Discovering a New Okadaic Acid Derivative, a Potent HIV Latency Reversing Agent from Prorocentrum lima PL11: Isolation, Structural Modification, and Mechanistic Study
Abstract
:1. Introduction
2. Results and Discussion
3. Materials and Methods
3.1. General Experimental Procedures
3.2. Microalgae Material
3.3. Fermentation and Extraction
3.4. Isolation and Purification
3.5. Preparation of Compound 3 and 4 by Esterification of C1-Carboxyl in Compound 1
3.6. Preparation of Compound 5, 6, and 7 by Acylation of OH-2, 7, 24, and 27 in Compound 1
3.7. Cell Lines and Antibodies
3.8. Flow Cytometry-Based Screening
3.9. Luciferase Reporter Assay
3.10. Immunoprecipitation Assay
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Chekan, J.R.; Fallon, T.R.; Moore, B.S. Biosynthesis of marine toxins. Curr. Opin. Chem. Biol. 2020, 59, 119–129. [Google Scholar] [CrossRef]
- Arumugam, M.; Balasubramanian, T.; Kim, S. Marine toxins for natural products drug discovery. In Marine Biomaterials, 1st ed.; Kim, S., Ed.; CRC Press: Boca Raton, FL, USA, 2013; pp. 89–105. [Google Scholar]
- Fusetani, N.; Kem, W. Marine toxins: An over view. In Marine Toxins as Research Tools, 1st ed.; Fusetani, N., Kem, W., Eds.; Springer: Berlin, Germany, 2009; pp. 1–44. [Google Scholar]
- Uemura, D.; Takahashi, K.; Yamamoto, T.; Katayama, C.; Tanaka, J.; Okumua, Y.; Hirata, Y. Norhalichondrin A: An antitumor polyether macrolide from a marine sponge. J. Am. Chem. Soc. 1985, 107, 4796–4798. [Google Scholar] [CrossRef]
- Hirata, Y.; Uemura, D. Halichondrins—Antitumor polyether macrolides from a marine sponge. Pure Appl. Chem. 1986, 58, 701–710. [Google Scholar] [CrossRef] [Green Version]
- Bai, R.; Paull, K.D.; Herald, C.L.; Malspeis, L.; Pettit, G.R.; Hamel, E. Halichondrin B and Homohalichondrin B, marine natural products binding in the vinca domain of Tubulin. J. Biol. Chem. 1991, 266, 15882–15889. [Google Scholar] [CrossRef]
- Pettit, G.R.; Kamano, Y.; Herald, C.L.; Tuinman, A.A.; Boettner, F.E.; Kizu, H.; Schmidt, J.M.; Baczynskyj, L.; Tomer, K.B.; Bontems, R.J. The isolation and structure of a remarkable marine animal antineoplastic constituent: Dolastatin 10. J. Am. Chem. Soc. 1987, 109, 6883–6885. [Google Scholar] [CrossRef]
- Luesch, H.; Moore, R.E.; Paul, V.J.; Mooberry, S.L.; Corbett, T.H. Isolation of dolastatin 10 from the marine cyanobacterium Symploca species VP642 and total stereochemistry and biological evaluation of its analogue symplostatin 1. J. Nat. Prod. 2001, 64, 907–910. [Google Scholar] [CrossRef] [PubMed]
- Krug, L.M.; Miller, V.A.; Kalemkerian, G.P.; Kraut, M.J.; Ng, K.K.; Heelan, R.T.; Pizzo, B.A.; Perez, W.; McClean, N.; Kris, M.G. Phase II study of dolastatin-10 in patients with advanced non-small-cell lung cancer. Ann. Oncol. 2000, 11, 227–228. [Google Scholar] [CrossRef]
- Saad, E.D.; Kraut, E.H.; Hoff, P.M.; Moore, D.F., Jr.; Jones, D.; Pazdur, R.; Abbruzzese, J.L. Phase II study of dolastatin-10 as first-line treatment for advanced colorectal cancer. Am. J. Clin. Oncol. 2002, 25, 451–453. [Google Scholar] [CrossRef] [PubMed]
- Younes, A.; Ansell, S.M. Novel agents in the treatment of Hodgkin lymphoma: Biological basis and clinical results. Semin. Hematol. 2016, 53, 186–189. [Google Scholar] [CrossRef] [Green Version]
- Merli, M.; Ferrario, A.; Maffioli, M.; Olivares, C.; Stasia, A.; Arcaini, L.; Passamonti, F. New uses for brentuximab vedotin and novel antibody drug conjugates in lymphoma. Expert Rev. Hematol. 2016, 9, 767–780. [Google Scholar] [CrossRef]
- Hoffmann, R.W. Natural product synthesis: Changes over time. Angew. Chem. Int. Ed. 2013, 52, 123–130. [Google Scholar] [CrossRef] [PubMed]
- Yasumoto, T.; Oshima, Y.; Yamaguchi, M. Occurrence of a new type of shellfish poisoning in the Tohoku district. Bull. Jpn. Soc. Sci. Fish. 1978, 44, 1249–1255. [Google Scholar] [CrossRef]
- Tachibana, K.; Scheurrer, P.J.; Tsukitani, Y.; Kikuchi, H.; Engen, D.V.; Clardy, J.; Gopichand, Y.; Schimitz, F.J. Okadaic acid, a cytotoxicity polyether from two marine sponges of the genus Halichondria. J. Am. Chem. Soc. 1981, 103, 2469–2471. [Google Scholar] [CrossRef]
- Ten-Hage, L.; Delaunay, N.; Pichon, V.; Coute, A.; Puiseux-Dao, S.; Turquet, J. Okadaic acid production from the marine benthic dinoflagellate Prorocentrum arenarium Faust (Dinophyceae) isolated from Europa Island coral reef ecosystem (SW Indian Ocean). Toxicon 2000, 38, 1043–1054. [Google Scholar] [CrossRef] [PubMed]
- Bialojan, C.; Takai, A. Inhibitory effect of marine sponge toxin, okadaic acid, on protein phosphatase, specificity and kinetics. Biochem. J. 1988, 256, 283–290. [Google Scholar] [CrossRef] [PubMed]
- Wang, R.; Lv, L.; Zhao, Y.; Yang, N. Okadaic acid inhibits cell multiplication and induces apoptosis in a549 cells, a human lung adenocarcinoma cell line. Int. J. Clin. Exp. Med. 2014, 7, 2025. [Google Scholar]
- Kamat, P.K.; Rai, S.; Nath, C. Okadaic acid induced neurotoxicity: An emerging tool to study Alzheimer’s disease pathology. Neurotoxicology 2013, 37, 163–172. [Google Scholar] [CrossRef]
- Ammosova, T.; Washington, K.; Debebe, Z. Dephosphorylation of CDK9 by protein phosphatase 2A and protein phosphatase-1 in Tat-activated HIV-1 transcription. Retrovirology 2005, 2, 47. [Google Scholar] [CrossRef] [Green Version]
- Munday, R. Is protein phosphatase inhibition responsible for the toxic effects of Okadaic Acid in animals? Toxins 2013, 5, 267–285. [Google Scholar] [CrossRef] [Green Version]
- Weng, H.-Z.; Zhu, J.-Y.; Yuan, F.-Y.; Tang, Z.-Y.; Tian, X.-Q.; Chen, Y.; Fan, C.-Q.; Tang, G.-H.; Yin, S. Homo/Hetero-dimers of aromatic bisabolane sesquiterpenoids with neuroprotective activity from the fungus Aspergillus versicolor A18 from South China Sea. Mar. Drugs 2022, 20, 322. [Google Scholar] [CrossRef]
- Li, Z.C.; Guo, J.; Wu, Y.T.; Zhou, Q. The BET bromodomain inhibitor JQ1 activates HIV latency through antagonizing Brd4 inhibition of Tat-transactivation. Nucleic Acids Res. 2013, 41, 277–287. [Google Scholar] [CrossRef] [PubMed]
- Pearson, R.; Kim, Y.K.; Hokello, J.; Lassen, K.; Friedman, J.; Tyagi, M.; Karn, J. Epigenetic silencing of human immunodeficiency virus (HIV) transcription by formation of restrictive chromatin structures at the viral long terminal repeat drives the progressive entry of HIV into latency. J. Virol. 2008, 82, 12291–12303. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nishiwaki, S.; Fujiki, H.; Suganuma, M.; Furuya-Suguri, H.; Matsushima, R.; Iida, Y.; Ojika, M.; Yamada, K.; Uemura, D.; Yasumoto, T.; et al. Stracture–activity relationship within a series of okadaic acid derivatives. Carcinogenesis 1990, 11, 1837–1841. [Google Scholar] [CrossRef]
- Richman, D.D.; Margolis, D.M.; Delaney, M.; Greene, W.C.; Hazuda, D.; Pomerantz, R.J. The challenge of finding a cure for HIV infection. Science 2009, 323, 1304–1307. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nagai, H.; Satake, M.; Yasumoto, T. Antimicrobial activities of polyether compounds of dinoflagellate origins. J. Appl. Phycol. 1990, 2, 305–308. [Google Scholar] [CrossRef]
- Yu, D.; Liu, R.D.; Yang, G.; Zhou, Q. The PARP1-Siah1 axis controls HIV-1 transcription and expression of siah1 substrates. Cell Rep. 2018, 23, 3741–3749. [Google Scholar] [CrossRef]
- Wu, J.; Xue, Y.H.; Gao, X.; Zhou, Q. Host cell factors stimulate HIV-1 transcription by antagonizing substrate-binding function of Siah1 ubiquitin ligase to stabilize transcription elongation factor ELL2. Nucleic Acids Res. 2020, 48, 7321–7332. [Google Scholar] [CrossRef]
- Wu, J.; Ao, M.-T.; Shao, R.; Wang, H.-R.; Yu, D.; Fang, M.-J.; Gao, X.; Wu, Z.; Zhou, Q.; Xue, Y.-H. A chalcone derivative reactivates latent HIV-1 transcription through activating P-TEFb and promoting Tat-SEC interaction on viral promoter. Sci. Rep.-UK 2017, 7, 10657. [Google Scholar] [CrossRef] [Green Version]
- Abner, E.; Jordan, A. HIV “shock and kill” therapy: In need of revision. Antivir. Res. 2019, 166, 19–34. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, D.; Ding, L.-S.; Yuan, F.-Y.; Wu, S.-Q.; Weng, H.-Z.; Tian, X.-Q.; Tang, G.-H.; Fan, C.-Q.; Gao, X.; Yin, S. Discovering a New Okadaic Acid Derivative, a Potent HIV Latency Reversing Agent from Prorocentrum lima PL11: Isolation, Structural Modification, and Mechanistic Study. Mar. Drugs 2023, 21, 158. https://doi.org/10.3390/md21030158
Huang D, Ding L-S, Yuan F-Y, Wu S-Q, Weng H-Z, Tian X-Q, Tang G-H, Fan C-Q, Gao X, Yin S. Discovering a New Okadaic Acid Derivative, a Potent HIV Latency Reversing Agent from Prorocentrum lima PL11: Isolation, Structural Modification, and Mechanistic Study. Marine Drugs. 2023; 21(3):158. https://doi.org/10.3390/md21030158
Chicago/Turabian StyleHuang, Dong, Lian-Shuai Ding, Fang-Yu Yuan, Shu-Qi Wu, Han-Zhuang Weng, Xiao-Qing Tian, Gui-Hua Tang, Cheng-Qi Fan, Xiang Gao, and Sheng Yin. 2023. "Discovering a New Okadaic Acid Derivative, a Potent HIV Latency Reversing Agent from Prorocentrum lima PL11: Isolation, Structural Modification, and Mechanistic Study" Marine Drugs 21, no. 3: 158. https://doi.org/10.3390/md21030158
APA StyleHuang, D., Ding, L. -S., Yuan, F. -Y., Wu, S. -Q., Weng, H. -Z., Tian, X. -Q., Tang, G. -H., Fan, C. -Q., Gao, X., & Yin, S. (2023). Discovering a New Okadaic Acid Derivative, a Potent HIV Latency Reversing Agent from Prorocentrum lima PL11: Isolation, Structural Modification, and Mechanistic Study. Marine Drugs, 21(3), 158. https://doi.org/10.3390/md21030158