Multiclass determination of sunscreen chemicals in water samples by liquid chromatography−tandem mass spectrometry. Anal. Chem. 2008, 80, 1307–1315. [Google Scholar] [CrossRef]
- Agamuthu, P.; Mehran, S.B.; Norkhairiyah, A. Marine debris: A review of impacts and global initiatives. Waste Manag. Res. 2019, 37, 987–1002. [Google Scholar] [CrossRef]
- The Beauty Industry Relies on Plastic. Can It Change? Available online: https://www.nationalgeographic.com/environment/article/beauty-personal-care-industry-plastic (accessed on 3 January 2023).
- Zero Waste Packaging Saves You More Than You Think. Available online: https://www.billerud.com/managed-packaging/knowledge-center/articles/zero-waste-packaging-saves-money (accessed on 3 January 2023).
- Cosmetics Europe—The Personal Care Association: Understanding the Cosmetics Regulation. Available online: https://cosmeticseurope.eu (accessed on 3 January 2023).
- The Front-Runner in Edible Packaging Materials—European Brand and Packaging Design Association. Available online: https://www.epda-design.com/the-front-runner-in-edible-packaging-materials/ (accessed on 3 January 2023).
- Regulation (EC) 1907/2006 of 18 December 2006 Concerning the Registration, Evaluation, Authorisation and Restriction of Chemicals (REACH), European Union, Brussels, Belgium. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A02006R1907-20140410 (accessed on 22 February 2023).
- Internal Market, Industry, Enterperneurship and SMEs. Available online: https://single-market-economy.ec.europa.eu/sectors/cosmetics/legislation_en (accessed on 22 February 2023).
- Cosmetic Laws and Regulations. Available online: gov/cosmetics/cosmetics-guidance-regulation/cosmetics-laws-regulations (accessed on 22 February 2023).
- Ferreira, M.; Matos, A.; Couras, A.; Marto, J.; Ribeiro, H. Overview of Cosmetic Regulatory Frameworks around the World. Cosmetics 2022, 9, 72. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fonseca, S.; Amaral, M.N.; Reis, C.P.; Custódio, L. Marine Natural Products as Innovative Cosmetic Ingredients. Mar. Drugs 2023, 21, 170. https://doi.org/10.3390/md21030170
Fonseca S, Amaral MN, Reis CP, Custódio L. Marine Natural Products as Innovative Cosmetic Ingredients. Marine Drugs. 2023; 21(3):170. https://doi.org/10.3390/md21030170
Chicago/Turabian StyleFonseca, Sara, Mariana Neves Amaral, Catarina Pinto Reis, and Luísa Custódio. 2023. "Marine Natural Products as Innovative Cosmetic Ingredients" Marine Drugs 21, no. 3: 170. https://doi.org/10.3390/md21030170
APA StyleFonseca, S., Amaral, M. N., Reis, C. P., & Custódio, L. (2023). Marine Natural Products as Innovative Cosmetic Ingredients. Marine Drugs, 21(3), 170. https://doi.org/10.3390/md21030170