Double Valorization for a Discard—α-Chitin and Calcium Lactate Production from the Crab Polybius henslowii Using a Deep Eutectic Solvent Approach
Abstract
:1. Introduction
2. Results and Discussion
2.1. Optimization of the α-Chitin Extraction and Its Characterization
2.1.1. Yields and Elemental Analysis of the Chitin-Based Extracts
2.1.2. Structural and Morphological Characterization of the Obtained α-Chitin Samples
2.1.3. Thermogravimetric Analysis
2.2. Recycling of the DES
2.3. Precipitation and Characterization of the Calcium Lactate
3. Materials and Methods
3.1. Chemicals and Raw Material
3.2. Preparation of the Deep Eutectic Solvents
3.3. Chitin Extraction
3.4. Recycling of the DES and Calcium Lactate Precipitation
3.5. Calcium Lactate Precipitation
3.6. Characterization of the Samples
3.6.1. CHN Elemental Analysis
3.6.2. Attenuated Total Reflectance—Fourier Transform Infrared (ATR-FTIR) Spectrophotometry
3.6.3. Scanning Electron Microscopy (SEM)
3.6.4. Wide Angle X-ray Scattering (WAXS)
3.6.5. Thermogravimetric Analysis (TGA)
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kadokawa, J.; Idenoue, S.; Yamamoto, K. Fabricating Chitin Paper from Self-Assembled Nanochitins. ACS Sustain. Chem. Eng. 2020, 8, 8402–8408. [Google Scholar] [CrossRef]
- Sirajudheen, P.; Poovathumkuzhi, N.C.; Vigneshwaran, S.; Chelaveettil, B.M.; Meenakshi, S. Applications of Chitin and Chitosan Based Biomaterials for the Adsorptive Removal of Textile Dyes from Water—A Comprehensive Review. Carbohydr. Polym. 2021, 273, 118604. [Google Scholar] [CrossRef] [PubMed]
- Labidi, A.; Salaberria, A.; Fernandes, S.; Labidi, J.; Abderrabba, M. Functional Chitosan Derivative and Chitin as Decolorization Materials for Methylene Blue and Methyl Orange from Aqueous Solution. Materials 2019, 12, 361. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Labidi, A.; Salaberria, A.M.; Fernandes, S.C.M.; Labidi, J.; Abderrabba, M. Adsorption of Copper on Chitin-Based Materials: Kinetic and Thermodynamic Studies. J. Taiwan Inst. Chem. Eng. 2016, 65, 140–148. [Google Scholar] [CrossRef]
- Rizal, S.; Olaiya, F.G.; Saharudin, N.I.; Abdullah, C.K.; NG, O.; Mohamad Haafiz, M.K.; Yahya, E.B.; Sabaruddin, F.A.; Khalil, H.P.S. Isolation of Textile Waste Cellulose Nanofibrillated Fibre Reinforced in Polylactic Acid-Chitin Biodegradable Composite for Green Packaging Application. Polymers 2021, 13, 325. [Google Scholar] [CrossRef]
- Fernández-Marín, R.; Fernandes, S.C.M.; Sánchez, M.Á.A.; Labidi, J. Halochromic and Antioxidant Capacity of Smart Films of Chitosan/Chitin Nanocrystals with Curcuma Oil and Anthocyanins. Food Hydrocoll. 2022, 123, 107119. [Google Scholar] [CrossRef]
- Fernández-Marín, R.; Mujtaba, M.; Cansaran-Duman, D.; Ben Salha, G.; Sánchez, M.Á.A.; Labidi, J.; Fernandes, S.C.M. Effect of Deterpenated Origanum Majorana L. Essential Oil on the Physicochemical and Biological Properties of Chitosan/β-Chitin Nanofibers Nanocomposite Films. Polymers 2021, 13, 1507. [Google Scholar] [CrossRef]
- Fernández-Marín, R.; Labidi, J.; Andrés, M.Á.; Fernandes, S.C.M. Using α-Chitin Nanocrystals to Improve the Final Properties of Poly (Vinyl Alcohol) Films with Origanum Vulgare Essential Oil. Polym. Degrad. Stab. 2020, 179, 109227. [Google Scholar] [CrossRef]
- Salaberría, A.M.; Teruel-Juanes, R.; Badia, J.D.; Fernandes, S.C.M.; Sáenz de Juano-Arbona, V.; Labidi, J.; Ribes-Greus, A. Influence of Chitin Nanocrystals on the Dielectric Behaviour and Conductivity of Chitosan-Based Bionanocomposites. Compos. Sci. Technol. 2018, 167, 323–330. [Google Scholar] [CrossRef]
- Zubillaga, V.; Salaberria, A.M.; Palomares, T.; Alonso-Varona, A.; Kootala, S.; Labidi, J.; Fernandes, S.C.M. Chitin Nanoforms Provide Mechanical and Topological Cues to Support Growth of Human Adipose Stem Cells in Chitosan Matrices. Biomacromolecules 2018, 19, 3000–3012. [Google Scholar] [CrossRef]
- Pielka, S.; Paluch, D.; Staniszewska-Kuś, J.; Żywicka, B.; Solski, L.; Szosland, L.; Czarny, A.; Zaczyńska, E. Wound Healing Acceleration by a Textile Dressing Containing Dibutyrylchitin and Chitin. Fibres Text. East. Eur. 2003, 11, 79–84. [Google Scholar]
- Zubillaga, V.; Alonso-Varona, A.; Fernandes, S.C.M.; Salaberria, A.M.; Palomares, T. Adipose-Derived Mesenchymal Stem Cell Chondrospheroids Cultured in Hypoxia and a 3D Porous Chitosan/Chitin Nanocrystal Scaffold as a Platform for Cartilage Tissue Engineering. Int. J. Mol. Sci. 2020, 21, 1004. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Claverie, M.; McReynolds, C.; Petitpas, A.; Thomas, M.; Fernandes, S.C.M. Marine-Derived Polymeric Materials and Biomimetics: An Overview. Polymers 2020, 12, 1002. [Google Scholar] [CrossRef] [PubMed]
- Muzzarelli, R.A.A.; Guerrieri, M.; Goteri, G.; Muzzarelli, C.; Armeni, T.; Ghiselli, R.; Cornelissen, M. The Biocompatibility of Dibutyryl Chitin in the Context of Wound Dressings. Biomaterials 2005, 26, 5844–5854. [Google Scholar] [CrossRef]
- Muzzarelli, R.A.A. Chitins and Chitosans as Immunoadjuvants and Non-Allergenic Drug Carriers. Mar. Drugs 2010, 8, 292–312. [Google Scholar] [CrossRef] [Green Version]
- Samalens, F.; Thomas, M.; Claverie, M.; Castejon, N.; Zhang, Y.; Blanc, S.; Fernandes, S. Progresses and Future Prospects in Biodegradation of Marine Biopolymers and Emerging Biopolymer-Based Materials for Sustainable Marine Ecosystems. Green Chem. 2022, 24, 1762–1779. [Google Scholar] [CrossRef]
- Poulicek, M.; Gaill, F.; Goffinet, G. Chitin Biodegradation in Marine Environments. ACS Symp. Ser. 1998, 707, 163–210. [Google Scholar] [CrossRef]
- Mayer, G.; Sarikaya, M. Rigid Biological Composite Materials: Structural Examples for Biomimetic Design. Exp. Mech. 2002, 42, 395–403. [Google Scholar] [CrossRef]
- Salaberria, A.M.; Diaz, R.H.; Labidi, J.; Fernandes, S.C.M. Preparing Valuable Renewable Nanocomposite Films Based Exclusively on Oceanic Biomass–Chitin Nanofillers and Chitosan. React. Funct. Polym. 2015, 89, 31–39. [Google Scholar] [CrossRef]
- Salaberria, A.M.; Labidi, J.; Fernandes, S.C.M. Different Routes to Turn Chitin into Stunning Nano-Objects. Eur. Polym. J. 2015, 68, 503–515. [Google Scholar] [CrossRef]
- Sashiwa, H.; Aiba, S. Chemically Modified Chitin and Chitosan as Biomaterials. Prog. Polym. Sci. 2004, 29, 887–908. [Google Scholar] [CrossRef]
- Liang, S.; Dang, Q.; Liu, C.; Zhang, Y.; Wang, Y.; Zhu, W.; Chang, G.; Sun, H.; Cha, D.; Fan, B. Characterization and Antibacterial Mechanism of Poly (Aminoethyl) Modified Chitin Synthesized via a Facile One-Step Pathway. Carbohydr. Polym. 2018, 195, 275–287. [Google Scholar] [CrossRef] [PubMed]
- Souza, C.P.; Almeida, B.C.; Colwell, R.R.; Rivera, I.N.G. The Importance of Chitin in the Marine Environment. Mar. Biotechnol. 2011, 13, 823–830. [Google Scholar] [CrossRef] [PubMed]
- Vázquez, J.A.; Rodríguez-Amado, I.; Montemayor, M.I.; Fraguas, J.; Del González, M.P.; Murado, M.A.; González, M.; Murado, M.A. Chondroitin Sulfate, Hyaluronic Acid and Chitin/Chitosan Production Using Marine Waste Sources: Characteristics, Applications and Eco-Friendly Processes: A Review. Mar. Drugs 2013, 11, 747–774. [Google Scholar] [CrossRef] [Green Version]
- Ghormade, V.; Pathan, E.K.; Deshpande, M.V. Can Fungi Compete with Marine Sources for Chitosan Production? Int. J. Biol. Macromol. 2017, 104, 1415–1421. [Google Scholar] [CrossRef]
- Valeiras, X.; Bellido, J.M.; Pérez, N.; Araujo, H.; Santos, J. Discarding Patterns of Henslowi Crab Polybius Henslowi by the Galician and Cantabrian (North Spain) Trawl Fisheries. In Proceedings of the Ices Annual Science Conference, Berlin, Germany, 21 September 2009. [Google Scholar]
- Keunecke, K.A.; Silva-Junior, D.R.; Moreira, F.N.; Lavrado, H.P.; Vianna, M. Survival and Physical Damage in Swimming Crabs (Brachyura, Portunidae) Discarded from Trawling Fisheries in an Estuarine Ecosystem in Southeastern Brazil. Crustaceana 2011, 84, 1295–1306. [Google Scholar] [CrossRef]
- Lamaison, C. Heureux Comme Trois Hommes En Bateau. Available online: https://www.sudouest.fr/landes/capbreton/heureux-comme-trois-hommes-en-bateau-8628041.php (accessed on 26 February 2022).
- González-Gurriarán, E.; Méndez, M. Crustáceos Decápodos Das Costas de Galicia. I. Brachyura. Cuad. Área Cienc. Biolóxicas Semin. Estud. Galegos 1986, 2, 100–101. [Google Scholar]
- Avelelas, F.; Horta, A.; Pinto, L.F.V.; Marques, S.C.; Nunes, P.M.; Pedrosa, R.; Leandro, S.M. Antifungal and Antioxidant Properties of Chitosan Polymers Obtained from Nontraditional Polybius Henslowii Sources. Mar. Drugs 2019, 17, 239. [Google Scholar] [CrossRef] [Green Version]
- Fabritius, H.O.; Ziegler, A.; Friák, M.; Nikolov, S.; Huber, J.; Seidl, B.H.M.; Ruangchai, S.; Alagboso, F.I.; Karsten, S.; Lu, J.; et al. Functional Adaptation of Crustacean Exoskeletal Elements through Structural and Compositional Diversity: A Combined Experimental and Theoretical Study. Bioinspir Biomim 2016, 11, 055006. [Google Scholar] [CrossRef]
- Mathew, G.M.; Sukumaran, R.K.; Sindhu, R.; Binod, P.; Pandey, A. Green Remediation of the Potential Hazardous Shellfish Wastes Generated from the Processing Industries and Their Bioprospecting. Environ. Technol. Innov. 2021, 24, 101979. [Google Scholar] [CrossRef]
- Younes, I.; Rinaudo, M. Chitin and Chitosan Preparation from Marine Sources. Structure, Properties and Applications. Mar. Drugs 2015, 13, 1133–1174. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zou, Y.; Robbens, J.; Heyndrickx, M.; Debode, J.; Raes, K. Bioprocessing of Marine Crustacean Side-Streams into Bioactives: A Review. J. Chem. Technol. Biotechnol. 2021, 96, 1465–1474. [Google Scholar] [CrossRef]
- McReynolds, C.; Adrien, A.; Castejon, N.; Fernandes, S.C.M. Green in the Deep Blue: Deep Eutectic Solvents as Versatile Systems for the Processing of Marine Biomass. Green Chem. Lett. Rev. 2022, 15, 382–403. [Google Scholar] [CrossRef]
- Cvjetko Bubalo, M.; Vidovic, S.; Radojcic Redovnikovic, I.; Jokic, S. Green Solvents for Green Technologies. J. Chem. Technol. Biotechnol. 2015, 90, 1631–1639. [Google Scholar] [CrossRef]
- Sequeira, R.A.; Mondal, D.; Prasad, K. Neoteric Solvent-Based Blue Biorefinery: For Chemicals, Functional Materials and Fuels from Oceanic Biomass. Green Chem. 2021, 23, 8821–8847. [Google Scholar] [CrossRef]
- Zdanowicz, M.; Wilpiszewska, K.; Spychaj, T. Deep Eutectic Solvents for Polysaccharides Processing. A Review. Carbohydr. Polym. 2018, 200, 361–380. [Google Scholar] [CrossRef]
- Smith, E.L.; Abbott, A.P.; Ryder, K.S. Deep Eutectic Solvents (DESs) and Their Applications. Chem. Rev. 2014, 114, 11060–11082. [Google Scholar] [CrossRef] [Green Version]
- Smink, D.; Juan, A.; Schuur, B.; Kersten, S.R.A. Understanding the Role of Choline Chloride in Deep Eutectic Solvents Used for Biomass Delignification. Ind. Eng. Chem. Res. 2019, 58, 16348–16357. [Google Scholar] [CrossRef] [Green Version]
- Yiin, C.L.; Yap, K.L.; Ku, A.Z.E.; Chin, B.L.F.; Lock, S.S.M.; Cheah, K.W.; Loy, A.C.M.; Chan, Y.H. Recent Advances in Green Solvents for Lignocellulosic Biomass Pretreatment: Potential of Choline Chloride (ChCl) Based Solvents. Bioresour. Technol. 2021, 333, 125195. [Google Scholar] [CrossRef]
- Isaifan, R.J.; Amhamed, A. Review on Carbon Dioxide Absorption by Choline Chloride/Urea Deep Eutectic Solvents. Adv. Chem 2018, 2018, 2675659. [Google Scholar] [CrossRef]
- Craveiro, R.; Aroso, I.; Flammia, V.; Carvalho, T.; Viciosa, M.T.; Dionísio, M.; Barreiros, S.; Reis, R.L.; Duarte, A.R.C.; Paiva, A. Properties and Thermal Behavior of Natural Deep Eutectic Solvents. J. Mol. Liq. 2016, 215, 534–540. [Google Scholar] [CrossRef]
- Hansen, B.B.; Spittle, S.; Chen, B.; Poe, D.; Zhang, Y.; Klein, J.M.; Horton, A.; Adhikari, L.; Zelovich, T.; Doherty, B.W. Deep Eutectic Solvents: A Review of Fundamentals and Applications. Chem. Rev. 2020, 121, 1232–1285. [Google Scholar] [CrossRef] [PubMed]
- Alexandri, M.; Schneider, R.; Mehlmann, K.; Venus, J. Recent Advances in D-Lactic Acid Production from Renewable Resources: Case Studies on Agro-Industrial Waste Streams. Food Technol. Biotechnol. 2019, 57, 293–304. [Google Scholar] [CrossRef] [PubMed]
- Clements, R.L. Organic Acids in Citrus Fruits. I. Varietal Differences a. J. Food Sci. 1964, 29, 276–280. [Google Scholar] [CrossRef]
- Bisht, M.; Macário, I.P.E.; Neves, M.C.; Pereira, J.L.; Pandey, S.; Rogers, R.D.; Coutinho, J.A.P.; Ventura, S.P.M. Enhanced Dissolution of Chitin Using Acidic Deep Eutectic Solvents: A Sustainable and Simple Approach to Extract Chitin from Crayfish Shell Wastes as Alternative Feedstocks. ACS Sustain. Chem. Eng. 2021, 9, 16073–16081. [Google Scholar] [CrossRef]
- Hong, S.; Yuan, Y.; Yang, Q.; Zhu, P.; Lian, H. Versatile Acid Base Sustainable Solvent for Fast Extraction of Various Molecular Weight Chitin from Lobster Shell. Carbohydr. Polym. 2018, 201, 211–217. [Google Scholar] [CrossRef]
- Saravana, P.S.; Ho, T.C.; Chae, S.J.; Cho, Y.J.; Park, J.S.; Lee, H.J.; Chun, B.S. Deep Eutectic Solvent-Based Extraction and Fabrication of Chitin Films from Crustacean Waste. Carbohydr. Polym. 2018, 195, 622–630. [Google Scholar] [CrossRef]
- Rychen, G.; Aquilina, G.; Azimonti, G.; Bampidis, V.; Bastos, M.D.L.; Bories, G.; Chesson, A.; Cocconcelli, P.S.; Flachowsky, G.; Kolar, B.; et al. Safety of Lactic Acid and Calcium Lactate When Used as Technological Additives for All Animal Species. EFSA J. 2017, 15, e04938. [Google Scholar]
- Multum, C. Calcium Lactate Uses, Side Effects & Warnings. Available online: https://www.drugs.com/mtm/calcium-lactate.html (accessed on 21 February 2022).
- EMA Calcium Sandoz. Available online: https://www.ema.europa.eu/en/medicines/human/referrals/calcium-sandoz (accessed on 21 February 2022).
- Lau, E.M.C.; Woo, J.; Leung, P.C.; Swaminathan, R.; Leung, D. The Effects of Calcium Supplementation and Exercise on Bone Density in Elderly Chinese Women. Osteoporos. Int. 1992, 2, 168–173. [Google Scholar] [CrossRef]
- Abo Sabah, S.H.; Anneza, L.H.; Juki, M.I.; Alabduljabbar, H.; Othman, N.; Al-Gheethi, A.A.; Al-Shalif, A.F. The Use of Calcium Lactate to Enhance the Durability and Engineering Properties of Bioconcrete. Sustainability 2021, 13, 9269. [Google Scholar] [CrossRef]
- Greene, B.H.C.; Robertson, K.N.; Young, J.C.O.C.; Clyburne, J.A.C. Lactic Acid Demineralization of Green Crab (Carcinus Maenas) Shells: Effect of Reaction Conditions and Isolation of an Unusual Calcium Complex. Green Chem. Lett. Rev. 2016, 9, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Mititelu, M.; Moroșan, E.; Nicoară, A.C.; Secăreanu, A.A.; Musuc, A.M.; Atkinson, I.; Cusu, J.P.; Nițulescu, G.M.; Ozon, E.A.; Sarbu, I.; et al. Development of Immediate Release Tablets Containing Calcium Lactate Synthetized from Black Sea Mussel Shells. Mar. Drugs 2022, 20, 45. [Google Scholar] [CrossRef] [PubMed]
- Thomas, S.; Pius, A.; Gopi, S. Handbook of Chitin and Chitosan: Preparation and Properties; Elsevier: Amsterdam, The Netherlands, 2020; Volume 1, ISBN 0128179716. [Google Scholar]
- Shen, Z.; Jacobs-Lorena, M. Evolution of Chitin-Binding Proteins in Invertebrates. J. Mol. Evol. 1999, 48, 341–347. [Google Scholar] [CrossRef] [PubMed]
- Feng, M.; Lu, X.; Zhang, J.; Li, Y.; Shi, C.; Lu, L.; Zhang, S. Direct Conversion of Shrimp Shells to: O -Acylated Chitin with Antibacterial and Anti-Tumor Effects by Natural Deep Eutectic Solvents. Green Chem. 2019, 21, 87–98. [Google Scholar] [CrossRef]
- Bradic, B.; Novak, U.; Likozar, B. Crustacean Shell Bio-Refining to Chitin by Natural Deep Eutectic Solvents. Green Process. Synth. 2020, 9, 13–25. [Google Scholar] [CrossRef]
- Kasaai, M.R. Various Methods for Determination of the Degree of N-Acetylation of Chitin and Chitosan: A Review. J. Agric. Food Chem. 2009, 57, 1667–1676. [Google Scholar] [CrossRef]
- Kaya, M.; Mujtaba, M.; Ehrlich, H.; Salaberria, A.M.; Baran, T.; Amemiya, C.T.; Galli, R.; Akyuz, L.; Sargin, I.; Labidi, J. On Chemistry of γ-Chitin. Carbohydr. Polym. 2017, 176, 177–186. [Google Scholar] [CrossRef]
- Minke, R.A.M.; Blackwell, J. The Structure of α-Chitin. J. Mol. Biol. 1978, 120, 167–181. [Google Scholar] [CrossRef]
- Pacheco, N.; Garnica-Gonzalez, M.; Gimeno, M.; Bárzana, E.; Trombotto, S.; David, L.; Shirai, K. Structural Characterization of Chitin and Chitosan Obtained by Biological and Chemical Methods. Biomacromolecules 2011, 12, 3285–3290. [Google Scholar] [CrossRef]
- Fernández-Marín, R.; Hernández-Ramos, F.; Salaberria, A.M.; Andrés, M.Á.; Labidi, J.; Fernandes, S.C.M. Eco-Friendly Isolation and Characterization of Nanochitin from Different Origins by Microwave Irradiation: Optimization Using Response Surface Methodology. Int. J. Biol. Macromol. 2021, 186, 218–226. [Google Scholar] [CrossRef]
- Salaberria, A.M.; Fernandes, S.C.M.; Diaz, R.H.; Labidi, J. Processing of α-Chitin Nanofibers by Dynamic High Pressure Homogenization: Characterization and Antifungal Activity against A. Niger. Carbohydr. Polym. 2015, 116, 286–291. [Google Scholar] [CrossRef] [PubMed]
- Georgieva, V.; Zvezdova, D.; Vlaev, L. Non-Isothermal Kinetics of Thermal Degradation of Chitin. J. Therm. Anal. Calorim. 2012, 111, 763–771. [Google Scholar] [CrossRef]
- Stawski, D.; Rabiej, S.; Herczyńska, L.; Draczyński, Z. Thermogravimetric Analysis of Chitins of Different Origin. J. Therm. Anal. Calorim. 2008, 93, 489–494. [Google Scholar] [CrossRef]
- Ma, Z.; Wang, J.; Yang, Y.; Zhang, Y.; Zhao, C.; Yu, Y.; Wang, S. Comparison of the Thermal Degradation Behaviors and Kinetics of Palm Oil Waste under Nitrogen and Air Atmosphere in TGA-FTIR with a Complementary Use of Model-Free and Model-Fitting Approaches. J. Anal. Appl. Pyrolysis 2018, 134, 12–24. [Google Scholar] [CrossRef]
- Kaya, M.; Baran, T.; Karaarslan, M. A New Method for Fast Chitin Extraction from Shells of Crab, Crayfish and Shrimp. Nat. Prod. Res. 2015, 29, 1477–1480. [Google Scholar] [CrossRef] [PubMed]
- Sajomsang, W.; Gonil, P. Preparation and Characterization of α-Chitin from Cicada Sloughs. Mater. Sci. Eng. C 2010, 30, 357–363. [Google Scholar] [CrossRef]
- Rodriguez Rodriguez, N.; Van Den Bruinhorst, A.; Kollau, L.J.B.M.; Kroon, M.C.; Binnemans, K. Degradation of Deep-Eutectic Solvents Based on Choline Chloride and Carboxylic Acids. ACS Sustain. Chem. Eng. 2019, 7, 11521–11528. [Google Scholar] [CrossRef]
- Neda, o.; Vlazan, P.; Oana, R.; Sfarloaga, P.; Grozescu, I.; Segneanu, I.G.A.A.-E. Peptide and Amino Acids Separation and Identification from Natural Products. In Analytical Chemistry; Krull, I., Ed.; IntechOpen: London, UK, 2012. [Google Scholar] [CrossRef] [Green Version]
- Zhao, D.; Huang, W.C.; Guo, N.; Zhang, S.; Xue, C.; Mao, X. Two-Step Separation of Chitin from Shrimp Shells Using Citric Acid and Deep Eutectic Solvents with the Assistance of Microwave. Polymers 2019, 11, 409. [Google Scholar] [CrossRef] [Green Version]
- Amer, A.A.; El-Didamony, H.; El-Sokkary, T.M.; Wahdan, M.I. Synthesis and Characterization of Some Calcium Aluminate Phases from Nano-Size Starting Materials. Boletín Soc. Española Cerámica Vidr. 2020, 61, 98–106. [Google Scholar] [CrossRef]
- Babou-Kammoe, R.; Hamoudi, S.; Larachi, F.; Belkacemi, K. Synthesis of CaCO 3 Nanoparticles by Controlled Precipitation of Saturated Carbonate and Calcium Nitrate Aqueous Solutions. Can. J. Chem. Eng. 2012, 90, 26–33. [Google Scholar] [CrossRef]
- Chen, Y.; Mu, T. Application of Deep Eutectic Solvents in Biomass Pretreatment and Conversion. Green Energy Environ. 2019, 4, 95–115. [Google Scholar] [CrossRef]
- Obluchinskaya, E.D.; Pozharitskaya, O.N.; Zakharova, L.V.; Daurtseva, A.V.; Flisyuk, E.V.; Shikov, A.N. Efficacy of Natural Deep Eutectic Solvents for Extraction of Hydrophilic and Lipophilic Compounds from Fucus Vesiculosus. Molecules 2021, 26, 4198. [Google Scholar] [CrossRef]
- Lu, W.; Alam, M.A.; Pan, Y.; Wu, J.; Wang, Z.; Yuan, Z. A New Approach of Microalgal Biomass Pretreatment Using Deep Eutectic Solvents for Enhanced Lipid Recovery for Biodiesel Production. Bioresour. Technol. 2016, 218, 123–128. [Google Scholar] [CrossRef] [PubMed]
- Khan, M.B.E.; Shen, L.; Dias-da-Costa, D. Self-Healing Behaviour of Bio-Concrete in Submerged and Tidal Marine Environments. Constr. Build. Mater. 2021, 277, 122332. [Google Scholar] [CrossRef]
- Kasaai, M.R.; Arul, J.; Charlet, G. Intrinsic Viscosity–Molecular Weight Relationship for Chitosan. J. Polym. Sci. B Polym. Phys. 2000, 38, 2591–2598. [Google Scholar] [CrossRef]
- Focher, B.; Beltrame, P.L.; Naggi, A.; Torri, G. Alkaline N-Deacetylation of Chitin Enhanced by Flash Treatments. Reaction Kinetics and Structure Modifications. Carbohydr. Polym. 1990, 12, 405–418. [Google Scholar] [CrossRef]
Sample Identification | T (°C) | C/N | N (%) |
---|---|---|---|
Conventional | NA | 6.60 | 6.43 ± 0.15 |
CCMA 1 h | 50 | 5.63 | 7.89 ± 0.05 |
80 | 5.68 | 7.86 ± 0.15 | |
100 | 6.11 | 7.38 ± 0.25 | |
120 | 6.33 | 7.05 ± 0.15 | |
CCMA 2 h | 50 | 5.68 | 7.86 ± 0.15 |
80 | 5.77 | 7.59 ± 0.42 | |
100 | 5.89 | 7.21 ± 0.52 | |
120 | 6.41 | 6.83 ± 0.07 | |
CCLA 1 h | 50 | 5.36 | 8.27 ± 0.03 |
80 | 5.17 | 8.53 ± 0.07 | |
100 | 5.87 | 7.61 ± 0.00 | |
120 | 6.20 | 7.17 ± 0.45 | |
CCLA 2 h | 50 | 5.24 | 8.56 ± 0.79 |
80 | 5.75 | 7.80 ± 0.42 | |
100 | 6.03 | 7.46 ± 0.02 | |
120 | 6.76 | 6.87 ± 0.35 |
N Atmosphere | Air Atmosphere | ||||||
---|---|---|---|---|---|---|---|
Chitin Sample | Tdi (°C) | Tdmax (°C) | Residual (%) | Tdi (°C) | Tdmax (°C) | Td2 (°C) | Residual (%) |
Conventional | 229 | 388 | 15.02 | 216 | 331 | 497 | 0.49 |
CCLA120-2 | 204 | 371 | 15.52 | 201 | 308 | 493 | 0.54 |
CCMA120-2 | 218 | 377 | 16.94 | 208 | 313 | 494 | 0.32 |
Recycling Cycles | C/N | N (%) | H (%) | DA (%) |
---|---|---|---|---|
R0 | 6.76 | 6.87 ± 0.31 | 6.43 ± 0.18 | 94.1 |
R1 | 6.72 | 6.75 ± 0.08 | 6.56 ± 0.08 | 91.8 |
R2 | 6.42 | 7.04 ± 0.09 | 6.59 ± 0.08 | 74.3 |
R3 | 6.37 | 7.14 ± 0.23 | 6.57 ± 0.06 | 71.1 |
Composition | C (%) | H (%) | N (%) | Ca2+ (%) |
---|---|---|---|---|
Measured in this work | 31.53 ± 0.58 | 4.83 ± 0.04 | 0.30 ± 0.02 | NM |
Theoretical values of calcium lactate | 33.02 | 4.62 | 0.00 | 18.37 |
HBA | HBD | Molar Ratio (HBA:HBD) | DES Abbreviation | Reaction Temperature (°C) | Sample Identification |
---|---|---|---|---|---|
Choline chloride | Malonic acid | 1:2 | CCMA | 50 | CCMA50-1 CCMA50-2 |
80 | CCMA80-1 CCMA80-2 | ||||
100 | CCMA100-1 CCMA100-2 | ||||
120 | CCMA120-1 CCMA120-2 | ||||
Choline chloride | Lactic acid | 1:2 | CCLA | 50 | CCLA50-1 CCLA50-2 |
80 | CCLA80-1 CCLA80-2 | ||||
100 | CCLA100-1 CCLA100-2 | ||||
120 | CCLA120-1 CCLA120-2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
McReynolds, C.; Adrien, A.; Petitpas, A.; Rubatat, L.; Fernandes, S.C.M. Double Valorization for a Discard—α-Chitin and Calcium Lactate Production from the Crab Polybius henslowii Using a Deep Eutectic Solvent Approach. Mar. Drugs 2022, 20, 717. https://doi.org/10.3390/md20110717
McReynolds C, Adrien A, Petitpas A, Rubatat L, Fernandes SCM. Double Valorization for a Discard—α-Chitin and Calcium Lactate Production from the Crab Polybius henslowii Using a Deep Eutectic Solvent Approach. Marine Drugs. 2022; 20(11):717. https://doi.org/10.3390/md20110717
Chicago/Turabian StyleMcReynolds, Colin, Amandine Adrien, Arnaud Petitpas, Laurent Rubatat, and Susana C. M. Fernandes. 2022. "Double Valorization for a Discard—α-Chitin and Calcium Lactate Production from the Crab Polybius henslowii Using a Deep Eutectic Solvent Approach" Marine Drugs 20, no. 11: 717. https://doi.org/10.3390/md20110717
APA StyleMcReynolds, C., Adrien, A., Petitpas, A., Rubatat, L., & Fernandes, S. C. M. (2022). Double Valorization for a Discard—α-Chitin and Calcium Lactate Production from the Crab Polybius henslowii Using a Deep Eutectic Solvent Approach. Marine Drugs, 20(11), 717. https://doi.org/10.3390/md20110717