Therapies from Fucoidan: New Developments
Abstract
:1. Introduction
2. Bioavailability and Measurement of Fucoidans
3. Regulatory Framework for the Use of Fucoidans
Food and Supplements
4. Clinical Use of Fucoidan Extracts
5. Biomaterials and Drug Delivery
6. Microbiome and Fucoidan
7. Oncology
8. Imaging and Control of Coagulation
9. Neuroprotection
10. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Fitton, J.H.; Stringer, D.N.; Karpiniec, S.S. Therapies from Fucoidan: An Update. Mar. Drugs 2015, 13, 5920–5946. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Y.; Xing, M.; Cao, Q.; Ji, A.; Liang, H.; Song, S. Biological Activities of Fucoidan and the Factors Mediating Its Therapeutic Effects: A Review of Recent Studies. Mar. Drugs 2019, 17, 183. [Google Scholar] [CrossRef] [PubMed]
- Van Weelden, G.; Bobinski, M.; Okla, K.; van Weelden, W.J.; Romano, A.; Pijnenborg, J.M.A. Fucoidan Structure and Activity in Relation to Anti-Cancer Mechanisms. Mar. Drugs 2019, 17, 32. [Google Scholar] [CrossRef] [PubMed]
- Citkowska, A.; Szekalska, M.; Winnicka, K. Possibilities of Fucoidan Utilization in the Development of Pharmaceutical Dosage Forms. Mar. Drugs 2019, 17, 458. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Geng, L.; Yue, Y.; Zhang, Q. Use of fucoidan to treat renal diseases: A review of 15 years of clinic studies. Prog. Mol. Biol. Transl. Sci. 2019, 163, 95–111. [Google Scholar] [CrossRef] [PubMed]
- Zheng, K.H.; Kaiser, Y.; Poel, E.; Verberne, H.; Aerts, J.; Rouzel, F.; Stroes, E.; Letourneur, D.; Chauvierre, C. 99Mtc-Fucoidan As Diagnostic Agent For P-Selectin Imaging: First-In-Human Evaluation (Phase I). Atherosclerosis 2019, 287, e143. [Google Scholar] [CrossRef]
- A.M.D. Inc. ARC Research Studies. Available online: https://www.arcmedicaldevices.com/presentations/ (accessed on 20 August 2019).
- Charboneau, A.J.; Delaney, J.P.; Beilman, G. Fucoidans inhibit the formation of post-operative abdominal adhesions in a rat model. PLoS ONE 2018, 13, e0207797. [Google Scholar] [CrossRef]
- Chua, E.G.; Verbrugghe, P.; Perkins, T.T.; Tay, C.Y. Fucoidans Disrupt Adherence of Helicobacter pylori to AGS Cells In Vitro. Evid. Complement. Altern. Med. eCAM 2015, 2015, 120981. [Google Scholar] [CrossRef]
- Besednova, N.N.; Zaporozhets, T.S.; Somova, L.M.; Kuznetsova, T.A. Review: prospects for the use of extracts and polysaccharides from marine algae to prevent and treat the diseases caused by Helicobacter pylori. Helicobacter 2015, 20, 89–97. [Google Scholar] [CrossRef]
- Lin, Y.H.; Lu, K.Y.; Tseng, C.L.; Wu, J.Y.; Chen, C.H.; Mi, F.L. Development of genipin-crosslinked fucoidan/chitosan-N-arginine nanogels for preventing Helicobacter infection. Nanomedicine 2017, 12, 1491–1510. [Google Scholar] [CrossRef]
- Oka, S.; Okabe, M.; Tsubura, S.; Mikami, M.; Imai, A. Properties of fucoidans beneficial to oral healthcare. Odontology 2019. [Google Scholar] [CrossRef] [PubMed]
- Park, J.; Cha, J.D.; Choi, K.M.; Lee, K.Y.; Han, K.M.; Jang, Y.S. Fucoidan inhibits LPS-induced inflammation in vitro and during the acute response in vivo. Int. Immunopharmacol. 2017, 43, 91–98. [Google Scholar] [CrossRef] [PubMed]
- Hanisch, F.G.; Hansman, G.S.; Morozov, V.; Kunz, C.; Schroten, H. Avidity of alpha-fucose on human milk oligosaccharides and blood group-unrelated oligo/polyfucoses is essential for potent norovirus-binding targets. J. Biol. Chem. 2018, 293, 11955–11965. [Google Scholar] [CrossRef] [PubMed]
- Sanjeewa, K.K.A.; Lee, J.S.; Kim, W.S.; Jeon, Y.J. The potential of brown-algae polysaccharides for the development of anticancer agents: An update on anticancer effects reported for fucoidan and laminaran. Carbohydr. Polym. 2017, 177, 451–459. [Google Scholar] [CrossRef]
- Negishi, H.; Mori, M.; Mori, H.; Yamori, Y. Supplementation of elderly Japanese men and women with fucoidan from seaweed increases immune responses to seasonal influenza vaccination. J. Nutr. 2013, 143, 1794–1798. [Google Scholar] [CrossRef]
- Dutot, M.; Grassin-Delyle, S.; Salvator, H.; Brollo, M.; Rat, P.; Fagon, R.; Naline, E.; Devillier, P. A marine-sourced fucoidan solution inhibits Toll-like-receptor-3-induced cytokine release by human bronchial epithelial cells. Int. J. Biol. Macromol. 2019, 130, 429–436. [Google Scholar] [CrossRef]
- Klettner, A. Fucoidan as a Potential Therapeutic for Major Blinding Diseases—A Hypothesis. Mar. Drugs 2016, 14, 31. [Google Scholar] [CrossRef]
- Dorschmann, P.; Bittkau, K.S.; Neupane, S.; Roider, J.; Alban, S.; Klettner, A. Effects of Fucoidans from Five Different Brown Algae on Oxidative Stress and VEGF Interference in Ocular Cells. Mar. Drugs 2019, 17, 258. [Google Scholar] [CrossRef]
- Felisilda, B.M.B.; Alvarez de Eulate, E.; Stringer, D.N.; Fitton, J.H.; Arrigan, D.W.M. Electrochemical behaviour at a liquid-organogel microinterface array of fucoidan extracted from algae. Analyst 2017, 142, 3194–3202. [Google Scholar] [CrossRef] [Green Version]
- Warttinger, U.; Giese, C.; Harenberg, J.; Holmer, E.; Krämer, R. A fluorescent probe assay (Heparin Red) for direct detection of heparins in human plasma. Anal. Bioanal. Chem. 2016, 408, 8241–8251. [Google Scholar] [CrossRef]
- Espinosa-Velazquez, G.; Ramos-de-la-Pena, A.M.; Montanez, J.; Contreras-Esquivel, J.C. Rapid physicochemical characterization of innovative fucoidan/fructan powders by ATR-FTIR. Food Sci. Biotechnol. 2018, 27, 411–415. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Z.; Zhu, B.; Ai, C.; Lu, J.; Wu, S.; Liu, Y.; Wang, L.; Yang, J.; Song, S.; Liu, X. Development and application of a HPLC-MS/MS method for quantitation of fucosylated chondroitin sulfate and fucoidan in sea cucumbers. Carbohydr. Res. 2018, 466, 11–17. [Google Scholar] [CrossRef] [PubMed]
- Fitton, J.H.; Stringer, D.N.; Karpiniec, S.S.; Park, A.Y. The manufacture, characterization, and uses of fucoidans from macroalgae. In Enzymatic Technologies for Marine Polysaccharides; CRC Press: Boca Raton, FL, USA, 2019; pp. 47–60. [Google Scholar]
- Pozharitskaya, O.N.; Shikov, A.N.; Faustova, N.M.; Obluchinskaya, E.D.; Kosman, V.M.; Vuorela, H.; Makarov, V.G. Pharmacokinetic and Tissue Distribution of Fucoidan from Fucus vesiculosus after Oral Administration to Rats. Mar. Drugs 2018, 16, 132. [Google Scholar] [CrossRef] [PubMed]
- Tokita, Y.; Hirayama, M.; Nakajima, K.; Tamaki, K.; Iha, M.; Nagamine, T. Detection of Fucoidan in Urine after Oral Intake of Traditional Japanese Seaweed, Okinawa mozuku (Cladosiphon okamuranus Tokida). J. Nutr. Sci. Vitaminol. 2017, 63, 419–421. [Google Scholar] [CrossRef] [PubMed]
- Tokita, Y.; Nakajima, K.; Mochida, H.; Iha, M.; Nagamine, T. Development of a fucoidan-specific antibody and measurement of fucoidan in serum and urine by sandwich ELISA. Biosci. Biotechnol. Biochem. 2010, 74, 350–357. [Google Scholar] [CrossRef]
- Zhao, X.; Guo, F.; Hu, J.; Zhang, L.; Xue, C.; Zhang, Z.; Li, B. Antithrombotic activity of oral administered low molecular weight fucoidan from Laminaria Japonica. Thromb. Res. 2016, 144, 46–52. [Google Scholar] [CrossRef]
- Zhang, E.; Chu, F.; Xu, L.; Liang, H.; Song, S.; Ji, A. Use of fluorescein isothiocyanate isomer I to study the mechanism of intestinal absorption of fucoidan sulfate in vivo and in vitro. Biopharm. Drug Dispos. 2018, 39, 298–307. [Google Scholar] [CrossRef]
- Masterson, C.H.; Curley, G.F.; Laffey, J.G. Modulating the distribution and fate of exogenously delivered MSCs to enhance therapeutic potential: knowns and unknowns. Intensive Care Med. Exp. 2019, 7, 41. [Google Scholar] [CrossRef]
- Lee, J.H.; Yun, C.W.; Hur, J.; Lee, S.H. Fucoidan Rescues p-Cresol-Induced Cellular Senescence in Mesenchymal Stem Cells via FAK-Akt-TWIST Axis. Mar. Drugs 2018, 16, 121. [Google Scholar] [CrossRef]
- Kan, J.; Hood, M.; Burns, C.; Scholten, J.; Chuang, J.; Tian, F.; Pan, X.; Du, J.; Gui, M. A Novel Combination of Wheat Peptides and Fucoidan Attenuates Ethanol-Induced Gastric Mucosal Damage through Anti-Oxidant, Anti-Inflammatory, and Pro-Survival Mechanisms. Nutrients 2017, 9, 978. [Google Scholar] [CrossRef]
- Kan, J.; Cheng, J.; Xu, L.; Hood, M.; Zhong, D.; Cheng, M.; Liu, Y.; Chen, L.; Du, J. The combination of wheat peptides and fucoidan protects against chronic superficial gastritis and alters gut microbiota: a double-blinded, placebo-controlled study. Eur. J. Nutr. 2019. [Google Scholar] [CrossRef] [PubMed]
- Takahashi, H.; Kawaguchi, M.; Kitamura, K.; Narumiya, S.; Kawamura, M.; Tengan, I.; Nishimoto, S.; Hanamure, Y.; Majima, Y.; Tsubura, S.; et al. An Exploratory Study on the Anti-inflammatory Effects of Fucoidan in Relation to Quality of Life in Advanced Cancer Patients. Integr. Cancer Ther. 2018, 17, 282–291. [Google Scholar] [CrossRef] [PubMed]
- Tocaciu, S.; Oliver, L.; Lowenthal, R.; Peterson, G.M.; Patel, R.; Shastri, M.; McGuinness, G.; Olesen, I.; Fitton, J.H. The effect of Undaria pinnatifida fucoidan on the pharmacokinetics of letrozole and tamoxifen in patients with breast cancer. Integr. Cancer Ther. 2016, 2016, 99–105. [Google Scholar] [CrossRef] [PubMed]
- Sakai, C.; Abe, S.; Kouzuki, M.; Shimohiro, H.; Ota, Y.; Sakinada, H.; Takeuchi, T.; Okura, T.; Kasagi, T.; Hanaki, K. A Randomized Placebo-controlled Trial of an Oral Preparation of High Molecular Weight Fucoidan in Patients with Type 2 Diabetes with Evaluation of Taste Sensitivity. Yonago Acta Med. 2019, 62, 14–23. [Google Scholar] [CrossRef] [Green Version]
- Wright, C.M.; Bezabhe, W.; Fitton, J.H.; Stringer, D.N.; Bereznicki, L.R.E.; Peterson, G.M. Effect of a Fucoidan Extract on Insulin Resistance and Cardiometabolic Markers in Obese, Nondiabetic Subjects: A Randomized, Controlled Trial. J. Altern. Complement. Med. 2019, 25, 346–352. [Google Scholar] [CrossRef]
- Tsubura, S.S.A. Case report using 4% fucoidan cream for recurrent oral herpes labialis: Patient symptoms markedly improved in terms of time to healing and time to loss of discomfort. Dent. Open, J. 2017, 4, 19–23. [Google Scholar] [CrossRef]
- Zayed, A.; Muffler, K.; Hahn, T.; Rupp, S.; Finkelmeier, D.; Burger-Kentischer, A.; Ulber, R. Physicochemical and Biological Characterization of Fucoidan from Fucus vesiculosus Purified by Dye Affinity Chromatography. Mar. Drugs 2016, 14, 79. [Google Scholar] [CrossRef]
- Kadena, K.; Tomori, M.; Iha, M.; Nagamine, T. Absorption Study of Mozuku Fucoidan in Japanese Volunteers. Mar Drugs 2018, 16, 254. [Google Scholar] [CrossRef]
- Study of Tolerance, Biodistribution and Dosimetry of Fucoidan Radiolabeled by Technetium-99m. Available online: https://ClinicalTrials.gov/show/NCT03422055 (accessed on 11 September 2019).
- Li, R.; Boyd-Moss, M.; Long, B.; Martel, A.; Parnell, A.; Dennison, A.J.C.; Barrow, C.J.; Nisbet, D.R.; Williams, R.J. Facile control over the supramolecular ordering of self-assembled peptide scaffolds by simultaneous assembly with a polysacharride. Sci. Rep. 2017, 7, 4797. [Google Scholar] [CrossRef]
- Maclean, F.L.; Wang, Y.; Walking, R.; Home, M.K.; Williams, R.J.; Nisbet, D.R. Reducing astrocytic scarring after traumatic brain injury with a multifaceted anti-inflammatory hydrogel system. ACS Biomater. Sci. Eng. 2017, 3, 2542–2549. [Google Scholar] [CrossRef]
- Li, R.; Pavuluri, S.; Bruggeman, K.; Long, B.M.; Parnell, A.J.; Martel, A.; Parnell, S.R.; Pfeffer, F.M.; Dennison, A.J.C.; Nicholas, K.R.; et al. Coassembled nanostructured bioscaffold reduces the expression of proinflammatory cytokines to induce apoptosis in epithelial cancer cells. Nanomed. Nanotechnol. Biol. Med. 2016. [Google Scholar] [CrossRef] [PubMed]
- Benbow, N.L.; Webber, J.L.; Karpiniec, S.; Krasowska, M.; Ferri, J.K.; Beattie, D.A. The influence of polyanion molecular weight on polyelectrolyte multilayers at surfaces: protein adsorption and protein–polysaccharide complexation/stripping on natural polysaccharide films on solid supports. Phys. Chem. Chem. Phys. 2017, 19, 23790–23801. [Google Scholar] [CrossRef] [PubMed]
- Wang, P.; Kankala, R.K.; Chen, B.; Long, R.; Cai, D.; Liu, Y.; Wang, S. Poly-allylamine hydrochloride and fucoidan-based self-assembled polyelectrolyte complex nanoparticles for cancer therapeutics. J. Biomed. Mater. Res. A 2019, 107, 339–347. [Google Scholar] [CrossRef] [PubMed]
- Pawar, V.K.; Singh, Y.; Sharma, K.; Shrivastav, A.; Sharma, A.; Singh, A.; Meher, J.G.; Singh, P.; Raval, K.; Kumar, A.; et al. Improved chemotherapy against breast cancer through immunotherapeutic activity of fucoidan decorated electrostatically assembled nanoparticles bearing doxorubicin. Int. J. Biol. Macromol. 2019, 122, 1100–1114. [Google Scholar] [CrossRef]
- Manivasagan, P.; Hoang, G.; Santha Moorthy, M.; Mondal, S.; Minh Doan, V.H.; Kim, H.; Vy Phan, T.T.; Nguyen, T.P.; Oh, J. Chitosan/fucoidan multilayer coating of gold nanorods as highly efficient near-infrared photothermal agents for cancer therapy. Carbohydr. Polym. 2019, 211, 360–369. [Google Scholar] [CrossRef]
- Shin, S.W.; Jung, W.; Choi, C.; Kim, S.Y.; Son, A.; Kim, H.; Lee, N.; Park, H.C. Fucoidan-Manganese Dioxide Nanoparticles Potentiate Radiation Therapy by Co-Targeting Tumor Hypoxia and Angiogenesis. Mar. Drugs 2018, 16, 510. [Google Scholar] [CrossRef]
- Pajovich, H.T.; Banerjee, I.A. Biomineralization of fucoidan-peptide blends and their potential applications in bone tissue regeneration. J. Funct. Biomater. 2017, 8, 41. [Google Scholar] [CrossRef]
- Ozaltin, K.; Lehocky, M.; Humpolicek, P.; Pelkova, J.; Saha, P. A New Route of Fucoidan Immobilization on Low Density Polyethylene and Its Blood Compatibility and Anticoagulation Activity. Int. J. Mol. Sci. 2016, 17, 908. [Google Scholar] [CrossRef]
- Jeong, Y.; Thuy, L.T.; Ki, S.H.; Ko, S.; Kim, S.; Cho, W.K.; Choi, J.S.; Kang, S.M. Multipurpose Antifouling Coating of Solid Surfaces with the Marine-Derived Polymer Fucoidan. Macromol. Biosci. 2018, 18, e1800137. [Google Scholar] [CrossRef]
- Li, B.; Aid-Launais, R.; Labour, M.N.; Zenych, A.; Juenet, M.; Choqueux, C.; Ollivier, V.; Couture, O.; Letourneur, D.; Chauvierre, C. Functionalized polymer microbubbles as new molecular ultrasound contrast agent to target P-selectin in thrombus. Biomaterials 2019, 194, 139–150. [Google Scholar] [CrossRef]
- Li, R.; McRae, N.L.; McCulloch, D.R.; Boyd-Moss, M.; Barrow, C.J.; Nisbet, D.R.; Stupka, N.; Williams, R.J. Large and Small Assembly: Combining Functional Macromolecules with Small Peptides to Control the Morphology of Skeletal Muscle Progenitor Cells. Biomacromolecules 2018, 19, 825–837. [Google Scholar] [CrossRef] [PubMed]
- Lee, M.C.; Huang, Y.C. Soluble eggshell membrane protein-loaded chitosan/fucoidan nanoparticles for treatment of defective intestinal epithelial cells. Int. J. Biol. Macromol. 2019, 131, 949–958. [Google Scholar] [CrossRef] [PubMed]
- Goonoo, N.; Bhaw-Luximon, A.; Jonas, U.; Jhurry, D.; Schönherr, H. Enhanced differentiation of human preosteoblasts on electrospun blend fiber mats of polydioxanone and anionic sulfated polysaccharides. ACS Biomater. Sci. Eng. 2017, 3, 3447–3458. [Google Scholar] [CrossRef] [PubMed]
- Wang, B.; Adhikari, B.; Mathesh, M.; Yang, W.; Barrow, C.J. Anchovy oil microcapsule powders prepared using two-step complex coacervation between gelatin and sodium hexametaphosphate followed by spray drying. Powder Technol. 2018. [Google Scholar] [CrossRef]
- Chiang, C.S.; Lin, Y.J.; Lee, R.; Lai, Y.H.; Cheng, H.W.; Hsieh, C.H.; Shyu, W.C.; Chen, S.Y. Combination of fucoidan-based magnetic nanoparticles and immunomodulators enhances tumour-localized immunotherapy. Nat. Nanotechnol. 2018, 13, 746–754. [Google Scholar] [CrossRef]
- Lu, H.T.; Chang, W.T.; Tsai, M.L.; Chen, C.H.; Chen, W.Y.; Mi, F.L. Development of Injectable Fucoidan and Biological Macromolecules Hybrid Hydrogels for Intra-Articular Delivery of Platelet-Rich Plasma. Mar. Drugs 2019, 17, 236. [Google Scholar] [CrossRef]
- Ozaltin, K.; Lehocky, M.; Humpolicek, P.; Pelkova, J.; Di Martino, A.; Karakurt, I.; Saha, P. Anticoagulant Polyethylene Terephthalate Surface by Plasma-Mediated Fucoidan Immobilization. Polymers 2019, 11, 750. [Google Scholar] [CrossRef]
- Zheng, Y.; Wang, T.; Tu, X.; Huang, Y.; Zhang, H.; Tan, D.; Jiang, W.; Cai, S.; Zhao, P.; Song, R.; et al. Gut microbiome affects the response to anti-PD-1 immunotherapy in patients with hepatocellular carcinoma. J. Immuno Ther. Cancer 2019, 7, 193. [Google Scholar] [CrossRef] [Green Version]
- Pryor, R.; Martinez-Martinez, D.; Quintaneiro, L.; Cabreiro, F. The Role of the Microbiome in Drug Response. Ann. Rev. Pharmacol. Toxicol. 2020, 60. [Google Scholar] [CrossRef]
- Mendez, R.; Kesh, K.; Arora, N.; Di Martino, L.; McAllister, F.; Merchant, N.; Banerjee, S.; Banerjee, S. Microbial dysbiosis and polyamine metabolism as predictive markers for early detection of pancreatic cancer. Carcinogenesis 2019. [Google Scholar] [CrossRef]
- Tilg, H.; Zmora, N.; Adolph, T.E.; Elinav, E. The intestinal microbiota fuelling metabolic inflammation. Nat. Rev. Immunol. 2019. [Google Scholar] [CrossRef] [PubMed]
- Iannone, L.F.; Preda, A.; Blottière, H.M.; Clarke, G.; Albani, D.; Belcastro, V.; Carotenuto, M.; Cattaneo, A.; Citraro, R.; Ferraris, C.; et al. Microbiota-gut brain axis involvement in neuropsychiatric disorders. Expert Rev. Neurother. 2019, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Shang, Q.; Shan, X.; Cai, C.; Hao, J.; Li, G.; Yu, G. Dietary fucoidan modulates the gut microbiota in mice by increasing the abundance of Lactobacillus and Ruminococcaceae. Food Funct. 2016, 7, 3224–3232. [Google Scholar] [CrossRef] [PubMed]
- Teruya, K.; Kusumoto, Y.; Eto, H.; Nakamichi, N.; Shirahata, S. Selective Suppression of Cell Growth and Programmed Cell Death-Ligand 1 Expression in HT1080 Fibrosarcoma Cells by Low Molecular Weight Fucoidan Extract. Mar. Drugs 2019, 17, 421. [Google Scholar] [CrossRef] [PubMed]
- Xue, M.; Ji, X.; Liang, H.; Liu, Y.; Wang, B.; Sun, L.; Li, W. The effect of fucoidan on intestinal flora and intestinal barrier function in rats with breast cancer. Food Funct. 2018, 9, 1214–1223. [Google Scholar] [CrossRef] [PubMed]
- Jun, J.Y.; Jung, M.J.; Jeong, I.H.; Yamazaki, K.; Kawai, Y.; Kim, B.M. Antimicrobial and Antibiofilm Activities of Sulfated Polysaccharides from Marine Algae against Dental Plaque Bacteria. Mar. Drugs 2018, 16, 301. [Google Scholar] [CrossRef] [PubMed]
- Kan, J.; Du, J. The Combination of Wheat Peptides and Fucoidan Protects Against Chronic Superficial Gastritis and Regulates Gut Microbiota: A Double-blinded, Placebo-controlled Study (P06-104-19). Curr. Dev. Nutr. 2019, 3. [Google Scholar] [CrossRef]
- Kosono, S.; Kasai, A.; Komaba, S.; Matsubara, T.; Sato, T.; Takahashi, D.; Toshima, K. Novel hemagglutinin-binding sulfated oligofucosides and their effect on influenza virus infection. Chem. Commun. 2018, 54, 7467–7470. [Google Scholar] [CrossRef]
- Wang, W.; Wu, J.; Zhang, X.; Hao, C.; Zhao, X.; Jiao, G.; Shan, X.; Tai, W.; Yu, G. Inhibition of Influenza A Virus Infection by Fucoidan Targeting Viral Neuraminidase and Cellular EGFR Pathway. Sci. Rep. 2017, 7, 40760. [Google Scholar] [CrossRef]
- Huang, T.H.; Chiu, Y.H.; Chan, Y.L.; Chiu, Y.H.; Wang, H.; Huang, K.C.; Li, T.L.; Hsu, K.H.; Wu, C.J. Prophylactic Administration of Fucoidan Represses Cancer Metastasis by Inhibiting Vascular Endothelial Growth Factor (VEGF) and Matrix Metalloproteinases (MMPs) in Lewis Tumor-Bearing Mice. Mar. Drugs 2015, 13, 1882–1900. [Google Scholar] [CrossRef]
- Bobinski, M.; Okla, K.; Bednarek, W.; Wawruszak, A.; Dmoszynska-Graniczka, M.; Garcia-Sanz, P.; Wertel, I.; Kotarski, J. The Effect of Fucoidan, a Potential New, Natural, Anti-Neoplastic Agent on Uterine Sarcomas and Carcinosarcoma Cell Lines: ENITEC Collaborative Study. Arch. Immunol. Ther. Exp. 2019, 67, 125–131. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, J.; Lee, S.; Synytsya, A.; Capek, P.; Lee, C.W.; Choi, J.W.; Cho, S.; Kim, W.J.; Park, Y.I. Low Molecular Weight Mannogalactofucans Derived from Undaria pinnatifida Induce Apoptotic Death of Human Prostate Cancer Cells In Vitro and In Vivo. Mar. Biotechnol. 2018, 20, 813–828. [Google Scholar] [CrossRef]
- Blaszczak, W.; Lach, M.S.; Barczak, W.; Suchorska, W.M. Fucoidan Exerts Anticancer Effects Against Head and Neck Squamous Cell Carcinoma In Vitro. Molecules 2018, 23, 302. [Google Scholar] [CrossRef] [PubMed]
- Mathew, L.B.M.; Gaikwad, A.; Nyshadham, P.; Nugent, E.K.; Gonzalez, A.; Smith, J.A. Preclinical Evaluation of Safety of Fucoidan Extracts From Undaria pinnatifida and Fucus vesiculosus for Use in Cancer Treatment. Integr. Cancer Ther. 2016, 1-13. [Google Scholar] [CrossRef]
- Dithmer, M.; Kirsch, A.M.; Richert, E.; Fuchs, S.; Wang, F.; Schmidt, H.; Coupland, S.E.; Roider, J.; Klettner, A. Fucoidan Does Not Exert Anti-Tumorigenic Effects on Uveal Melanoma Cell Lines. Mar. Drugs 2017, 15, 193. [Google Scholar] [CrossRef] [PubMed]
- Hsu, H.-Y.; Lin, T.-Y.; Hu, C.-H.; Shu, D.T.F.; Lu, M.-K. Fucoidan upregulates TLR4/CHOP-mediated caspase-3 and PARP activation to enhance cisplatin-induced cytotoxicity in human lung cancer cells. Cancer Lett. 2018, 432, 112–120. [Google Scholar] [CrossRef] [PubMed]
- Corban, M.; Ambrose, M.; Pagnon, J.; Stringer, D.; Karpiniec, S.; Park, A.; Eri, R.; Fitton, J.H.; Gueven, N. Pathway Analysis of Fucoidan Activity Using a Yeast Gene Deletion Library Screen. Mar. Drugs 2019, 17, 54. [Google Scholar] [CrossRef] [PubMed]
- Malyarenko, O.S.; Zdobnova, E.V.; Silchenko, A.S.; Kusaykin, M.I.; Ermakova, S.P. Radiosensitizing effect of the fucoidan from brown alga Fucus evanescens and its derivative in human cancer cells. Carbohydr. Polym. 2019, 205, 465–471. [Google Scholar] [CrossRef] [PubMed]
- Yu, H.H.; Chengchuan Ko, E.; Chang, C.L.; Yuan, K.S.; Wu, A.T.H.; Shan, Y.S.; Wu, S.Y. Fucoidan Inhibits Radiation-Induced Pneumonitis and Lung Fibrosis by Reducing Inflammatory Cytokine Expression in Lung Tissues. Mar. Drugs 2018, 16, 392. [Google Scholar] [CrossRef]
- Irhimeh, M.R.; Fitton, J.H.; Lowenthal, R.M. Fucoidan ingestion increases the expression of CXCR4 on human CD34+ cells. Exp. Hematol. 2007, 35, 989–994. [Google Scholar] [CrossRef]
- Anisimova, N.Y.; Ustyuzhanina, N.E.; Bilan, M.I.; Donenko, F.V.; Ushakova, N.A.; Usov, A.I.; Kiselevskiy, M.V.; Nifantiev, N.E. Influence of Modified Fucoidan and Related Sulfated Oligosaccharides on Hematopoiesis in Cyclophosphamide-Induced Mice. Mar. Drugs 2018, 16, 333. [Google Scholar] [CrossRef] [PubMed]
- Burney, M.; Mathew, L.; Gaikwad, A.; Nugent, E.K.; Gonzalez, A.O.; Smith, J.A. Evaluation Fucoidan Extracts From Undaria pinnatifida and Fucus vesiculosus in Combination With Anticancer Drugs in Human Cancer Orthotopic Mouse Models. Integr. Cancer Ther. 2018, 17, 755–761. [Google Scholar] [CrossRef] [PubMed]
- Bonnard, T.; Yang, G.; Petiet, A.; Ollivier, V.; Haddad, O.; Arnaud, D.; Louedec, L.; Bachelet-Violette, L.; Derkaoui, S.M.; Letourneur, D.; et al. Abdominal aortic aneurysms targeted by functionalized polysaccharide microparticles: A new tool for SPECT imaging. Theranostics 2014, 4, 592–603. [Google Scholar] [CrossRef] [PubMed]
- Vigne, J.; Cognet, T.; Guedj, K.; Morvan, M.; Merceron, O.; Louedec, L.; Choqueux, C.; Nicoletti, A.; Escoubet, B.; Chaubet, F.; et al. Early Detection of Localized Immunity in Experimental Autoimmune Myocarditis Using [(99m)Tc]Fucoidan SPECT. Mol. Imaging Biol. 2019. [Google Scholar] [CrossRef]
- Juenet, M.; Aid-Launais, R.; Li, B.; Berger, A.; Aerts, J.; Ollivier, V.; Nicoletti, A.; Letourneur, D.; Chauvierre, C. Thrombolytic therapy based on fucoidan-functionalized polymer nanoparticles targeting P-selectin. Biomaterials 2018, 156, 204–216. [Google Scholar] [CrossRef]
- Choi, Y.; Min, S.K.; Usoltseva, R.; Silchenko, A.; Zvyagintseva, T.; Ermakova, S.; Kim, J.K. Thrombolytic fucoidans inhibit the tPA-PAI1 complex, indicating activation of plasma tissue-type plasminogen activator is a mechanism of fucoidan-mediated thrombolysis in a mouse thrombosis model. Thromb. Res. 2018, 161, 22–25. [Google Scholar] [CrossRef]
- Abdollah, M.R.A.; Carter, T.J.; Jones, C.; Kalber, T.L.; Rajkumar, V.; Tolner, B.; Gruettner, C.; Zaw-Thin, M.; Baguna Torres, J.; Ellis, M.; et al. Fucoidan Prolongs the Circulation Time of Dextran-Coated Iron Oxide Nanoparticles. ACS Nano 2018. [Google Scholar] [CrossRef]
- Lahrsen, E.; Schoenfeld, A.K.; Alban, S. Size-dependent pharmacological activities of differently degraded fucoidan fractions from Fucus vesiculosus. Carbohydr. Polym. 2018, 189, 162–168. [Google Scholar] [CrossRef]
- Lahrsen, E.; Liewert, I.; Alban, S. Gradual degradation of fucoidan from Fucus vesiculosus and its effect on structure, antioxidant and antiproliferative activities. Carbohydr. Polym. 2018, 192, 208–216. [Google Scholar] [CrossRef]
- Kim, H.; Ahn, J.H.; Song, M.; Kim, D.W.; Lee, T.K.; Lee, J.C.; Kim, Y.M.; Kim, J.D.; Cho, J.H.; Hwang, I.K.; et al. Pretreated fucoidan confers neuroprotection against transient global cerebral ischemic injury in the gerbil hippocampal CA1 area via reducing of glial cell activation and oxidative stress. Biomed. Pharmacother. 2019, 109, 1718–1727. [Google Scholar] [CrossRef]
- Alghazwi, M.; Smid, S.; Karpiniec, S.; Zhang, W. Comparative study on neuroprotective activities of fucoidans from Fucus vesiculosus and Undaria pinnatifida. Int. J. Biol. Macromol. 2019, 122, 255–264. [Google Scholar] [CrossRef] [PubMed]
- Liang, Z.; Liu, Z.; Sun, X.; Tao, M.; Xiao, X.; Yu, G.; Wang, X. The Effect of Fucoidan on Cellular Oxidative Stress and the CatD-Bax Signaling Axis in MN9D Cells Damaged by 1-Methyl-4-Phenypyridinium. Front. Aging Neurosci. 2018, 10, 429. [Google Scholar] [CrossRef] [PubMed]
- Meenakshi, S.; Umayaparvathi, S.; Saravanan, R.; Manivasagam, T.; Balasubramanian, T. Neuroprotective effect of fucoidan from Turbinaria decurrens in MPTP intoxicated Parkinsonic mice. Int. J. Biol. Macromol. 2016, 86, 425–433. [Google Scholar] [CrossRef] [PubMed]
- Bell, J.S.; Spencer, J.I.; Yates, R.L.; Yee, S.A.; Jacobs, B.M.; DeLuca, G.C. Invited Review: From nose to gut - the role of the microbiome in neurological disease. Neuropathol. Appl. Neurobiol. 2019, 45, 195–215. [Google Scholar] [CrossRef]
- Zhang, L.; Hao, J.; Zheng, Y.; Su, R.; Liao, Y.; Gong, X.; Liu, L.; Wang, X. Fucoidan Protects Dopaminergic Neurons by Enhancing the Mitochondrial Function in a Rotenone-induced Rat Model of Parkinson’s Disease. Aging Dis. 2018, 9, 590–604. [Google Scholar] [CrossRef]
Fucoidan Source | Method | Outcome | Reference |
---|---|---|---|
Fucus vesiculosus Undaria pinnatifida | Electrochemical interface measuring technique | Detection at low μg mL−1 concentration. | [20] |
Fructan fucoidan blends | FT-IRs | Food analysis and confirmation | [22] |
Sea cucumber Stichopus japonicus | HPLC-MS/MS methods for quantitation | Able to differentiate fucosylated chondroitin sulfate and fucoidan | [23] |
Undaria pinnatifida, Macrocystis pyrifera | Heparin red | Detection in serum | [21] |
Fucoidan Source | Study Type | Outcome | Reference |
---|---|---|---|
Fucus vesiculosus | Rat tissue distribution | Inverse detection method | [25] |
Fucus vesiculosus | Mouse-fluoro labelled fucoidan | Detected by fluorescence spectrometry and HPLC | [29] |
Cladosiphon okamuranus | Clinical study—urine and serum | Detected uptake in urine and serum | [26] |
Fucoidan Source | Aim of Study | Type of Study | Outcome | Reference |
---|---|---|---|---|
Saccharina japonica | To review use of fucoidan to treat renal diseases and discuss clinical outcomes for Haikun Shenxi capsule in chronic renal failure patients | Clinical study and review | Fucoidan inhibits renal fibrosis and glomerular sclerosis by reducing the accumulation of extracellular matrix. | [5] |
Unspecified | To establish safety of a radiolabeled fucoidan | Clinical Healthy subjects Intravenous | Fucoidan is safe. Distribution established. | [6] |
Cladosiphon sp. | To examine the efficacy of fucoidans especially focusing on inflammation in relation to (QOL)quality of life scores for advanced cancer patients | Clinical Cancer patients | Pro-inflammatory cytokines significantly reduced after two weeks of fucoidan ingestion and QOL scores stayed. | [34] |
Cladosiphon sp. | Absorption study | Clinical Healthy Subjects | Residents in Okinawa prefecture had significantly higher fucoidan excretion. | [40] |
Unspecified | To evaluate the protective effect of the combination of wheat peptides and fucoidan (WPF) on adults diagnosed with chronic superficial gastritis | Clinical Chronic gastritis patients | WPF reduced gastric mucosal damage and improved symptoms and altered gut microbial profile in beneficial way. | [33] |
Cladosiphon sp. | Physiological effects of fucoidan on glucose metabolism, the digestive system and taste sensitivity. | Clinical Patients with type-2 diabetes | Improved taste sensitivity Increased stool frequency | [36] |
Fucus vesiculosus | To determine if fucoidan/polyphenol extract reduces insulin resistance | Clinical Overweight non-diabetic subjects | Safety affirmed. No effects on insulin, glucose. | [37] |
Undaria pinnatifida | To investigate the effect of co-administration of fucoidan on letrozole and tamoxifen. | Clinical interaction study Breast cancer patients | Fucoidan is safe to be taken with letrozole and tamoxifen. | [35] |
Nemacystus decipiens | To determine efficacy of 4% fucoidan cream for recurrent oral herpes labialis | Clinical Topical study Patients with cold sores | Recurrent oral herpes labialis was markedly improved by the cream in terms of both healing and time to loss of discomfort. | [38] |
Fucoidan Source | Aim of Study | Type of Study | Effect | Reference |
---|---|---|---|---|
Unspecified | Functionalised microbubble P-selectin markers for thrombus | In vivo | Fucoidan microbubbles were able to target thrombus specifically. | [53] |
Undaria pinnatifida | Peptide gels for scaffolds | In vitro | Fucoidan generates fibrillary peptide gels | [42] |
Undaria pinnatifida | Peptide gels in brain injury | In vivo | Reducing astrocytic scarring | [43] |
Undaria pinnatifida | Peptide gel control of muscle cell morphology | In vitro | Fucoidan peptide gels reduce formation of mutinucleated syncytia in myoblasts | [54] |
Laminaria japonica | Eggshell protein chitosan fucoidan for intestinal inflammation | In vivo | Reduced lipopolysaccharide (LPS)-induced intestinal epithelial inflammation | [55] |
Fucus vesiculosus | Bone regenerations fucoidan peptide | In vitro | Developed a new mechanically and thermally stable bioorganic scaffold for bone tissue engineering | [50] |
Fucus vesiculosus | Electrospun mats with fucoidan for osteoblasts | In vitro | Enhanced stability of the surface of blend nanofibers with very good cell viability | [56] |
Fucus vesiculosus | Fish oil encapsulation | n/a | Significantly improved oxidative stability | [57] |
Fucus vesiculosus | Targeted nanoparticles cancer therapy | In vivo | Directly induced T-cell activation and blocked the immunosuppressive PD-L1 pathways via intravenous administration. | [58] |
Laminaria japonica | Hydrogels with fucoidan for platelet rich plasma delivery into connective tissues | In vivo | Hydrogel showed high strength, stability, strong adhesive ability and promoted cartilage regeneration in a rabbit. | [59] |
Fucus vesiculosus | Anticoagulant plasma fucoidan on plastic surface | In vitro | Fully anticoagulant and suitable for blood contacting PET devices | [60] |
Fucus vesiculosus | Antifouling coating of solid surfaces | In vitro | Catechol-conjugated fucoidan coating showed excellent resistance to platelets, bacteria and marine diatom adhesions. | [52] |
Fucoidan Source | Aim of Study | Type of Study | Effect | Reference |
---|---|---|---|---|
Laminaria japonica | Wheat peptides and fucoidan | In vivo (Rat) | Amelioration of gastric inflammation caused by ethanol | [32] |
Laminaria japonica | Wheat peptides and fucoidan | Clinical | Reduced gastric mucosal damage in 70% subjects (p < 0.001). Altered microbiota composition post-intervention | [33] |
Laminaria japonica | Microbiome in mice with DMBA-induced breast cancer | In vivo (Mice) | Increased bacteroidetes/firmicutes phylum ratio, increased tight junction proteins and lowered endotoxin | [68] |
Fucus vesiculosus Cladosiphon sp. | Oral healthcare biofilms | In vitro | Candida albicans, Streptococcus mutans, and Porphyromonas gingivalis; significantly inhibited the adhesion of S. mutans to bovine teeth and porcelain; were suggested to bind to and neutralise endotoxin (lipopolysaccharide) in a LAL assay; and showed COX-1 and/or COX-2 inhibitory activity | [12] |
Fucus vesiculosus Undaria pinnatifida Macrocystis pyrifera Hizikia fusiforme Kjellmaniella crassifolia Laminaria japonica Sargassum hornerii | Effects on bacterial plaque (oral cavity) | In vitro | Minimum inhibitory concentrations of 125 to 1000 μg/mL. Above 250 μg/mL completely suppressed biofilm formation and planktonic cell growths of Streptococcus mutans and S. sobrinus | [69] |
Synthetic fucoidan activity | Influenza virus infection | In vitro viral MDCK plaque assay | Bound to influenza virus haemagglutinins (HAs) and inhibited haemagglutination activity. | [71] |
Kjellmaniella crassifolia | Influenza virus infection | In vitro | Bound to and inhibited viral neuraminidase and interfered with the activation of EGFR, PKCα, NF-κB, and Akt; intranasal administration improved survival and decreased viral titres. | [72] |
Fucus vesiculosus | Anti-norovirus | In vitro | Fucoidan prevented the binding of norovirus | [14] |
Source of Fucoidan | Aim of Study | Type of Study | Outcome | Reference |
---|---|---|---|---|
Undaria pinnatifida Fucus vesiculosus | Orthotopic cancers in mice | In vivo Mouse | Safety of fucoidan usage during breast cancer treatment and potential to improve tamoxifen activity. | [77,85] |
Semisynthetic fucoidan fraction | Cyclophosphamide-treated mice, haemopoiesis | In vivo mouse | Synthetic octasaccharide is identified as an effective stimulator of haematopoiesis. | [84] |
Undaria pinnatifida | Cell cycle arrest in HCT116 and MOA yeast gene deletion study | In vitro | Global effects of fucoidan on a wide range of eukaryotic cellular processes and inhibitory effect on colon cancer cells. | [80] |
Undaria pinnatifida | Uterine carcinoma and sarcoma cell lines | In vitro | Anticancer agent activity against endometrial stromal sarcoma and carcinosarcoma. | [74] |
Fucus evanescens | Radio sensitisation human melanoma, breast adenocarcinoma, and colorectal carcinoma cell lines | In vitro | Increased the inhibitory effect of X-ray radiation on proliferation and colony formation-activating caspases, suppressed anti-apoptotic protein and enhanced fragmentation of DNA. | [81] |
Fucus vesiculosus | Radiation-induced lung fibrosis | In vivo mouse | Fucoidan changed the expression patterns of inflammatory cytokines and attenuated radiation-induced lung fibrosis | [82] |
Fucoidan Source | Aim of Study | Type of Study | Outcome | Reference |
---|---|---|---|---|
Radiolabelled fucoidan source unspecified | Safety | Human clinical | Safe to use. Maximum activity in liver. Activity reduced to <5% after 24 h. | [6] |
Undaria pinnatifida Fucus evanescens Saccharina cichorioides Costaria costata Fucus vesiculosus Eisenia bicyclis | Thrombolytic activity of fucoidan | In vivo mouse thrombosis model, iv | Fucoidans inhibit the tPA-PAI1 complex, indicating activation of plasma tissue-type plasminogen activator is a mechanism of fucoidan-mediated thrombolysis in a mouse thrombosis model | [89] |
Unspecified | Thrombolytic therapy based on fucoidan nanoparticles with rtPA | In vivo mouse model with induced clotting, iv | Successful thrombolysis | [88] |
Laminaria japonica | Anti-thrombotic | In vivo mouse model. Oral delivery | Lower MW fucoidan was most effective | [28] |
Fucus vesiculosus and 18 gradually depolymerised fractions | Degraded fucoidan fractions | In vitro | Anti-inflammatory activity, however only negligible anticoagulant activity and FXII-activating potency | [91] |
Fucus vesiculosus Macrocystis pyrifera Undaria pinnatifida | Intravenous fucoidan administration prior to SPIONs | In vivo mouse model In vitro | Increased residence time of circulating SPIONs for imaging by blocking their uptake by reticuloendothelial uptake | [90] |
Fucoidan Source | Type of Model | Outcome | Reference |
---|---|---|---|
Undaria pinnatifida, Fucus vesiculosus | Neuroprotection in vitro, Alzheimer’s models | Fucoidan inhibits formation of amyloid fibrils | [94] |
Fucus vesiculosus | Neuroprotection in vivo, intraperitoneal mouse model | IP fucoidan protects against transient ischemia | [93] |
Laminaria japonica | Rotenone Parkinson’s model in mouse | Protection of dopamine system via preserving mitochondrial function involving the PGC-1α/NRF2 pathway | [98] |
Unspecified | Parkinson’s type research in vitro | Protective effects for dopaminergic neural cells | [95] |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fitton, J.H.; Stringer, D.N.; Park, A.Y.; Karpiniec, S.S. Therapies from Fucoidan: New Developments. Mar. Drugs 2019, 17, 571. https://doi.org/10.3390/md17100571
Fitton JH, Stringer DN, Park AY, Karpiniec SS. Therapies from Fucoidan: New Developments. Marine Drugs. 2019; 17(10):571. https://doi.org/10.3390/md17100571
Chicago/Turabian StyleFitton, J. Helen, Damien N. Stringer, Ah Young Park, and Samuel S. Karpiniec. 2019. "Therapies from Fucoidan: New Developments" Marine Drugs 17, no. 10: 571. https://doi.org/10.3390/md17100571
APA StyleFitton, J. H., Stringer, D. N., Park, A. Y., & Karpiniec, S. S. (2019). Therapies from Fucoidan: New Developments. Marine Drugs, 17(10), 571. https://doi.org/10.3390/md17100571