Diversity of Conopeptides and Their Precursor Genes of Conus Litteratus
Abstract
:1. Introduction
2. Results
2.1. High-Throughput Sequencing and De Novo Assembly of Conus Litteratus Transcriptome
2.2. Conotoxin Diversity of C. Litteratus with Respect to Superfamily
2.3. Conotoxin Diversity of C. Litteratus with Respect to Cysteine Framework
2.4. Comparison of Conopeptides in the Three Venom Duct Transcriptomes of Different Size C. Litteratus
2.5. Characterization of Microsatellites and Codon Usage Bias in C. Litteratus Groups of Different Size
2.6. Conotoxin Gene Cloning from C. Litteratus
3. Discussion
4. Materials and Methods
4.1. Sample Collection, RNA Extraction and Sequencing
4.2. Sequence Data Assembly and Analysis
4.3. Prediction and Classification of Conotoxins
4.4. Analysis of SSR Distribution and Codon Usage Bias
4.5. Isolation of Genomic DNA of C. Litteratus and Gene Cloning of Partial Superfamily Conotoxins
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Lavergne, V.; Harliwong, I.; Jones, A.; Miller, D.; Taft, R.J.; Alewood, P.F. Optimized deep-targeted proteotranscriptomic profiling reveals unexplored Conus toxin diversity and novel cysteine frameworks. Proc. Natl. Acad. Sci. USA 2015, 112, E3782–E3791. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Prashanth, J.; Dutertre, S.; Jin, A.; Lavergne, V.; Hamilton, B.; Cardoso, F.; Griffin, J.; Venter, D.; Alewood, P.; Lewis, R.J. The role of defensive ecological interactions in the evolution of conotoxins. Mol. Ecol. 2016, 25, 598–615. [Google Scholar] [CrossRef] [PubMed]
- Yao, G.; Peng, C.; Zhu, Y.; Fan, C.; Jiang, H.; Chen, J.; Cao, Y.; Shi, Q. High-Throughput Identification and Analysis of Novel Conotoxins from Three Vermivorous Cone Snails by Transcriptome Sequencing. Mar. Drugs 2019, 17, 193. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dutertre, S.; Jin, A.H.; Vetter, I.; Hamilton, B.; Sunagar, K.; Lavergne, V.; Dutertre, V.; Fry, B.G.; Antunes, A.; Venter, D.J.; et al. Evolution of separate predation- and defence-evoked venoms in carnivorous cone snails. Nat. Commun. 2014, 5, 3521. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Puillandre, N.; Bouchet, P.; Duda, T., Jr.; Kauferstein, S.; Kohn, A.; Olivera, B.; Watkins, M.; Meyer, C. Molecular phylogeny and evolution of the cone snails (Gastropoda, Conoidea). Mol. Phylogenet. Evol. 2014, 78, 290–303. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baldomero, M.; Olivera, B. Conus venom peptides, receptor and ion channel targets, and drug design: 50 million years of neuropharmacology. Mol. Biol. Cell 1997, 8, 2101–2109. [Google Scholar]
- Norton, R.S.; Olivera, B.M. Conotoxins down under. Toxicon 2006, 48, 780–798. [Google Scholar] [CrossRef]
- Lewis, R.J.; Dutertre, S.; Vetter, I.; Christie, M.J. Conus venom peptide pharmacology. Pharm. Rev. 2012, 64, 259–298. [Google Scholar] [CrossRef]
- Nelson, L. Venomous snails: One slip, and you’re dead. Nature 2004, 429, 798–800. [Google Scholar] [CrossRef]
- Olivera, B.M.; Teichert, R.W. Diversity of the neurotoxic Conus peptides. Mol. Microbiol. 2007, 7, 251. [Google Scholar] [CrossRef]
- Xie, B.; Huang, Y.; Baumann, K.; Fry, B.G.; Shi, Q. From marine venoms to drugs: Efficiently supported by a combination of transcriptomics and proteomics. Mar. Drugs 2017, 15, 103. [Google Scholar] [CrossRef] [PubMed]
- McIntosh, J.M.; Jones, R.M. Cone venom–from accidental stings to deliberate injection. Toxicon 2001, 39, 1447–1451. [Google Scholar] [CrossRef]
- Cruz, L.J.; Gray, W.R.; Olivera, B.M. Purification and properties of a myotoxin from Conus geographus venom. Arch. Biochem. Biophys. 1978, 190, 539–548. [Google Scholar] [CrossRef]
- Olivera, B.M. ω-Conotoxin MVIIA: From marine snail venom to analgesic drug. In Drugs from the Sea; Fusetani, N., Ed.; Karger Publishers: Salt Lake City, UT, USA, 2000; pp. 74–85. [Google Scholar]
- McGivern, J.G. Ziconotide: A review of its pharmacology and use in the treatment of pain. Neuropsychiatr. Dis. Treat. 2007, 3, 69. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brinzeu, A.; Berthiller, J.; Caillet, J.B.; Staquet, H.; Mertens, P. Ziconotide for spinal cord injury-related pain. Eur. J. Pain. 2019, 23, 1688–1700. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Robinson, S.D.; Norton, R.S. Conotoxin gene superfamilies. Mar. Drugs 2014, 12, 6058–6101. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Robinson, S.D.; Safavi-Hemami, H.; McIntosh, L.D.; Purcell, A.W.; Norton, R.S.; Papenfuss, A.T. Diversity of conotoxin gene superfamilies in the venomous snail, Conus victoriae. PLoS ONE 2014, 9, e87648. [Google Scholar] [CrossRef] [Green Version]
- Kaas, Q.; Westermann, J.C.; Halai, R.; Wang, C.K.; Craik, D.J. ConoServer, a database for conopeptide sequences and structures. Bioinformatics 2008, 24, 445–446. [Google Scholar] [CrossRef] [Green Version]
- Kaas, Q.; Westermann, J.C.; Craik, D.J. Conopeptide characterization and classifications: An analysis using ConoServer. Toxicon 2010, 55, 1491–1509. [Google Scholar] [CrossRef]
- Kaas, Q.; Yu, R.; Jin, A.H.; Dutertre, S.; Craik, D.J. ConoServer: Updated content, knowledge, and discovery tools in the conopeptide database. Nucleic Acids Res. 2012, 40, D325–D330. [Google Scholar] [CrossRef]
- Huang, Y.; Peng, C.; Yi, Y.; Gao, B.; Shi, Q. A Transcriptomic Survey of Ion Channel-Based Conotoxins in the Chinese Tubular Cone Snail (Conus betulinus). Mar. Drugs 2017, 15, 228. [Google Scholar] [CrossRef] [PubMed]
- Gao, B.; Peng, C.; Zhu, Y.; Sun, Y.; Zhao, T.; Huang, Y.; Shi, Q. High Throughput Identification of Novel Conotoxins from the Vermivorous Oak Cone Snail (Conus quercinus) by Transcriptome Sequencing. Int. J. Mol. Sci. 2018, 19, 3901. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dutertre, S.; Jin, A.H.; Kaas, Q.; Jones, A.; Alewood, P.F.; Lewis, R.J. Deep venomics reveals the mechanism for expanded peptide diversity in cone snail venom. Mol. Cell Proteom. 2013, 12, 312–329. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Puillandre, N.; Duda, T.; Meyer, C.; Olivera, B.; Bouchet, P. One, four or 100 genera? A new classification of the cone snails. J. Molluscan Stud. 2015, 81, 1–23. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peng, C.; Yao, G.; Gao, B.M.; Fan, C.X.; Bian, C.; Wang, J.; Cao, Y.; Wen, B.; Zhu, Y.; Ruan, Z.; et al. High-throughput identification of novel conotoxins from the Chinese tubular cone snail (Conus betulinus) by multi-transcriptome sequencing. Gigascience 2016, 5, 17. [Google Scholar] [CrossRef] [Green Version]
- Li, R.; Bekaert, M.; Wu, L.; Mu, C.; Song, W.; Migaud, H.; Wang, C. Transcriptomic Analysis of Marine Gastropod Hemifusus tuba Provides Novel Insights into Conotoxin Genes. Mar. Drugs 2019, 17, 466. [Google Scholar] [CrossRef] [Green Version]
- Himaya, S.W.A.; Lewis, R.J. Venomics-accelerated cone snail venom peptide discovery. Int. J. Mol. Sci. 2018, 19, 788. [Google Scholar] [CrossRef] [Green Version]
- Larkin, M.A.; Blackshields, G.; Brown, N.P.; Chenna, R.; McGettigan, P.A.; McWilliam, H.; Valentin, F.; Wallace, I.M.; Wilm, A.; Lopez, R.; et al. Clustal W and Clustal X version 2.0. Bioinformatics 2007, 23, 2947–2948. [Google Scholar] [CrossRef] [Green Version]
- Tsetlin, V.I.; Utkin, Y.N.; Kasheverov, I.E.; Lyukmanova, E.N. 142. From alpha-Conotoxins and alpha-Neurotoxins to Endogenous “Prototoxins” and Binding Sites in Nicotinic Acetylcholine Receptors. Toxicon 2012, 60, 167–168. [Google Scholar] [CrossRef]
- Kryukova, E.; Ivanov, I.; Lebedev, D.; Spirova, E.; Egorova, N.; Zouridakis, M.; Kasheverov, I.; Tzartos, S.; Tsetlin, V. Orthosteric and/or Allosteric Binding of α-Conotoxins to Nicotinic Acetylcholine Receptors and Their Models. Mar. Drugs 2018, 16, 460. [Google Scholar] [CrossRef] [Green Version]
- Sébastien, D.; Annette, N.; Victor, I.T. Nicotinic acetylcholine receptor inhibitors derived from snake and snail venoms. Neuropharmacology 2017, 127, 196–223. [Google Scholar]
- Luo, S.; Akondi, K.B.; Zhangsun, D.; Wu, Y.; Zhu, X.; Hu, Y.; Christensen, S.; Dowell, C.; Daly, N.L.; Craik, D.J. Atypical α-conotoxin LtIA from Conus litteratus targets a novel microsite of the α3β2 nicotinic receptor. J. Biol. Chem. 2010, 285, 12355–12366. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jacob, R.B.; McDougal, O.M. The M-superfamily of conotoxins: A review. Cell. Mol. Life Sci. 2010, 67, 17–27. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, L.; Liu, J.; Pi, C.; Zeng, X.; Zhou, M.; Jiang, X.; Chen, S.; Ren, Z.; Xu, A. Identification of a novel M-superfamily conotoxin with the ability to enhance tetrodotoxin sensitive sodium currents. Arch. Toxicol. 2009, 83, 925–932. [Google Scholar] [CrossRef]
- Wickenden, A.; Priest, B.; Erdemli, G. Ion channel drug discovery: Challenges and future directions. Future Med. Chem. 2012, 4, 661–679. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Ma, H.; Zhang, F.; Zhang, C.; Zou, X.; Cao, Z. Selective Voltage-Gated Sodium Channel Peptide Toxins from Animal Venom: Pharmacological Probes and Analgesic Drug Development. ACS Chem. Neurosci. 2018, 9, 187–197. [Google Scholar] [CrossRef]
- Catterall, W.A. Structure and regulation of voltage-gated Ca2+ channels. Annu. Rev. Cell Dev. Biol. 2000, 16, 521–555. [Google Scholar] [CrossRef]
- Hurst, R.; Rollema, H.; Bertrand, D. Nicotinic acetylcholine receptors: From basic science to therapeutics. Pharmacol. Ther. 2013, 137, 22–54. [Google Scholar] [CrossRef]
- Ren, Z.; Wang, L.; Qin, M.; You, Y.; Pan, W. Pharmacological characterization of conotoxin lt14a as a potent non-addictive analgesic. Toxicon 2015, 96, 57–67. [Google Scholar] [CrossRef]
- Liu, J.; Wu, Q.; Pi, C.; Zhao, Y.; Zhou, M.; Wang, L.; Chen, S.; Xu, A. Isolation and characterization of a T-superfamily conotoxin from Conus litteratus with targeting tetrodotoxin-sensitive sodium channels. Peptides 2007, 28, 2313–2319. [Google Scholar] [CrossRef]
- Wang, L.; Pi, C.; Liu, J.; Chen, S.; Peng, C.; Sun, D.; Zhou, M.; Xiang, H.; Ren, Z.; Xu, A. Identification and characterization of a novel O-superfamily conotoxin from Conus litteratus. J. Pept. Sci. 2008, 14, 1077–1083. [Google Scholar] [CrossRef] [PubMed]
- Yun, W.; Lei, W.; Maojun, Z.; Yuwen, Y.; Xiaoyan, Z.; Yuanyuan, Q.; Mengying, Q.; Shaonan, L.; Zhenghua, R.; Anlong, X. Molecular Evolution and Diversity of Conus Peptide Toxins, as Revealed by Gene Structure and Intron Sequence Analyses. PLoS ONE 2013, 8, e82495. [Google Scholar] [CrossRef]
- Maniatis, T. Mechanisms of alternative pre-mRNA splicing. Science 1991, 251, 33–35. [Google Scholar] [CrossRef] [PubMed]
- Lopez, A.J. Alternative splicing of pre-mRNA: Developmental consequences and mechanisms of regulation. Annu. Rev. Genet. 1998, 32, 279–305. [Google Scholar] [CrossRef] [PubMed]
- Davis, J.; Jones, A.; Lewis, R.J. Remarkable inter- and intra-species complexity of conotoxins revealed by LC/MS. Peptides 2009, 30, 1222–1227. [Google Scholar] [CrossRef] [PubMed]
- Romeo, C.; Di Francesco, L.; Oliverio, M.; Palazzo, P.; Massilia, G.R.; Ascenzi, P.; Polticelli, F.; Schininà, M.E. Conus ventricosus venom peptides profiling by HPLC-MS: A new insight in the intraspecific variation. J. Sep. Sci. 2008, 31, 488–498. [Google Scholar] [CrossRef]
- Jakubowski, J.A.; Kelley, W.P.; Sweedler, J.V.; Gilly, W.F.; Schulz, J.R. Intraspecific variation of venom injected by fish-hunting Conus snails. J. Exp. Biol. 2005, 208, 2873–2883. [Google Scholar] [CrossRef] [Green Version]
- Safavi-Hemami, H.; Young, N.D.; Williamson, N.A.; Purcell, A.W. Proteomic Interrogation of Venom Delivery in Marine Cone Snails: Novel Insights into the Role of the Venom Bulb. J. Proteome Res. 2010, 9, 5610–5619. [Google Scholar] [CrossRef]
- Loughnan, M.L.; Nicke, A.; Lawrence, N.; Lewis, R.J. Novel αD-Conopeptides and Their Precursors Identified by cDNA Cloning Define the D-Conotoxin Superfamily†‡. Biochemistry 2009, 48, 3717–3729. [Google Scholar] [CrossRef]
- Li, Y.-C.; Korol, A.B.; Fahima, T.; Nevo, E. Microsatellites within genes: Structure, function, and evolution. Mol. Biol. Evol. 2004, 21, 991–1007. [Google Scholar] [CrossRef]
- Bolger, A.M.; Lohse, M.; Usadel, B. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics 2014, 30, 2114–2120. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grabherr, M.G.; Haas, B.J.; Yassour, M.; Levin, J.Z.; Thompson, D.A.; Amit, I.; Adiconis, X.; Fan, L.; Raychowdhury, R.; Zeng, Q.; et al. Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat. Biotechnol. 2011, 29, 644. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, B.; Dewey, C.N. RSEM: Accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinform. 2011, 12, 323. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Altschul, S. Basic local alignment search tool. J. Mol. Biol. 1990, 215, 403–410. [Google Scholar] [CrossRef]
- Finn, R.D.; Penelope, C.; Eberhardt, R.Y.; Eddy, S.R.; Jaina, M.; Mitchell, A.L.; Potter, S.C.; Marco, P.; Matloob, Q.; Amaia, S.V. The Pfam protein families database: Towards a more sustainable future. Nucleic Acids Res. 2015, 44, D279–D285. [Google Scholar] [CrossRef]
- Rolf, A.; Amos, B.; Wu, C.H.; Barker, W.C.; Brigitte, B.; Serenella, F.; Elisabeth, G.; Huang, H.; Rodrigo, L.; Michele, M. UniProt: The Universal Protein knowledgebase. Nucleic Acids Res. 2004, 32, D115–D119. [Google Scholar]
- Lavergne, V.; Dutertre, S.; Jin, A.-h.; Lewis, R.J.; Taft, R.J.; Alewood, P.F. Systematic interrogation of the Conus marmoreus venom duct transcriptome with ConoSorter reveals 158 novel conotoxins and 13 new gene superfamilies. BMC Genom. 2013, 14, 708. [Google Scholar] [CrossRef] [Green Version]
- Beier, S.; Thiel, T.; Munch, T.; Scholz, U.; Mascher, M. MISA-web: A web server for microsatellite prediction. Bioinformatics 2017, 33, 2583–2585. [Google Scholar] [CrossRef] [Green Version]
- Peden, J.F. Analysis of codon usage. Univ. Nottm. 2000, 90, 73–74. [Google Scholar]
SC | MC | BC | ||
---|---|---|---|---|
Total raw reads | 43,964,576 | 39,694,336 | 37,786,706 | |
Total raw nucleotides (nt) | 6,594,686,400 | 5,954,150,400 | 5,668,005,900 | |
Total clean reads | 39,777,162 | 36,169,722 | 34,326,494 | |
Total clean nucleotides (nt) | 5,234,397,520 | 4,766,618,449 | 4,656,292,329 | |
Unigenes | Number | 44,097 | 37,861 | 45,554 |
Total length (bp) | 19,428,193 | 11,408,032 | 16,204,862 | |
Max length (bp) | 10,772 | 10,772 | 10,772 | |
Mean length (bp) | 440 | 301 | 356 | |
N50 (bp) | 486 | 278 | 349 |
Cono-Toxins | Super-Family | Cystine Pattern | Homologous Sequences | Source | Diet |
---|---|---|---|---|---|
Lt015 | T | V | Eu5.4 | C. eburneus | M |
Lt019 | O2 | 1 S-S | contryphan-G | C. geographus | P |
Lt020 | A | I | Lt1.2/Lp1.1 | C. leopardus | V |
Lt034 | L | XIV | Eu14.7 | C. eburneus | M |
Lt038 | O1 | VI/VII | Eu6.8 | C. eburneus | M |
Lt044 | T | V | Lt5g/Lp5.2 | C. leopardus | V |
Lt048 | M | III | S3-Y01 | C. striatus | P |
Lt079 | O3 | VI/VII | Eu6.6 | C. eburneus | M |
Rank | SC | Super-Family | Cys Frame | MC | Super-Family | Cys Frame | BC | Super-Family | Cys Frame |
---|---|---|---|---|---|---|---|---|---|
1 | Lt044 | T | V | Lt044 | T | V | Lt020 | A | I |
2 | Lt049 | Nsf | No S-S | Lt020 | A | I | Lt070 | Nsf | No S-S |
3 | Lt033 | L | XIV | Lt057 | F | 1 S-S | Lt072 | T | V |
4 | Lt072 | T | V | Lt049 | Nsf | No S-S | Lt118 | F | 1 S-S |
5 | Lt070 | Nsf | No S-S | Lt072 | T | V | Lt040 | O1 | VI/VII |
6 | Lt118 | F | 1 S-S | Lt070 | Nsf | No S-S | Lt049 | Nsf | No S-S |
7 | Lt020 | A | I | Lt033 | L | XIV | Lt033 | L | XIV |
8 | Lt036 | O1 | No S-S | Lt048 | M | III | Lt046 | M | III |
9 | Lt040 | O1 | VI/VII | Lt040 | O1 | VI/VII | Lt117 | Nsf | 1 S-S |
10 | Lt097 | P | IX | Lt037 | O1 | VI/VII | Lt044 | T | V |
11 | Lt015 | T | V | Lt076 | J | XIV | Lt035 | O1 | No S-S |
12 | Lt076 | J | XIV | Lt013 | O2 | VI/VII | Lt074 | Nsf | No S-S |
13 | Lt037 | O1 | VI/VII | Lt015 | T | V | Lt061 | Nsf | 1 S-S |
14 | Lt110 | # | XXI | Lt039 | O1 | VI/VII | Lt120 | J | XIV |
15 | Lt022 | A | I | Lt067 | M | XVI | Lt097 | P | IX |
16 | Lt003 | Nsf | unnamed1 | Lt023 | Nsf | VI/VII | Lt067 | M | XVI |
17 | Lt108 | # | unnamed2 | Lt084 | M | No S-S | Lt030 | Q | VI/VII |
18 | Lt013 | O2 | VI/VII | Lt019 | O2 | 1 S-S | Lt047 | M | III |
19 | Lt016 | Nsf | No S-S | Lt054 | Nsf | XXII | Lt014 | Nsf | (C-C-C) |
20 | Lt019 | O2 | 1 S-S | Lt080 | Nsf | VI/VII | Lt050 | Nsf | unnamed3 |
21 | Lt048 | M | III | Lt036 | O1 | No S-S | Lt015 | T | V |
22 | Lt030 | Q | VI/VII | Lt055 | Nsf | VIII | Lt023 | Nsf | VI/VII |
23 | Lt038 | O1 | VI/VII | Lt108 | # | unnamed2 | Lt041 | O1 | VI/VII |
24 | Lt012 | O2 | XV | Lt016 | Nsf | No S-S | Lt109 | # | XXI |
25 | Lt067 | M | XVI | Lt006 | Nsf | IX | Lt045 | unknown | III |
26 | Lt082 | Nsf | No S-S | Lt029 | O1 | VI/VII | Lt019 | O2 | 1 S-S |
27 | Lt085 | M | No S-S | Lt012 | O2 | XV | Lt012 | O2 | XV |
28 | Lt028 | P | IX | Lt014 | Nsf | (C-C-C) | Lt083 | M | No S-S |
29 | Lt050 | Nsf | unnamed3 | Lt081 | Nsf | No S-S | Lt108 | # | unnamed2 |
30 | Lt034 | L | XIV | Lt056 | Nsf | VIII | Lt013 | O2 | VI/VII |
Primitive Types | Quantity S/M/B | Proportion of Total SSR (%) S/M/B | Frequency of Occurrence (%) S/M/B |
---|---|---|---|
dinucleotide | 8009/2444/2355 | 84.10/69.35/62.35 | 18.16/6.45/5.17 |
trinucleotide | 1226/829/1196 | 12.87/23.52/31.67 | 2.78/2.19/2.63 |
tetranucleotide | 282/242/213 | 2.96/6.87/5.64 | 0.64/0.64/0.47 |
pentanucleotide | 6/8/7 | 0.06/0.23/0.19 | 0.01/0.02/0.02 |
hexanucleotide | 0/1/6 | 0.00/0.03/0.16 | 0.00/0.00/0.01 |
total | 9523/3524/3777 | 100/100/100 | 21.60/9.31/8.29 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, X.; Chen, W.; Zhangsun, D.; Luo, S. Diversity of Conopeptides and Their Precursor Genes of Conus Litteratus. Mar. Drugs 2020, 18, 464. https://doi.org/10.3390/md18090464
Li X, Chen W, Zhangsun D, Luo S. Diversity of Conopeptides and Their Precursor Genes of Conus Litteratus. Marine Drugs. 2020; 18(9):464. https://doi.org/10.3390/md18090464
Chicago/Turabian StyleLi, Xinjia, Wanyi Chen, Dongting Zhangsun, and Sulan Luo. 2020. "Diversity of Conopeptides and Their Precursor Genes of Conus Litteratus" Marine Drugs 18, no. 9: 464. https://doi.org/10.3390/md18090464
APA StyleLi, X., Chen, W., Zhangsun, D., & Luo, S. (2020). Diversity of Conopeptides and Their Precursor Genes of Conus Litteratus. Marine Drugs, 18(9), 464. https://doi.org/10.3390/md18090464