Correlation of MLASA2 Clinical Phenotype and Survival with Mt-TyrRS Protein Damage: Linking Systematic Review, Meta-Analysis and 3D Hotspot Mapping
Abstract
1. Introduction
2. Materials and Methods
2.1. Systematic Review and Meta-Analysis
2.2. Survival Analysis
2.3. Structural Evaluation of YARS2 Hotspot Clusters and Hotspot Prioritization
2.3.1. Variant Identification and Annotation
2.3.2. Structural-Cluster Identification
2.3.3. Hotspot and Cluster Characterization
- C1—Structural cluster: ≥3 residues [20]
- C2—REVEL enrichment: ≥50% of PVs with REVEL ≥0.5 [21]
- C3—AlphaMissense enrichment: ≥50% variants classified as ‘P’ (pathogenic) [22]
- C4—ESM1b enrichment: ≥50% variants classified as ‘D’ (deleterious) [23]
- C5—Structural destabilization: ≥1 variant with |ΔΔG| ≥ 0.5 [24]
- C6—Number of cases reported in the literature and CSS: number of reported patients carrying PVs in cluster residues and the Clinical Severity Score (CSS).
3. Results
3.1. Selection and General Characteristics of the Studies
3.2. Bias Assessment of Included Studies
3.3. Pooled Prevalence of Clinical Manifestations
3.4. Survival and Associated Factors
3.5. Structural Evaluation of YARS2 Hotspot Clusters Through 3D Mapping
3.6. Hotspot Clusters Prioritization and Its Clinical Correlations
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| Abbreviation | Meaning |
| ATP6 | Mitochondrially encoded ATP synthase membrane subunit 6 |
| CIs | Confidence Intervals |
| DNA | Deoxyribonucleic Acid |
| I2 | I-squared (measure of heterogeneity in meta-analysis) |
| INMEGEN | Instituto Nacional de Medicina Genómica |
| JBI | Joanna Briggs Institute |
| MLASA | Myopathy, Lactic Acidosis and Sideroblastic Anemia |
| MLASA2 | Myopathy, Lactic Acidosis and Sideroblastic Anemia Type 2 |
| Mt-TyrRS | Mitochondrial Tyrosyl-tRNA Synthetase |
| NGS | Next-Generation Sequencing |
| n.d. | Not Determined |
| OMIM | Online Mendelian Inheritance in Man |
| PCR | Polymerase Chain Reaction |
| PLOGIT | Logit transformation used in meta-analyses |
| PRISMA | Preferred Reporting Items for Systematic Reviews and Meta-Analyses |
| PROSPERO | Preferred Reporting Items for Systematic reviews and Meta-Analyses |
| PFT | Freeman–Tukey double arcsine transformation |
| PUS1 | Pseudouridine Synthase 1 gene |
| PV | Pathogenic Variant |
| REM | Random-Effects Model |
| RT-PCR | Reverse Transcriptase–Polymerase Chain Reaction |
| tRNA | Transfer Ribonucleic Acid |
| TyrRS | Tyrosyl-tRNA Synthetase |
| WES | Whole Exome Sequencing |
| WGS | Whole-Genome Sequencing |
Appendix A
Appendix A.1. Query for Each Database
| PubMed Query: 94 results (YARS2 OR MLASA2) OR (myopathy lactic acidosis anemia) |
| Scopus Query: 116 results (YARS2 OR MLASA2) OR (myopathy lactic acidosis anemia) |
| Web of Science Query: 288 results (YARS2 OR MLASA2) OR (myopathy lactic acidosis anemia) |
| Total studies identified: n = 498 |
Appendix A.2. Evaluation of Study Quality
| Study | Q1 | Q2 | Q3 | Q4 | Q5 | Q6 | Q7 | Q8 | Q9 | Q10 | TOTAL |
|---|---|---|---|---|---|---|---|---|---|---|---|
| Rawles et al. (1974) [35] | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Unclear | Unclear | 8 |
| Riley et al. (2010) [7] | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Unclear | Unclear | 8 |
| Riley et al. (2013) [27] | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Unclear | Yes | 9 |
| Riley et al. (2018) [32] | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Unclear | Yes | 9 |
| Ardissone et al. (2014) [29] | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Unclear | Unclear | 8 |
| Sommerville et al. (2017) [31] | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Unclear | Yes | 9 |
| Carreño-Gago et al. (2021) [33] | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Unclear | Yes | 9 |
| Study | Q1 | Q2 | Q3 | Q4 | Q5 | Q6 | Q7 | Q8 | TOTAL |
|---|---|---|---|---|---|---|---|---|---|
| Rudaks et al. (2022) [25] | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | 8 |
| Sasarman et al. (2012) [28] | Yes | Yes | Yes | Yes | Yes | Yes | No | Yes | 7 |
| Shahni et al. (2013) [26] | Yes | Yes | Yes | Yes | Yes | Yes | No | Yes | 7 |
| Nakajima et al. (2014) [30] | Yes | Yes | Yes | Yes | Yes | Yes | No | Yes | 7 |
| Smith et al. (2018) [34] | Yes | Yes | Yes | Yes | Yes | Yes | No | Yes | 7 |
| Villafán-Bernal et al., (2025) [36] | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | 8 |
References
- Fujiwara, T.; Harigae, H. Pathophysiology and Genetic Mutations in Congenital Sideroblastic Anemia. Pediatr. Int. 2013, 55, 675–679. [Google Scholar] [CrossRef] [PubMed]
- Furuyama, K.; Kaneko, K. Iron Metabolism in Erythroid Cells and Patients with Congenital Sideroblastic Anemia. Int. J. Hematol. 2018, 107, 44–54. [Google Scholar] [CrossRef] [PubMed]
- Ducamp, S.; Fleming, M.D. The Molecular Genetics of Sideroblastic Anemia. Blood 2019, 133, 59–69. [Google Scholar] [CrossRef] [PubMed]
- Oncul, U.; Unal-Ince, E.; Kuloglu, Z.; Teber-Tiras, S.; Kaygusuz, G.; Eminoglu, F.T. A Novel PUS1 Mutation in 2 Siblings with MLASA Syndrome: A Review of the Literature. J. Pediatr. Hematol. Oncol. 2021, 43, E592–E595. [Google Scholar] [CrossRef]
- Eisenkölbl, A.; Lochmüller, H.; Carter, M.T.; Hamilton, L.E.; McMillan, H.J. Congenital-Onset MLASA2 from a Novel YARS2 Variant: A Literature Review. J. Neuromuscul. Dis. 2025, 22143602251369227. [Google Scholar] [CrossRef]
- Burrage, L.C.; Tang, S.; Wang, J.; Donti, T.R.; Walkiewicz, M.; Luchak, J.M.; Chen, L.C.; Schmitt, E.S.; Niu, Z.; Erana, R.; et al. Mitochondrial Myopathy, Lactic Acidosis, and Sideroblastic Anemia (MLASA) plus Associated with a Novel de Novo Mutation (m.8969G>A) in the Mitochondrial Encoded ATP6 Gene. Mol. Genet. Metab. 2014, 113, 207–212. [Google Scholar] [CrossRef]
- Riley, L.G.; Cooper, S.; Hickey, P.; Rudinger-Thirion, J.; McKenzie, M.; Compton, A.; Lim, S.C.; Thorburn, D.; Ryan, M.T.; Giegé, R.; et al. Mutation of the Mitochondrial Tyrosyl-TRNA Synthetase Gene, YARS2, Causes Myopathy, Lactic Acidosis, and Sideroblastic Anemia--MLASA Syndrome. Am. J. Hum. Genet. 2010, 87, 52–59. [Google Scholar] [CrossRef]
- Zou, Y.; Yang, Y.; Fu, X.; He, X.; Liu, M.; Zong, T.; Li, X.; Htet Aung, L.; Wang, Z.; Yu, T. The Regulatory Roles of Aminoacyl-TRNA Synthetase in Cardiovascular Disease. Mol. Ther. Nucleic Acids 2021, 25, 372–387. [Google Scholar] [CrossRef]
- YARS2 Tyrosyl-TRNA Synthetase 2 [Homo Sapiens (Human)]—Gene—NCBI. Available online: https://www.ncbi.nlm.nih.gov/gene/51067 (accessed on 26 October 2025).
- Tissue Expression of YARS2—Summary—The Human Protein Atlas. Available online: https://www.proteinatlas.org/ENSG00000139131-YARS2/tissue (accessed on 26 October 2025).
- Levi, O.; Garin, S.; Arava, Y. RNA Mimicry in Post-Transcriptional Regulation by Aminoacyl TRNA Synthetases. Wiley Interdiscip. Rev. RNA 2020, 11, e1564. [Google Scholar] [CrossRef]
- Wen, H.; Deng, H.; Li, B.; Chen, J.; Zhu, J.; Zhang, X.; Yoshida, S.; Zhou, Y. Mitochondrial Diseases: From Molecular Mechanisms to Therapeutic Advances. Signal Transduct. Target Ther. 2025, 10, 9. [Google Scholar] [CrossRef]
- Klopstock, T.; Priglinger, C.; Yilmaz, A.; Kornblum, C.; Distelmaier, F.; Prokisch, H. Mitochondrial Disorders. Dtsch. Ärztebl. Int. 2021, 118, 741–748. [Google Scholar] [CrossRef] [PubMed]
- Silva-Alarcón, C.M.; Matus-Ortega, M.G.; Guerrero-Castillo, S. Mitochondrial Protein Translation: Emerging Roles and Clinical Significance in Disease. Front. Cell Dev. Biol. 2021, 9, 675465. [Google Scholar] [CrossRef] [PubMed]
- Podmanicky, O.; Gao, F.; Munro, B.; Jennings, M.J.; Boczonadi, V.; Hathazi, D.; Mueller, J.S.; Horvath, R. Mitochondrial Aminoacyl-tRNA Synthetases Trigger Unique Compensatory Mechanisms in Neurons. Hum. Mol. Genet. 2024, 33, 435–447. [Google Scholar] [CrossRef] [PubMed]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ 2021, 372, n71. [Google Scholar] [CrossRef]
- Munn, Z.; Barker, T.H.; Moola, S.; Tufanaru, C.; Stern, C.; McArthur, A.; Stephenson, M.; Aromataris, E. Methodological quality of case series studies: An introduction to the JBI critical appraisal tool. JBI Evid. Synth. 2020, 18, 2127–2133. [Google Scholar] [CrossRef]
- Xie, L.; Bourne, P.E. A Robust and Efficient Algorithm for the Shape Description of Protein Structures and Its Application in Predicting Ligand Binding Sites. BMC Bioinform. 2007, 8, S9. [Google Scholar] [CrossRef]
- Dobbins, S.E.; Lesk, V.I.; Sternberg, M.J.E. Insights into Protein Flexibility: The Relationship between Normal Modes and Conformational Change upon Protein-Protein Docking. Proc. Natl. Acad. Sci. USA 2008, 105, 10390–10395. [Google Scholar] [CrossRef]
- Sivley, R.M.; Dou, X.; Meiler, J.; Bush, W.S.; Capra, J.A. Comprehensive Analysis of Constraint on the Spatial Distribution of Missense Variants in Human Protein Structures. Am. J. Hum. Genet. 2018, 102, 415–426. [Google Scholar] [CrossRef]
- Ioannidis, N.M.; Rothstein, J.H.; Pejaver, V.; Middha, S.; McDonnell, S.K.; Baheti, S.; Musolf, A.; Li, Q.; Holzinger, E.; Karyadi, D.; et al. REVEL: An Ensemble Method for Predicting the Pathogenicity of Rare Missense Variants. Am. J. Hum. Genet. 2016, 99, 877–885. [Google Scholar] [CrossRef]
- Cheng, J.; Novati, G.; Pan, J.; Bycroft, C.; Žemgulyte, A.; Applebaum, T.; Pritzel, A.; Wong, L.H.; Zielinski, M.; Sargeant, T.; et al. Accurate Proteome-Wide Missense Variant Effect Prediction with AlphaMissense. Science 2023, 381, eadg7492. [Google Scholar] [CrossRef]
- Meier, J.; Rao, R.; Verkuil, R.; Liu, J.; Sercu, T.; Rives, A. Language Models Enable Zero-Shot Prediction of the Effects of Mutations on Protein Function. bioRxiv 2021. [Google Scholar] [CrossRef]
- Marabotti, A.; Del Prete, E.; Scafuri, B.; Facchiano, A. Performance of Web Tools for Predicting Changes in Protein Stability Caused by Mutations. BMC Bioinform. 2021, 22, 345. [Google Scholar] [CrossRef] [PubMed]
- Rudaks, L.I.; Watson, E.; Oboudiyat, C.; Kumar, K.R.; Sullivan, P.; Cowley, M.J.; Davis, R.L.; Sue, C.M. Decompensation of Cardiorespiratory Function and Emergence of Anemia during Pregnancy in a Case of Mitochondrial Myopathy, Lactic Acidosis, and Sideroblastic Anemia 2 with Compound Heterozygous YARS2 Pathogenic Variants. Am. J. Med. Genet. A 2022, 188, 2226–2230. [Google Scholar] [CrossRef] [PubMed]
- Shahni, R.; Wedatilake, Y.; Cleary, M.A.; Lindley, K.J.; Sibson, K.R.; Rahman, S. A Distinct Mitochondrial Myopathy, Lactic Acidosis and Sideroblastic Anemia (MLASA) Phenotype Associates with YARS2 Mutations. Am. J. Med. Genet. A 2013, 161A, 2334–2338. [Google Scholar] [CrossRef]
- Riley, L.G.; Menezes, M.J.; Rudinger-Thirion, J.; Duff, R.; De Lonlay, P.; Rotig, A.; Tchan, M.C.; Davis, M.; Cooper, S.T.; Christodoulou, J. Phenotypic Variability and Identification of Novel YARS2 Mutations in YARS2 Mitochondrial Myopathy, Lactic Acidosis and Sideroblastic Anaemia. Orphanet J. Rare Dis. 2013, 8, 193. [Google Scholar] [CrossRef] [PubMed]
- Sasarman, F.; Nishimura, T.; Thiffault, I.; Shoubridge, E.A. A Novel Mutation in YARS2 Causes Myopathy with Lactic Acidosis and Sideroblastic Anemia. Hum. Mutat. 2012, 33, 1201–1206. [Google Scholar] [CrossRef]
- Ardissone, A.; Lamantea, E.; Quartararo, J.; Dallabona, C.; Carrara, F.; Moroni, I.; Donnini, C.; Garavaglia, B.; Zeviani, M.; Uziel, G. A Novel Homozygous YARS2 Mutation in Two Italian Siblings and a Review of Literature. JIMD Rep. 2015, 20, 95–101. [Google Scholar] [CrossRef]
- Nakajima, J.; Eminoglu, T.F.; Vatansever, G.; Nakashima, M.; Tsurusaki, Y.; Saitsu, H.; Kawashima, H.; Matsumoto, N.; Miyake, N. A Novel Homozygous YARS2 Mutation Causes Severe Myopathy, Lactic Acidosis, and Sideroblastic Anemia 2. J. Hum. Genet. 2014, 59, 229–232. [Google Scholar] [CrossRef]
- Sommerville, E.W.; Ng, Y.S.; Alston, C.L.; Dallabona, C.; Gilberti, M.; He, L.; Knowles, C.; Chin, S.L.; Schaefer, A.M.; Falkous, G.; et al. Clinical Features, Molecular Heterogeneity, and Prognostic Implications in YARS2-Related Mitochondrial Myopathy. JAMA Neurol. 2017, 74, 686–694. [Google Scholar] [CrossRef]
- Riley, L.G.; Heeney, M.M.; Rudinger-Thirion, J.; Frugier, M.; Campagna, D.R.; Zhou, R.; Hale, G.A.; Hilliard, L.M.; Kaplan, J.A.; Kwiatkowski, J.L.; et al. The Phenotypic Spectrum of Germline YARS2 Variants: From Isolated Sideroblastic Anemia to Mitochondrial Myopathy, Lactic Acidosis and Sideroblastic Anemia 2. Haematologica 2018, 103, 2008–2015. [Google Scholar] [CrossRef]
- Carreño-Gago, L.; Juárez-Flores, D.L.; Grau, J.M.; Ramón, J.; Lozano, E.; Vila-Julià, F.; Martí, R.; Garrabou, G.; Garcia-Arumí, E. Two Novel Variants in YARS2 Gene Are Responsible for an Extended MLASA Phenotype with Pancreatic Insufficiency. J. Clin. Med. 2021, 10, 3471. [Google Scholar] [CrossRef]
- Smith, F.; Hopton, S.; Dallabona, C.; Gilberti, M.; Falkous, G.; Norwood, F.; Donnini, C.; Gorman, G.S.; Clark, B.; Taylor, R.W.; et al. Sideroblastic Anemia with Myopathy Secondary to Novel, Pathogenic Missense Variants in the YARS2 Gene. Haematologica 2018, 103, e564–e566. [Google Scholar] [CrossRef] [PubMed]
- Rawles, J.M.; Weller, R.O. Familial Association of Metabolic Myopathy, Lactic Acidosis and Sideroblastic Anemia. Am. J. Med. 1974, 56, 891–897. [Google Scholar] [CrossRef] [PubMed]
- Villafán-Bernal, J.R.; Rosas-Hernández, J.; García-Ortiz, H.; Martínez-Hernández, A.; Contreras-Cubas, C.; Guerrero-Contreras, I.; Lee, H.; Seo, G.H.; Carnevale, A.; Barajas-Olmos, F.; et al. First Latin American Case of MLASA2 Caused by a Pathogenic Variant in the Anticodon-Binding Domain of YARS2. Int. J. Mol. Sci. 2025, 26, 12039. [Google Scholar] [CrossRef] [PubMed]
- Megarbane, A.; Bizzari, S.; Deepthi, A.; Sabbagh, S.; Mansour, H.; Chouery, E.; Hmaimess, G.; Jabbour, R.; Mehawej, C.; Alame, S.; et al. A 20-Year Clinical and Genetic Neuromuscular Cohort Analysis in Lebanon: An International Effort. J. Neuromuscul. Dis. 2022, 9, 193–210. [Google Scholar] [CrossRef]
- Gurtner, C.; Hug, P.; Kleiter, M.; Köhler, K.; Dietschi, E.; Jagannathan, V.; Leeb, T. YARS2 Missense Variant in Belgian Shepherd Dogs with Cardiomyopathy and Juvenile Mortality. Genes 2020, 11, 313. [Google Scholar] [CrossRef]
- Thompson, J.L.P.; Karaa, A.; Pham, H.; Yeske, P.; Krischer, J.; Xiao, Y.; Long, Y.; Kramer, A.; Dimmock, D.; Holbert, A.; et al. The Evolution of the Mitochondrial Disease Diagnostic Odyssey. Orphanet J. Rare Dis. 2023, 18, 157, Erratum in Orphanet J. Rare Dis. 2023, 18, 194. [Google Scholar] [CrossRef]
- Gallagher, P.G. Anemia in the Pediatric Patient. Blood 2022, 140, 571–593. [Google Scholar] [CrossRef]
- Mahlknecht, U.; Kaiser, S. Age-Related Changes in Peripheral Blood Counts in Humans. Exp. Ther. Med. 2010, 1, 1019. [Google Scholar] [CrossRef]
- El Guessabi, S.; Abouqal, R.; Ibrahimi, A.; Zouiri, G.; Sfifou, F.; Finsterer, J.; Kriouile, Y. Diagnostic Accuracy of the Lactate Stress Test for Detecting Mitochondrial Disorders: Systematic Review and Meta-Analysis. Heliyon 2024, 10, e39648. [Google Scholar] [CrossRef]
- Solaini, G.; Baracca, A.; Lenaz, G.; Sgarbi, G. Hypoxia and Mitochondrial Oxidative Metabolism. Biochim. Biophys. Acta Bioenerg. 2010, 1797, 1171–1177. [Google Scholar] [CrossRef]
- Ugalde, C.; Janssen, R.J.; van den Heuvel, L.P.; Smeitink, J.A.; Nijtmans, L.G. Differences in Assembly or Stability of Complex I and Other Mitochondrial OXPHOS Complexes in Inherited Complex I Deficiency. Hum. Mol. Genet. 2004, 13, 659–667. [Google Scholar] [CrossRef]





| Study | Country | Ascendence | Method of PV Identification | Screened Patients | Num. Affected Patients | PV Reported |
|---|---|---|---|---|---|---|
| Rawles, 1974 [35] | UK | 2 Scottish | TSeq | 2 | 2 | p.(Leu392Ser) n.d. |
| Riley, 2010 [7] | Australia | Lebanese | Microarrays | 3 | 3 | p.(Phe52Leu) p.(Phe52Leu) p.(Phe52Leu) |
| Sasarman, 2012 [28] | Canada | Lebanese | RT-PCR | 1 | 1 | p.(Gly46Asp) |
| Riley, 2013 [27] | Australia | 2 Lebanese, 1 French | Sanger | 12 | 3 | p.(Phe52Leu) p.(Phe52Leu) p.[Gly191Asp];[Arg360*] |
| Shahni, 2013 [26] | UK | Lebanese | Long range PCR, and Sanger | 1 | 1 | p.(Phe52Leu) |
| Ardissone, 2014 [29] | Italy | Italian | Sanger and Southern blot | 2 | 2 | p.(Asp311Glu) p.(Asp311Glu) |
| Nakajima, 2014 [30] | Turkey | Türkiye | WES | 1 | 1 | p.(Ser435Gly) |
| Sommerville, 2017 [31] | UK | 2 Scottish 2 Jordanian | Sanger and WES | 4 | 4 | p.(Leu392Ser) p.[Cys369Tyr];[Val383_Glu388dup] p.(Gly46Asp) n.d. |
| Riley, 2018 [32] | USA | 4 Lebanese, Caucasian Dutch, Caucasian American, African American, Spanish | TSeq and WES | 14 | 14 | p.(Asp311Glu) p.[Ser203Ile];p[c.1104-1G>A] p.[Ser33*];p.[Tyr236Cys] p.[Ser33*];p.[Tyr236Cys] p.[Gly191Val];p.[Ile454Serfs*10] p.[Gly191Val];p.[Ile454Serfs*10] p.[Gly191Val, Gly244Ala];p.[Asp311Glu] p.[Gly191Val];p.[Thr197_Leu208del] p.[Met195Ile];p.[Leu389Cysfs*6] p.(Leu61Val) p.(Phe52Leu) p.(Phe52Leu) p.(Phe52Leu) p.(Phe52Leu) |
| Smith, 2018 [34] | UK | Caucasian | NGS | 1 | 1 | p.[Pro122Arg];[Leu208Arg] |
| Carreño-Gago, 2021 [33] | Spain | Spanish | WES | 2 | 2 | p.[Gly105Alafs*4];[p.Ile464Thr)] p.[Gly105Alafs*4];[p.Ile464Thr)] |
| Rudacks, 2022 [25] | Australia | Australian | WES | 1 | 1 | p.[Ser33*];[Arg316Ser] |
| Villafán-Bernal, 2025 [36] | Mexico | Mexican mestizo | WES | 1 | 1 | p.(Asp311Glu) |
| Age | Patients at Risk | Events | Cumulative Survival | Standard Error | Lower 95% IC | Upper 95% IC |
|---|---|---|---|---|---|---|
| 5 | 29 | 2 | 0.941 | 0.0404 | 0.865 | 1.000 |
| 10 | 25 | 0 | 0.941 | 0.0404 | 0.865 | 1.000 |
| 20 | 17 | 2 | 0.857 | 0.0679 | 0.734 | 1.000 |
| 30 | 10 | 2 | 0.707 | 0.1117 | 0.519 | 0.964 |
| 40 | 8 | 0 | 0.707 | 0.1117 | 0.519 | 0.964 |
| 50 | 3 | 2 | 0.424 | 0.1688 | 0.195 | 0.925 |
| Cluster Number | Num. of Residues | Residues | Domain(s) | Mean Intra-Cluster Distance (Å) | Cr1 | Cr2 & | Cr3 & | Cr4 & | Cr5 | Cr6 | CSS | NAS by Cluster * | Clinical Manifestations | Global Hotspot Classification |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 1 | 11 | 32, 33, 34, 35, 36, 67, 68, 69, 104, 105, 106 | Catalytic | 7.13 | Yes | No | No | No | No | 4 | 0.42 | 4 | Myopathy: 50%. Cardiomyopathy: 0%. Lactic acidosis: 67%. Transfusion dependence: 50%. Median age: 27.0. Mortality rate: 25%. | Clinical: Medium; Strength evidence of pathogenicity: Medium |
| 2 | 3 | 45, 46, 47 | Catalytic | 4.35 | Yes | Yes | No | Yes | Yes | 2 | 1 | 2 | Myopathy: 100%. Cardiomyopathy: 100%. Lactic acidosis: 100%. Transfusion dependence: 100%. Median age: 32.0. Mortality rate: 50%. | Clinical: High; Strength evidence of pathogenicity: High |
| 3 | 44 | 51, 52, 53, 60, 61, 62, 78, 79, 80, 121, 122, 123, 178, 179, 180, 184, 185, 186, 190, 191, 192, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 243, 244, 245, 250, 251, 252 | Catalytic | 7.95 | Yes | No | Yes | Yes | Yes | 17 | 0.63 | 17 | Myopathy: 65%. Cardiomyopathy: 47%. Lactic acidosis: 75%. Transfusion dependence: 67%. Median age: 21.5. Mortality rate: 22%. | Clinical: High, Strength evidence of pathogenicity: High |
| 4 | 3 | 235, 236, 237 | Catalytic | 4.6 | Yes | No | No | Yes | No | 2 | 0.13 | 2 | Myopathy: 0%. Cardiomyopathy: 0%. Lactic acidosis: 0%. Transfusion dependence: 50%. Median age: 5.0. Mortality rate: 0%. | Clinical: Low; Strength evidence of pathogenicity: Low |
| 5 | 18 | 294, 295, 296, 368, 369, 370, 382, 383, 384, 385, 386, 387, 388, 389, 390, 391, 392, 393 | Anticodon binding; Catalytic; tRNAb | 7.83 | Yes | No | Yes | No | Yes | 2 | 0.5 | 2 | Myopathy: 100%. Cardiomyopathy: 50%. Lactic acidosis: 50%. Transfusion dependence: 0%. Median age: 60.0. Mortality rate: 50%. | Clinical: Medium; Strength evidence of pathogenicity: Medium |
| 6 | 5 | 309, 310, 311, 312, 313 | Anticodon binding | 5.42 | Yes | No | No | Yes | No | 5 | 0.78 | 5 | Myopathy: 100%. Cardiomyopathy: 33%. Lactic acidosis: 80%. Transfusion dependence: 100%. Median age: 13.0. Mortality rate: 0%. | Clinical: High; Strength evidence of pathogenicity: Medium |
| 7 | 3 | 359, 360, 361 | Anticodon binding | 4.42 | Yes | No | No | No | No | 0 | 0 | 0 | Myopathy: NA. Cardiomyopathy: NA. Lactic acidosis: NA. Transfusion dependence: NA. Median age: NA. Event rate: NA. | Clinical: Low; Strength evidence of pathogenicity: Low |
| 8 | 8 | 434, 435, 436, 463, 464, 465, 466, 467 | tRNAb | 6.76 | Yes | Yes | No | Yes | Yes | 3 | 0.92 | 3 | Myopathy: 100%. Cardiomyopathy: 100%. Lactic acidosis: 100%. Transfusion dependence: 67%. Median age: 48.0. Mortality rate: 67%. | Clinical: High; Strength evidence of pathogenicity: High |
| 9 | 3 | 453, 454, 455 | tRNAb | 4.72 | Yes | No | No | No | No | 0 | 0 | 0 | Myopathy: NA. Cardiomyopathy: NA. Lactic acidosis: NA. Transfusion dependence: NA. Median age: NA. Event rate: NA. | Clinical: Low; Strength evidence of pathogenicity: Low |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Villafan-Bernal, J.R.; Martínez-Hernández, A.; García-Ortiz, H.; Contreras-Cubas, C.; Guerrero-Contreras, I.; Frías-Cabrera, J.L.; Centeno-Cruz, F.; Morales Rivera, M.I.; Hernández, J.R.; Carnevale, A.; et al. Correlation of MLASA2 Clinical Phenotype and Survival with Mt-TyrRS Protein Damage: Linking Systematic Review, Meta-Analysis and 3D Hotspot Mapping. Curr. Issues Mol. Biol. 2026, 48, 95. https://doi.org/10.3390/cimb48010095
Villafan-Bernal JR, Martínez-Hernández A, García-Ortiz H, Contreras-Cubas C, Guerrero-Contreras I, Frías-Cabrera JL, Centeno-Cruz F, Morales Rivera MI, Hernández JR, Carnevale A, et al. Correlation of MLASA2 Clinical Phenotype and Survival with Mt-TyrRS Protein Damage: Linking Systematic Review, Meta-Analysis and 3D Hotspot Mapping. Current Issues in Molecular Biology. 2026; 48(1):95. https://doi.org/10.3390/cimb48010095
Chicago/Turabian StyleVillafan-Bernal, José Rafael, Angélica Martínez-Hernández, Humberto García-Ortiz, Cecilia Contreras-Cubas, Israel Guerrero-Contreras, José Luis Frías-Cabrera, Federico Centeno-Cruz, Monserrat Ivonne Morales Rivera, Jhonatan Rosas Hernández, Alessandra Carnevale, and et al. 2026. "Correlation of MLASA2 Clinical Phenotype and Survival with Mt-TyrRS Protein Damage: Linking Systematic Review, Meta-Analysis and 3D Hotspot Mapping" Current Issues in Molecular Biology 48, no. 1: 95. https://doi.org/10.3390/cimb48010095
APA StyleVillafan-Bernal, J. R., Martínez-Hernández, A., García-Ortiz, H., Contreras-Cubas, C., Guerrero-Contreras, I., Frías-Cabrera, J. L., Centeno-Cruz, F., Morales Rivera, M. I., Hernández, J. R., Carnevale, A., Barajas-Olmos, F., & Orozco, L. (2026). Correlation of MLASA2 Clinical Phenotype and Survival with Mt-TyrRS Protein Damage: Linking Systematic Review, Meta-Analysis and 3D Hotspot Mapping. Current Issues in Molecular Biology, 48(1), 95. https://doi.org/10.3390/cimb48010095

