Next Article in Journal
A New Ergosterol Analog, a New Bis-Anthraquinone and Anti-Obesity Activity of Anthraquinones from the Marine Sponge-Associated Fungus Talaromyces stipitatus KUFA 0207
Next Article in Special Issue
Production of Chitin from Penaeus vannamei By-Products to Pilot Plant Scale Using a Combination of Enzymatic and Chemical Processes and Subsequent Optimization of the Chemical Production of Chitosan by Response Surface Methodology
Previous Article in Journal
Anti-Pigmentary Effect of (-)-4-Hydroxysattabacin from the Marine-Derived Bacterium Bacillus sp.
Previous Article in Special Issue
Bioresponsive Materials for Drug Delivery Based on Carboxymethyl Chitosan/Poly(γ-Glutamic Acid) Composite Microparticles
Article Menu
Issue 5 (May) cover image

Export Article

Open AccessArticle
Mar. Drugs 2017, 15(5), 141;

Preparation and Characterization of Chitosan Obtained from Shells of Shrimp (Litopenaeus vannamei Boone)

Academic Unit of Materials Engineering (UAEMat), Federal University of Campina Grande (UFCG), Campina Grande 58429-900, PB, Brazil
Academic Unit of Physics (UAF), Federal University of Campina Grande (UFCG), Campina Grande 58429-900, PB, Brazil
Centro de Biomateriales—Universidad de La Habana, Ave. Universidad s/n, La Habana 10600, Cuba
Author to whom correspondence should be addressed.
Academic Editors: Hitoshi Sashiwa, David Harding and Keith B. Glaser
Received: 5 April 2017 / Revised: 3 May 2017 / Accepted: 8 May 2017 / Published: 15 May 2017
(This article belongs to the Special Issue Marine Chitin)
Full-Text   |   PDF [3002 KB, uploaded 15 May 2017]   |  


The main source of commercial chitosan is the extensive deacetylation of its parent polymer chitin. It is present in green algae, the cell walls or fungi and in the exoskeleton of crustaceans. A novel procedure for preparing chitosan from shrimp shells was developed. The procedure involves two 10-minutes bleaching steps with ethanol after the usual demineralization and deproteinization processes. Before deacetylation, chitin was immersed in 12.5 M NaOH, cooled down and kept frozen for 24 h. The obtained chitosan was characterized using scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), UV, X-ray diffraction (XRD) and viscosimetry. Samples of white chitosan with acetylation degrees below 9 % were obtained, as determined by FTIR and UV-first derivative spectroscopy. The change in the morphology of samples was followed by SEM. The ash content of chitosan samples were all below 0.063 % . Chitosan was soluble in 1 % acetic acid with insoluble contents of 0.62 % or less. XRD patterns exhibited the characteristic peaks of chitosan centered at 10 and 20 degrees in 2 θ . The molecular weight of chitosan was between 2.3 and 2.8 × 10 5 g/mol. It is concluded that the procedure developed in the present work allowed obtaining chitosans with physical and chemical properties suitable for pharmaceutical applications. View Full-Text
Keywords: chitosan; chitin; Litopenaeus vannamei Boone chitosan; chitin; Litopenaeus vannamei Boone

Figure 1

This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited (CC BY 4.0).

Share & Cite This Article

MDPI and ACS Style

de Queiroz Antonino, R.S.C.M.; Lia Fook, B.R.P.; de Oliveira Lima, V.A.; de Farias Rached, R.Í.; Lima, E.P.N.; da Silva Lima, R.J.; Peniche Covas, C.A.; Lia Fook, M.V. Preparation and Characterization of Chitosan Obtained from Shells of Shrimp (Litopenaeus vannamei Boone). Mar. Drugs 2017, 15, 141.

Show more citation formats Show less citations formats

Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Related Articles

Article Metrics

Article Access Statistics



[Return to top]
Mar. Drugs EISSN 1660-3397 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert
Back to Top