Disruption of Spore Coat Integrity in Bacillus subtilis Enhances Macrophage Immune Activation
Abstract
1. Introduction
2. Materials and Methods
2.1. Strains and Plasmids
2.2. Primers
2.3. Construction of Recombinant Vectors and Mutant Strains
- (1)
- Genomic DNA extraction and amplification of homology arms
- (2)
- Fusion of homology arms by overlap extension PCR
- (3)
- Initial cloning and screening
- (4)
- Insertion of antibiotic resistance marker
- (5)
- Transformation into B. subtilis
- (6)
- Verification of mutants
2.4. Growth Curve Analysis
2.5. Assessment of Sporulation Efficiency
2.6. Spore Preparation
2.7. Transmission Electron Microscopy (TEM)
2.8. Cell Culture
2.9. RNA Extraction and RT–qPCR
2.10. ELISA
2.11. Statistical Analyses
3. Results
3.1. Construction and Validation of Spore Coat Gene Deletion Mutants
3.2. Phenotypic Characterization of Spore Coat Protein Mutants
- (1)
- Growth dynamics
- (2)
- Sporulation efficiency
- (3)
- Ultrastructural analysis by transmission electron microscopy (TEM)
3.3. Mutant Spores Differentially Activate TLR and Inflammatory Responses
3.4. Effect of Spore Coat Protein Mutants on the Expression of Inflammatory Cytokines
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Anee, I.J.; Alam, S.; Begum, R.A.; Shahjahan, R.M.; Khandaker, A.M. The role of probiotics on animal health and nutrition. J. Basic. Appl. Zool. 2021, 82, 52. [Google Scholar] [CrossRef]
- Bhogoju, S.; Nahashon, S. Recent Advances in Probiotic Application in Animal Health and Nutrition: A Review. Agriculture 2022, 12, 304. [Google Scholar] [CrossRef]
- Ruiz Sella, S.R.B.; Bueno, T.; de Oliveira, A.A.B.; Karp, S.G.; Soccol, C.R. Bacillus subtilis natto as a potential probiotic in animal nutrition. Crit. Rev. Biotechnol. 2021, 41, 355–369. [Google Scholar] [CrossRef] [PubMed]
- Esparza-Gonzalez, S.C.; Troy, A.R.; Izzo, A.A. Comparative analysis of Bacillus subtilis spores and monophosphoryl lipid A as adjuvants of protein-based Mycobacterium tuberculosis-based vaccines: Partial requirement for interleukin-17a for induction of protective immunity. Clin. Vaccine Immunol. 2014, 21, 501–508. [Google Scholar] [CrossRef]
- Liang, Z.; Zhang, C.; Liu, X.; Yang, K.; Xiong, Z.; Liang, B.; Mai, J.; Xiao, X.; Liu, J.; Yang, P.; et al. Neutrophil-activating protein in Bacillus spores inhibits casein allergy via TLR2 signaling. Front. Immunol. 2024, 15, 1428079. [Google Scholar] [CrossRef]
- Driks, A.; Eichenberger, P. The spore coat. Microbiol. Spectr. 2016, 4, 179–200. [Google Scholar] [CrossRef]
- McKenney, P.T.; Driks, A.; Eskandarian, H.A.; Grabowski, P.; Guberman, J.; Wang, K.H.; Gitai, Z.; Eichenberger, P. A distance-weighted interaction map reveals a previously uncharacterized layer of the Bacillus subtilis spore coat. Curr. Biol. 2010, 20, 934–938. [Google Scholar] [CrossRef]
- Waller, L.N.; Fox, N.; Fox, K.F.; Fox, A.; Price, R.L. Ruthenium red staining for ultrastructural visualization of a glycoprotein layer surrounding the spore of Bacillus anthracis and Bacillus subtilis. J. Microbiol. Meth. 2004, 58, 23–30. [Google Scholar] [CrossRef]
- Roels, S.; Driks, A.; Losick, R. Characterization of spoIVA, a sporulation gene involved in coat morphogenesis in Bacillus subtilis. J. Bacteriol. 1992, 174, 575–585. [Google Scholar] [CrossRef]
- Stevens, C.M.; Daniel, R.; Illing, N.; Errington, J. Characterization of a sporulation gene, spoIVA, involved in spore coat morphogenesis in Bacillus subtilis. J. Bacteriol. 1992, 174, 586–594. [Google Scholar] [CrossRef]
- Ozin, A.J.; Henriques, A.O.; Yi, H.; Moran, J.C.P. Morphogenetic proteins SpoVID and SafA form a complex during assembly of the Bacillus subtilis spore coat. J. Bacteriol. 2000, 182, 1828–1833. [Google Scholar] [CrossRef] [PubMed]
- Zheng, L.; Donovan, W.P.; Fitz-James, P.C.; Losick, R. Gene encoding a morphogenic protein required in the assembly of the outer coat of the Bacillus subtilis endospore. Gene Dev. 1988, 2, 1047–1054. [Google Scholar] [CrossRef] [PubMed]
- Imamura, D.; Kuwana, R.; Takamatsu, H.; Watabe, K. Proteins involved in formation of the outermost layer of Bacillus subtilis spores. J. Bacteriol. 2011, 193, 4075–4080. [Google Scholar] [CrossRef]
- Henriques, A.O.; Moran, C.P. Structure, assembly, and function of the spore surface layers. Annu. Rev. Microbiol. 2007, 61, 555–588. [Google Scholar] [CrossRef]
- Ming, Y.M.; Wei, Z.W.; Lin, C.Y.; Sheng, G.Y. Development of a Bacillus subtilis expression system using the improved Pglv promoter. Microb. Cell Fact. 2010, 9, 55. [Google Scholar] [CrossRef]
- Li, W.; Li, J.; Dai, X.; Liu, M.; Khalique, A.; Wang, Z.; Zeng, Y.; Zhang, D.; Ni, X.; Zeng, D.; et al. Surface Display of porcine circovirus type 2 antigen protein Cap on the spores of Bacillus subtilis 168: An effective mucosal vaccine candidate. Front. Immunol. 2022, 13, 1007202. [Google Scholar] [CrossRef]
- Kermgard, E.; Yang, Z.; Michel, A.; Simari, R.; Wong, J.; Ibba, M.; Lazazzera, B.A. Quality Control by Isoleucyl-tRNA Synthetase of Bacillus subtilis Is Required for Efficient Sporulation. Sci. Rep. 2017, 7, 41763. [Google Scholar] [CrossRef]
- Fukunishi, K.; Miyakubi, K.; Hatanaka, M.; Otsuru, N.; Hirata, A.; Shimoda, C.; Nakamura, T. The fission yeast spore is coated by a proteinaceous surface layer comprising mainly Isp3. Mol. Biol. Cell 2014, 25, 1549–1559. [Google Scholar] [CrossRef]
- Luhur, J.; Chan, H.; Kachappilly, B.; Mohamed, A.; Morlot, C.; Awad, M.; Lyras, D.; Taib, N.; Gribaldo, S.; Rudner, D.Z.; et al. A dynamic, ring-forming MucB/RseB-like protein influences spore shape in Bacillus subtilis. PLoS Genet. 2020, 16, e1009246. [Google Scholar] [CrossRef]
- Lin, J.; Huang, L.; Li, Y.; Zhang, P.; Yu, Q.; Yang, Q. Bacillus subtilis Spore-Trained Dendritic Cells Enhance the Generation of Memory T Cells via ICAM1. Cells 2021, 10, 2267. [Google Scholar] [CrossRef]
- Wang, X.; Ji, S.C.; Yun, S.H.; Jeon, H.J.; Kim, S.W.; Lim, H.M. Expression of each cistron in the gal operon can be regulated by transcription termination and generation of a galK-specific mRNA, mK2. J. Bacteriol. 2014, 196, 2598–2606. [Google Scholar] [CrossRef] [PubMed]
- N, M.P.A.; Jeon, H.; Wang, X.; Lim, H.M. Reporter gene-based qRT-PCR assay for Rho-dependent termination in vivo. Cells 2023, 12, 2596. [Google Scholar] [CrossRef] [PubMed]
- Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Wang, Y.; Lin, S.; Yu, Q.; Qi, Z.; Jiang, W.; Zhao, Q.; Fu, Q.B. Interaction between membrane curvature sensitive factors SpoVM and SpoIVA in bicelle condition. Biochem. Biophys. Res. Commun. 2024, 694, 149395. [Google Scholar] [CrossRef]
- Catalano, F.A.; Meador-Parton, J.; Popham, D.L.; Driks, A. Amino acids in the Bacillus subtilis morphogenetic protein SpoIVA with roles in spore coat and cortex formation. J. Bacteriol. 2001, 183, 1645–1654. [Google Scholar] [CrossRef]
- Choi, P.; Rhayat, L.; Pinloche, E.; Devillard, E.; De Paepe, E.; Vanhaecke, L.; Haesebrouck, F.; Ducatelle, R.; Van Immerseel, F.; Goossens, E. Bacillus subtilis 29784 as a feed additive for broilers shifts the intestinal microbial composition and supports the production of hypoxanthine and nicotinic acid. Animals 2021, 11, 1335. [Google Scholar] [CrossRef]
- Kruse, S.; Schenk, M.; Pierre, F.; Morlock, G.E. Bacillus subtilis spores in probiotic feed quantified via bacterial metabolite using planar chromatography. Anal. Chim. Acta. 2022, 1221, 340124. [Google Scholar] [CrossRef]
- Freitas, C.; Plannic, J.; Isticato, R.; Pelosi, A.; Zilhão, R.; Serrano, M.; Baccigalupi, L.; Ricca, E.; Elsholz, A.K.W.; Losick, R.; et al. A protein phosphorylation module patterns the Bacillus subtilis spore outer coat. Mol. Microbiol. 2020, 114, 934–951. [Google Scholar] [CrossRef]
- de Francesco, M.; Jacobs, J.Z.; Nunes, F.; Serrano, M.; McKenney, P.T.; Chua, M.; Henriques, A.O.; Eichenberger, P. Physical interaction between coat morphogenetic proteins SpoVID and CotE is necessary for spore encasement in Bacillus subtilis. J. Bacteriol. 2012, 194, 4941–4950. [Google Scholar] [CrossRef]
- Bartels, J.; Blüher, A.; López Castellanos, S.; Richter, M.; Günther, M.; Mascher, T. The Bacillus subtilis endospore crust: Protein interaction network, architecture and glycosylation state of a potential glycoprotein layer. Mol. Microbiol. 2019, 112, 1576–1592. [Google Scholar] [CrossRef]
- Bartels, J.; López Castellanos, S.; Radeck, J.; Mascher, T. Sporobeads: The Utilization of the Bacillus subtilis Endospore Crust as a Protein Display Platform. ACS Synth. Biol. 2018, 7, 452–461. [Google Scholar] [CrossRef] [PubMed]
- McKenney, P.T.; Driks, A.; Eichenberger, P. The Bacillus subtilis endospore: Assembly and functions of the multilayered coat. Nat. Rev. Microbiol. 2013, 11, 33–44. [Google Scholar] [CrossRef] [PubMed]
- Bauer, T.; Little, S.; Stover, A.G.; Driks, A. Functional regions of the Bacillus subtilis spore coat morphogenetic protein CotE. J. Bacteriol. 1999, 181, 7043–7051. [Google Scholar] [CrossRef]
- Little, S.; Driks, A. Functional analysis of the Bacillus subtilis morphogenetic spore coat protein CotE. Mol. Microbiol. 2001, 42, 1107–1120. [Google Scholar] [CrossRef]
- Ozin, A.J.; Samford, C.S.; Henriques, A.O.; Moran, C.P. SpoVID guides SafA to the spore coat in Bacillus subtilis. J. Bacteriol. 2001, 183, 3041–3049. [Google Scholar] [CrossRef]
- Plomp, M.; Carroll, A.M.; Setlow, P.; Malkin, A.J. Architecture and assembly of the Bacillus subtilis spore coat. PLoS ONE 2014, 9, e108560. [Google Scholar] [CrossRef]
- Liu, H.; Qiao, H.; Krajcikova, D.; Zhang, Z.; Wang, H.; Barak, I.; Tang, J. Physical interaction and assembly of Bacillus subtilis spore coat proteins CotE and CotZ studied by atomic force microscopy. J. Struct. Biol. 2016, 195, 245–251. [Google Scholar] [CrossRef]
- Liu, H.; Krajcikova, D.; Zhang, Z.; Wang, H.; Barak, I.; Tang, J. Investigating interactions of the Bacillus subtilis spore coat proteins CotY and CotZ using single molecule force spectroscopy. J. Struct. Biol. 2015, 192, 14–20. [Google Scholar] [CrossRef]
- Nakaya, Y.; Uchiike, M.; Hattori, M.; Moriyama, M.; Abe, K.; Kim, E.; Eichenberger, P.; Imamura, D.; Sato, T. Identification of CgeA as a glycoprotein that anchors polysaccharides to the spore surface in Bacillus subtilis. Mol. Microbiol. 2023, 120, 384–396. [Google Scholar] [CrossRef]
- Shuster, B.; Khemmani, M.; Abe, K.; Huang, X.; Nakaya, Y.; Maryn, N.; Buttar, S.; Gonzalez, A.N.; Driks, A.; Sato, T.; et al. Contributions of crust proteins to spore surface properties in Bacillus subtilis. Mol. Microbiol. 2019, 111, 825–843. [Google Scholar] [CrossRef]
- Powell, J.D.; Hutchison, J.R.; Hess, B.M.; Straub, T.M. Bacillus anthracis spores germinate extracellularly at air–liquid interface in an in vitro lung model under serum-free conditions. J. Appl. Microbiol. 2015, 119, 711–723. [Google Scholar] [CrossRef] [PubMed]
- Guidi-Rontani, C.; Weber-Levy, M.; Labruyere, E.; Mock, M. Germination of Bacillus anthracis spores within alveolar macrophages. Mol. Microbiol. 1999, 31, 9–17. [Google Scholar] [CrossRef] [PubMed]
- Song, M.; Hong, H.A.; Huang, J.; Colenutt, C.; Khang, D.D.; Nguyen, T.V.A.; Park, S.; Shim, B.; Song, H.H.; Cheon, I.S.; et al. Killed Bacillus subtilis spores as a mucosal adjuvant for an H5N1 vaccine. Vaccine 2012, 30, 3266–3277. [Google Scholar] [CrossRef]
- Hong, J.E.; Kye, Y.; Park, S.; Cheon, I.S.; Chu, H.; Park, B.; Park, Y.; Chang, J.; Cho, J.; Song, M.K.; et al. Alveolar macrophages treated with Bacillus subtilis spores protect mice infected with respiratory syncytial virus A2. Front. Microbiol. 2019, 10, 447. [Google Scholar] [CrossRef]
- Lee, J.E.; Kye, Y.; Park, S.; Shim, B.; Yoo, S.; Hwang, E.; Kim, H.; Kim, S.; Han, S.H.; Park, T.S.; et al. Bacillus subtilis spores as adjuvants against avian influenza H9N2 induce antigen-specific antibody and T cell responses in White Leghorn chickens. Vet. Res. 2020, 51, 68. [Google Scholar] [CrossRef]
- Chan, B.C.; Li, P.; Tsang, M.S.; Sung, J.C.; Kwong, K.W.; Zheng, T.; Hon, S.S.; Lau, C.; Cheng, W.; Chen, F.; et al. Creating a vaccine-like supplement against respiratory infection using recombinant Bacillus subtilis spores expressing SARS-CoV-2 spike protein with natural products. Molecules 2023, 28, 4996. [Google Scholar] [CrossRef]
- El-Zayat, S.R.; Sibaii, H.; Mannaa, F.A. Toll-like receptors activation, signaling, and targeting: An overview. Bull. Natl. Res. Centre. 2019, 43, 187. [Google Scholar] [CrossRef]
- Zhou, C.; Wang, H.; Li, X.; Luo, Y.; Xie, M.; Wu, Z.; Chen, X. Regulatory effect of Bacillus subtilis on cytokines of dendritic cells in grass carp (Ctenopharyngodon idella). Int. J. Mol. Sci. 2019, 20, 389. [Google Scholar] [CrossRef]
- Takeda, K.; Akira, S. Roles of Toll-like receptors in innate immune responses. Genes. Cells 2001, 6, 733–742. [Google Scholar] [CrossRef]
- O’Neill, L.A. Therapeutic targeting of Toll-like receptors for inflammatory and infectious diseases. Curr. Opin. Pharmacol. 2003, 3, 396–403. [Google Scholar] [CrossRef]
- Takeuchi, O.; Kawai, T.; Muhlradt, P.F.; Morr, M.; Radolf, J.D.; Zychlinsky, A.; Takeda, K.; Akira, S. Discrimination of bacterial lipoproteins by Toll-like receptor 6. Int. Immunol. 2001, 13, 933–940. [Google Scholar] [CrossRef]
- Saber, M.M.; Monir, N.; Awad, A.S.; Elsherbiny, M.E.; Zaki, H.F. TLR9: A friend or a foe. Life Sci. 2022, 307, 120874. [Google Scholar] [CrossRef]
- Zhang, L.; Yi, H. An exopolysaccharide from Bacillus subtilis alleviates airway inflammatory responses via the NF-kappaB and STAT6 pathways in asthmatic mice. Biosci. Rep. 2022, 42, 20212461. [Google Scholar] [CrossRef]
- Tobita, K.; Meguro, R. Bacillus subtilis BN strain promotes Th1 response via Toll-like receptor 2 in polarized mouse M1 macrophage. J. Food Biochem. 2022, 46, e14046. [Google Scholar] [CrossRef]
- Kim, K.M.; Hwang, N.; Hyun, J.; Shin, D. Recent advances in IRAK1: Pharmacological and therapeutic aspects. Molecules. 2024, 29, 2226. [Google Scholar] [CrossRef] [PubMed]
- Flannery, S.; Bowie, A.G. The interleukin-1 receptor-associated kinases: Critical regulators of innate immune signalling. Biochem. Pharmacol. 2010, 80, 1981–1991. [Google Scholar] [CrossRef]
- Wesche, H.; Henzel, W.J.; Shillinglaw, W.; Li, S.; Cao, Z. Pillars article: MyD88: An adapter that recruits IRAK to the IL-1 receptor complex. Immunity. 1997. 7: 837–847. J. Immunol. 2013, 190, 5–15. [Google Scholar]
- Shi, F.; Zi, Y.; Lu, Z.; Li, F.; Yang, M.; Zhan, F.; Li, Y.; Li, J.; Zhao, L.; Lin, L.; et al. Bacillus subtilis H2 modulates immune response, fat metabolism, and bacterial flora in the gut of grass carp (Ctenopharyngodon idellus). Fish Shellfish Immunol. 2020, 106, 8–20. [Google Scholar] [CrossRef]
- Docando, F.; Nunez-Ortiz, N.; Serra, C.R.; Arense, P.; Enes, P.; Oliva-Teles, A.; Diaz-Rosales, P.; Tafalla, C. Mucosal and systemic immune effects of Bacillus subtilis in rainbow trout (Oncorhynchus mykiss). Fish Shellfish Immunol. 2022, 124, 142–155. [Google Scholar] [CrossRef]
- Huang, Q.; Xu, X.; Mao, Y.; Huang, Y.; Rajput, I.R.; Li, W. Effects of Bacillus subtilis B10 spores on viability and biological functions of murine macrophages. Anim. Sci. J. 2013, 84, 247–252. [Google Scholar] [CrossRef]
Primer | Sequence | Restriction Enzymes |
---|---|---|
Clw-up | ACCGAATTCGGGCATTGTTTCATC | EcoRI |
Clw-down | TTGGATCCGAAATATGATTACCGCATG | BamHI |
GerD-up | GCGGATCCAAGCTGTTACAGATAATAA | BamHI |
GerD-down | GCGGAGCTCCAAAAAATAAAAAACGCAC | SacI |
Specb-up | TTGGATCCGAATGGCGATTTTCG | BamHI |
Specb-dow | GCCGGATCCTTCCACCATTTTTTC | BamHI |
spoIVA-fro-up | TTGAATTCTACGATGCTTTCTGCAATTG | EcoRI |
ovlapIVA-1 | ATTTTCTAAAGATGTGGATCCCGGTAGACCTC | BamHI |
ovlapIVA-2 | AAAGAGGTCTACCGGGATCCACATCTTTAGAAAATTTC | BamHI |
spoIVA-bac-down | TTGAGCTCCATGTGTATGCTCATATCTGG | SacI |
cotX-fro-up | TTGCGAATTCGAACAGCAGATCGAAG | EcoRI |
ovlapcotX-1 | CTTTTAGGTCCTAGGATCCTGAGCGAGCCTC | BamHI |
ovlapcotX-2 | ATAAGAGGCTCGCTCAGGATCCTAGGACCTAAAAG | BamHI |
cotX-bac-down | TTGAGCTCGCAGATCTTCAATATTTTCTAC | SacI |
cgeA-fro-up | TTGAATTCGGATGCACGAAACTGTTATG | EcoRI |
ovlapcgeA-1 | TCACAATGCTGATTGTGGATCCTACACACACCTC | BamHI |
ovlapcgeA-2 | GGAGGTGTGTGTAGGATCCACAATCAGCATTG | BamHI |
cgeA-bac-down | GCCGAGCTCTTGATAGTAGAGAGCTGC | SacI |
cotZ-fro-up | TTGAATTCCTGCCCGCTAAGCAGGATC | EcoRI |
ovlapcotZ-1 | CAGGAGGGATAATGGATCCTCATAAGCTGGAAA | BamHI |
ovlapcotZ-2 | TTTCCAGCTTATGAGGATCCATTATCCCTCCTGC | BamHI |
cotZ-bac-down | TTGAGCTCCGGCAACTCTGACATCAATTG | SacI |
SafA-fro-up | TTGAATTCCGCGCTTTGCATCCTGTG | EcoRI |
ovlapSafA-1 | GTTGAAAATCCATATGGATCCCGTTCGGAACGATGTAA | BamHI |
ovlapSafA-2 | TACATCGTTCCGAACGGGATCCATATGGATTTTCAA | BamHI |
SafA-bac-down | TTGAGCTCCGATGAAAGATGAATTAGTAGC | SacI |
cotE-fro-up | TTGAATTCAGAGACTCGCAAATGGAAG | EcoRI |
cotE-fro-down | TTGGATCCTTCCAATTTTTTCAGCGTC | BamHI |
cotE-bac-up | TTGGATCCTAAAAAAGGGACTAGGGGAG | BamHI |
cotE-bac-down | TTGAGCTCCTCCAGATTACGCTTTGAG | SacI |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liao, B.; Han, Y.; Wei, Z.; Ding, X.; Lv, Y.; Sun, X.; Yang, M. Disruption of Spore Coat Integrity in Bacillus subtilis Enhances Macrophage Immune Activation. Curr. Issues Mol. Biol. 2025, 47, 378. https://doi.org/10.3390/cimb47050378
Liao B, Han Y, Wei Z, Ding X, Lv Y, Sun X, Yang M. Disruption of Spore Coat Integrity in Bacillus subtilis Enhances Macrophage Immune Activation. Current Issues in Molecular Biology. 2025; 47(5):378. https://doi.org/10.3390/cimb47050378
Chicago/Turabian StyleLiao, Bolang, Yongxian Han, Zheng Wei, Xuhong Ding, Yan Lv, Xiaoqin Sun, and Mingming Yang. 2025. "Disruption of Spore Coat Integrity in Bacillus subtilis Enhances Macrophage Immune Activation" Current Issues in Molecular Biology 47, no. 5: 378. https://doi.org/10.3390/cimb47050378
APA StyleLiao, B., Han, Y., Wei, Z., Ding, X., Lv, Y., Sun, X., & Yang, M. (2025). Disruption of Spore Coat Integrity in Bacillus subtilis Enhances Macrophage Immune Activation. Current Issues in Molecular Biology, 47(5), 378. https://doi.org/10.3390/cimb47050378