Caprylic Acid Restores Branched-Chain Amino Acid Metabolism in a Mouse Cachexia Model
Abstract
:1. Introduction
2. Materials and Methods
2.1. Cell Culture
2.2. In Vitro Cachexia Model
2.3. Animals
2.4. Dietary Interventions
2.5. Protein Extraction
2.6. Western Blotting
2.7. Enzyme-Linked Immunosorbent Assay (ELISA) and Fluorometric Analysis
2.8. Mitochondrial Stress Test (Seahorse Assay)
2.9. Glycolytic Stress Test
2.10. Reverse Transcription–Polymerase Chain Reaction (RT-PCR)
2.11. Statistical Analysis
3. Results
3.1. Effect of BCAAs on Cancer Sarcopenia
3.2. Effects of BCAAs on Cancer-Related Impairment of Energy Metabolism
3.3. BCAA Metabolism in the Cachexia Models
3.4. Effects of C8 on HMGB1-Induced Skeletal Muscle Impairment
3.5. Effect of BCAAs When Combined with 5FU Treatment in a Mouse Cachexia Model
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
BCAA | branched-chain amino acid |
BCKD | branched-chain α-ketoacid dehydrogenase |
HMGB1 | high-mobility group box-1 |
QCM | quadriceps femoris muscle |
SDS-MYL1 | sodium dodecyl sulfate-soluble myosin light chain-1 |
4HNE | 4-hydroxynonenal |
TNF | tumor necrosis factor |
BDK | BCKD kinase |
AcCoA | acetyl coenzyme A |
PGC1α | peroxisome proliferator-activated receptor-γ coactivator-1α |
C8 | caprylic acid |
References
- Cruz-Jentoft, A.J.; Bahat, G.; Bauer, J.; Boirie, Y.; Bruyère, O.; Cederholm, T.; Cooper, C.; Landi, F.; Rolland, Y.; Sayer, A.A.; et al. Sarcopenia: Revised European consensus on definition and diagnosis. Age Ageing 2019, 48, 16–31. [Google Scholar] [CrossRef] [PubMed]
- Ferrer, M.; Anthony, T.G.; Ayres, J.S.; Biffi, G.; Brown, J.C.; Caan, B.J.; Cespedes Feliciano, E.M.; Coll, A.P.; Dunne, R.F.; Goncalves, M.D.; et al. Cachexia: A systemic consequence of progressive, unresolved disease. Cell 2023, 186, 1824–1845. [Google Scholar] [CrossRef] [PubMed]
- Bozzetti, F. Screening the nutritional status in oncology: A preliminary report on 1000 outpatients. Support. Care Cancer 2009, 17, 279–284. [Google Scholar] [CrossRef] [PubMed]
- Morena da Silva, F.; Lim, S.; Cabrera, A.R.; Schrems, E.R.; Jones, R.G.; Rosa-Caldwell, M.E.; Washington, T.A.; Murach, K.A.; Greene, N.P. The time-course of cancer cachexia onset reveals biphasic transcriptional disruptions in female skeletal muscle distinct from males. BMC Genom. 2023, 24, 374. [Google Scholar] [CrossRef]
- Blum, D.; Stene, G.B.; Solheim, T.S.; Fayers, P.; Hjermstad, M.J.; Baracos, V.E.; Fearon, K.; Strasser, F.; Kaasa, S. Validation of the Consensus-Definition for Cancer Cachexia and evaluation of a classification model—A study based on data from an international multicentre project (EPCRC-CSA). Ann. Oncol. 2014, 25, 1635–1642. [Google Scholar] [CrossRef]
- Paillaud, E.; Caillet, P.; Campillo, B.; Bories, P.N. Increased risk of alteration of nutritional status in hospitalized elderly patients with advanced cancer. J. Nutr. Health Aging 2006, 10, 91–95. [Google Scholar]
- Evans, W.J.; Morley, J.E.; Argiles, J.; Bales, C.; Baracos, V.; Guttridge, D.; Jatoi, A.; Kalantar-Zadeh, K.; Lochs, H.; Mantovani, G.; et al. Cachexia: A new definition. Clin. Nutr. 2008, 27, 793–799. [Google Scholar] [CrossRef]
- Fearon, K.C.; Voss, A.C.; Hustead, D.S. Definition of cancer cachexia: Effect of weight loss, reduced food intake, and systemic inflammation on functional status and prognosis. Am. J. Clin. Nutr. 2006, 83, 1345–1350. [Google Scholar] [CrossRef]
- Fearon, K.C. Cancer cachexia: Developing multimodal therapy for a multidimensional problem. Eur. J. Cancer 2008, 44, 1124–1132. [Google Scholar] [CrossRef]
- Davis, M.P.; Panikkar, R. Sarcopenia associated with chemotherapy and targeted agents for cancer therapy. Ann. Palliat. Med. 2019, 8, 86–101. [Google Scholar] [CrossRef]
- Fearon, K.; Arends, J.; Baracos, V. Understanding the mechanisms and treatment options in cancer cachexia. Nat. Rev. Clin. Oncol. 2013, 10, 90–99. [Google Scholar] [CrossRef] [PubMed]
- Shachar, S.S.; Williams, G.R.; Muss, H.B.; Nishijima, T.F. Prognostic value of sarcopenia in adults with solid tumours: A meta-analysis and systematic review. Eur. J. Cancer 2016, 57, 58–67. [Google Scholar] [CrossRef] [PubMed]
- Ohmori, H.; Kawahara, I.; Mori, T.; Nukaga, S.; Luo, Y.; Kishi, S.; Fujiwara-Tani, R.; Mori, S.; Goto, K.; Sasaki, T.; et al. Evaluation of Parameters for Cancer-Induced Sarcopenia in Patients Autopsied after Death from Colorectal Cancer. Pathobiology 2019, 86, 306–314. [Google Scholar] [CrossRef] [PubMed]
- Luo, Y.; Yoneda, J.; Ohmori, H.; Sasaki, T.; Shimbo, K.; Eto, S.; Kato, Y.; Miyano, H.; Kobayashi, T.; Sasahira, T.; et al. Cancer usurps skeletal muscle as an energy repository. Cancer Res. 2014, 74, 330–340. [Google Scholar] [CrossRef]
- Martin, A.; Gallot, Y.S.; Freyssenet, D. Molecular mechanisms of cancer cachexia-related loss of skeletal muscle mass: Data analysis from preclinical and clinical studies. J. Cachexia Sarcopenia Muscle 2023, 14, 1150–1167. [Google Scholar] [CrossRef]
- Shyh-Chang, N. Metabolic Changes During Cancer Cachexia Pathogenesis. Adv. Exp. Med. Biol. 2017, 1026, 233–249. [Google Scholar]
- Luo, Y.; Fujiwara-Tani, R.; Kawahara, I.; Goto, K.; Nukaga, S.; Nishida, R.; Nakashima, C.; Sasaki, T.; Miyagawa, Y.; Ogata, R.; et al. Cancerous Conditions Accelerate the Aging of Skeletal Muscle via Mitochondrial DNA Damage. Int. J. Mol. Sci. 2024, 25, 7060. [Google Scholar] [CrossRef]
- Prado, C.M.; Purcell, S.A.; Laviano, A. Nutrition interventions to treat low muscle mass in cancer. J. Cachexia Sarcopenia Muscle 2020, 11, 366–380. [Google Scholar] [CrossRef]
- Nukaga, S.; Fujiwara-Tani, R.; Mori, T.; Kawahara, I.; Nishida, R.; Miyagawa, Y.; Goto, K.; Ohmori, H.; Fujii, K.; Sasaki, T.; et al. Effects of Antioxidant Amino Acids on Cancer Sarcopenia. Int. J. Mol. Sci. 2024, 26, 272. [Google Scholar] [CrossRef]
- Kamei, Y.; Hatazawa, Y.; Uchitomi, R.; Yoshimura, R.; Miura, S. Regulation of Skeletal Muscle Function by Amino Acids. Nutrients 2020, 12, 261. [Google Scholar] [CrossRef]
- Zaromskyte, G.; Prokopidis, K.; Ioannidis, T.; Tipton, K.D.; Witard, O.C. Evaluating the Leucine Trigger Hypothesis to Explain the Post-prandial Regulation of Muscle Protein Synthesis in Young and Older Adults: A Systematic Review. Front. Nutr. 2021, 8, 685165. [Google Scholar] [CrossRef] [PubMed]
- Aguilera, A.; Selgas, R.; Diéz, J.J.; Bajo, M.A.; Codoceo, R.; Alvarez, V. Anorexia in end-stage renal disease: Pathophysiology and treatment. Expert. Opin. Pharmacother. 2001, 2, 1825–1838. [Google Scholar] [PubMed]
- Cochet, C.; Belloni, G.; Buondonno, I.; Chiara, F.; D’Amelio, P. The Role of Nutrition in the Treatment of Sarcopenia in Old Patients: From Restoration of Mitochondrial Activity to Improvement of Muscle Performance, a Systematic Review. Nutrients 2023, 15, 3703. [Google Scholar] [CrossRef] [PubMed]
- Le Couteur, D.G.; Solon-Biet, S.M.; Cogger, V.C.; Ribeiro, R.; de Cabo, R.; Raubenheimer, D.; Cooney, G.J.; Simpson, S.J. Branched chain amino acids, aging and age-related health. Ageing Res. Rev. 2020, 64, 101198. [Google Scholar] [CrossRef]
- Laviano, A.; Muscaritoli, M.; Cascino, A.; Preziosa, I.; Inui, A.; Mantovani, G.; Rossi-Fanelli, F. Branched-chain amino acids: The best compromise to achieve anabolism? Curr. Opin. Clin. Nutr. Metab. Care 2005, 8, 408–414. [Google Scholar] [CrossRef]
- Nukaga, S.; Mori, T.; Miyagawa, Y.; Fujiwara-Tani, R.; Sasaki, T.; Fujii, K.; Mori, S.; Goto, K.; Kishi, S.; Nakashima, C.; et al. Combined administration of lauric acid and glucose improved cancer-derived cardiac atrophy in a mouse cachexia model. Cancer Sci. 2020, 111, 4605–4615. [Google Scholar] [CrossRef]
- Mori, T.; Ohmori, H.; Luo, Y.; Mori, S.; Miyagawa, Y.; Nukaga, S.; Goto, K.; Fujiwara-Tani, R.; Kishi, S.; Sasaki, T.; et al. Giving combined medium-chain fatty acids and glucose protects against cancer-associated skeletal muscle atrophy. Cancer Sci. 2019, 110, 3391–3399. [Google Scholar] [CrossRef]
- Nishida, R.; Nukaga, S.; Kawahara, I.; Miyagawa, Y.; Goto, K.; Nakashima, C.; Luo, Y.; Sasaki, T.; Fujii, K.; Ohmori, H.; et al. Differential Effects of Three Medium-Chain Fatty Acids on Mitochondrial Quality Control and Skeletal Muscle Maturation. Antioxidants 2024, 13, 821. [Google Scholar] [CrossRef]
- Liu, S.; Li, L.; Lou, P.; Zhao, M.; Wang, Y.; Tang, M.; Gong, M.; Liao, G.; Yuan, Y.; Li, L.; et al. Elevated branched-chain α-keto acids exacerbate macrophage oxidative stress and chronic inflammatory damage in type 2 diabetes mellitus. Free Radic. Biol. Med. 2021, 175, 141–154. [Google Scholar] [CrossRef]
- Chen, L.; Zhang, H.; Chi, M.; Wang, Y.; Zhu, X.; Han, L.; Xin, B.; Gan, R.; Tu, Y.; Sun, X.; et al. Bckdk-Mediated Branch Chain Amino Acid Metabolism Reprogramming Contributes to Muscle Atrophy during Cancer Cachexia. Mol. Nutr. Food Res. 2024, 68, e2300577. [Google Scholar] [CrossRef]
- Paxton, R.; Harris, R.A. Regulation of branched-chain α-ketoacid dehydrogenase kinase. Arch. Biochem. Biophys. 1984, 231, 48–57. [Google Scholar] [CrossRef] [PubMed]
- Shimomura, Y.; Murakami, T.; Nakai, N.; Nagasaki, M.; Harris, R.A. Exercise promotes BCAA catabolism: Effects of BCAA supplementation on skeletal muscle during exercise. J. Nutr. 2004, 134 (Suppl. 6), 1583S–1587S. [Google Scholar] [CrossRef] [PubMed]
- Aoyama, S.; Kim, H.K.; Hirooka, R.; Tanaka, M.; Shimoda, T.; Chijiki, H.; Kojima, S.; Sasaki, K.; Takahashi, K.; Makino, S.; et al. Distribution of dietary protein intake in daily meals influences skeletal muscle hypertrophy via the muscle clock. Cell Rep. 2021, 36, 109336. [Google Scholar] [CrossRef] [PubMed]
- Plotkin, D.L.; Delcastillo, K.; Van Every, D.W.; Tipton, K.D.; Aragon, A.A.; Schoenfeld, B.J. Isolated Leucine and Branched-Chain Amino Acid Supplementation for Enhancing Muscular Strength and Hypertrophy: A Narrative Review. Int. J. Sport. Nutr. Exerc. Metab. 2021, 31, 292–301. [Google Scholar] [CrossRef]
- Rieu, I.; Balage, M.; Sornet, C.; Giraudet, C.; Pujos, E.; Grizard, J.; Mosoni, L.; Dardevet, D. Leucine supplementation improves muscle protein synthesis in elderly men independently of hyperaminoacidaemia. J. Physiol. 2006, 575 Pt 1, 305–315. [Google Scholar] [CrossRef]
- Liu, X.; Wu, J.; Tang, J.; Xu, Z.; Zhou, B.; Liu, Y.; Hu, F.; Zhang, G.; Cheng, R.; Xia, X.; et al. Prevotella copri alleviates sarcopenia via attenuating muscle mass loss and function decline. J. Cachexia Sarcopenia Muscle 2023, 14, 2275–2288. [Google Scholar] [CrossRef]
- Tanada, Y.; Shioi, T.; Kato, T.; Kawamoto, A.; Okuda, J.; Kimura, T. Branched-chain amino acids ameliorate heart failure with cardiac cachexia in rats. Life Sci. 2015, 137, 20–27. [Google Scholar] [CrossRef]
- Holeček, M. Branched-chain amino acids in health and disease: Metabolism, alterations in blood plasma, and as supplements. Nutr. Metab. 2018, 15, 33. [Google Scholar] [CrossRef]
- Argiles, J.; Costelli, P.; Carbo, N.; Lopezsoriano, F. Branched-chain amino acid catabolism and cancer cachexia (review). Oncol. Rep. 1996, 3, 687–690. [Google Scholar] [CrossRef]
- Harris, R.A.; Kobayashi, R.; Murakami, T.; Shimomura, Y. Regulation of branched-chain α-keto acid dehydrogenase kinase expression in rat liver. J. Nutr. 2001, 131, 841S–845S. [Google Scholar] [CrossRef]
- Shimi, G.; Zand, H.; Pourvali, K.; Ghorbani, A. Colorectal cancer causes alteration of thyroid hormone profile in newly diagnosed patients. Expert. Rev. Endocrinol. Metab. 2021, 16, 259–262. [Google Scholar] [CrossRef] [PubMed]
- Petranović Ovčariček, P.; Deandreis, D.; Giovanella, L. Thyroid dysfunctions induced by molecular cancer therapies: A synopsis for nuclear medicine thyroidologists. Eur. J. Nucl. Med. Mol. Imaging 2021, 48, 3355–3360. [Google Scholar] [CrossRef] [PubMed]
- Ohmori, H.; Luo, Y.; Kuniyasu, H. Non-histone nuclear factor HMGB1 as a therapeutic target in colorectal cancer. Expert. Opin. Ther. Targets 2011, 15, 183–193. [Google Scholar] [CrossRef] [PubMed]
- Bloomgarden, Z. Diabetes and branched-chain amino acids: What is the link? J. Diabetes 2018, 10, 350–352. [Google Scholar] [CrossRef]
- Yu, J.Y.; Cao, N.; Rau, C.D.; Lee, R.P.; Yang, J.; Flach, R.J.R.; Petersen, L.; Zhu, C.; Pak, Y.L.; Miller, R.A.; et al. Cell-autonomous effect of cardiomyocyte branched-chain amino acid catabolism in heart failure in mice. Acta Pharmacol. Sin. 2023, 44, 1380–1390. [Google Scholar] [CrossRef]
- Blackburn, P.R.; Gass, J.M.; Vairo, F.P.E.; Farnham, K.M.; Atwal, H.K.; Macklin, S.; Klee, E.W.; Atwal, P.S. Maple syrup urine disease: Mechanisms and management. Appl. Clin. Genet. 2017, 10, 57–66. [Google Scholar] [CrossRef]
- Bhat, S.M.; Massey, N.; Shrestha, D.; Karriker, L.A.; Jelesijević, T.; Wang, C.; Charavaryamath, C. Transcriptomic and ultrastructural evidence indicate that anti-HMGB1 antibodies rescue organic dust-induced mitochondrial dysfunction. Cell Tissue Res. 2022, 388, 373–398. [Google Scholar] [CrossRef]
- Hasegawa, A.; Iwasaka, H.; Hagiwara, S.; Asai, N.; Nishida, T.; Noguchi, T. Alternate day calorie restriction improves systemic inflammation in a mouse model of sepsis induced by cecal ligation and puncture. J. Surg. Res. 2012, 174, 136–141. [Google Scholar] [CrossRef]
- Tohme, S.; Yazdani, H.O.; Liu, Y.; Loughran, P.; van der Windt, D.J.; Huang, H.; Simmons, R.L.; Shiva, S.; Tai, S.; Tsung, A. Hypoxia mediates mitochondrial biogenesis in hepatocellular carcinoma to promote tumor growth through HMGB1 and TLR9 interaction. Hepatology 2017, 66, 182–197. [Google Scholar] [CrossRef]
- Narasimhulu, C.A.; Singla, D.K. BMP-7 Attenuates Sarcopenia and Adverse Muscle Remodeling in Diabetic Mice via Alleviation of Lipids, Inflammation, HMGB1, and Pyroptosis. Antioxidants 2023, 12, 331. [Google Scholar] [CrossRef]
- Ho, T.L.; Tang, C.H.; Chang, S.L.; Tsai, C.H.; Chen, H.T.; Su, C.M. HMGB1 Promotes In Vitro and In Vivo Skeletal Muscle Atrophy through an IL-18-Dependent Mechanism. Cells 2022, 11, 3936. [Google Scholar] [CrossRef] [PubMed]
- Nukaga, S.; Fujiwara-Tani, R.; Nishida, R.; Miyagawa, Y.; Goto, K.; Kawahara, I.; Nakashima, C.; Fujii, K.; Ogata, R.; Ohmori, H.; et al. Caprylic Acid Inhibits High Mobility Group Box-1-Induced Mitochondrial Damage in Myocardial Tubes. Int. J. Mol. Sci. 2024, 25, 8081. [Google Scholar] [CrossRef] [PubMed]
- White, P.J.; McGarrah, R.W.; Grimsrud, P.A.; Tso, S.C.; Yang, W.H.; Haldeman, J.M.; Grenier-Larouche, T.; An, J.; Lapworth, A.L.; Astapova, I.; et al. The BCKDH Kinase and Phosphatase Integrate BCAA and Lipid Metabolism via Regulation of ATP-Citrate Lyase. Cell Metab. 2018, 27, 1281–1293.e7. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Price, S.R. Differential regulation of branched-chain α-ketoacid dehydrogenase kinase expression by glucocorticoids and acidification in LLC-PK1-GR101 cells. Am. J. Physiol. Renal Physiol. 2004, 286, F504–F508. [Google Scholar] [CrossRef]
- Ferguson, D.; Eichler, S.J.; Yiew, N.K.H.; Colca, J.R.; Cho, K.; Patti, G.J.; Shew, T.M.; Lutkewitte, A.J.; Mukherjee, S.; McCommis, K.S.; et al. Mitochondrial pyruvate carrier inhibition initiates metabolic crosstalk to stimulate branched chain amino acid catabolism. Mol. Metab. 2023, 70, 101694. [Google Scholar] [CrossRef]
- Arp, N.L.; Seim, G.L.; Votava, J.A.; Josephson, J.; Fan, J. Reactive nitrogen species inhibit branched chain α-ketoacid dehydrogenase complex and impact muscle cell metabolism. J. Biol. Chem. 2023, 299, 105333. [Google Scholar] [CrossRef]
- Li, Y.; Xiong, Z.; Yn, W.; Gao, E.; Cheng, H.; Wu, G.; Liu, Y.; Zhang, L.; Li, C.; Wang, S.; et al. Branched chain amino acids exacerbate myocardial ischemia/reperfusion vulnerability via enhancing GCN2/ATF6/PPAR-α pathway-dependent fatty acid oxidation. Theranostics 2020, 10, 5623–5640. [Google Scholar] [CrossRef]
Component | Medium | ||
---|---|---|---|
D-MEM | Ascites Added 1) | CM Added 2) | |
Glucose (mg/dL) | 450 ± 2 | 361 ± 8 | 378 ± 6 |
Pyruvate (mg/dL) | 11 ± 0.1 | 9 ± 1 | 9 ± 1 |
Glutamine (mg/dL) | 58 ± 0.2 | 49 ± 4 | 50 ± 3 |
Lactate (pmol) | 0 | 7.4 ± 1.4 | 1.2 ± 0.2 |
HMGB1 (μg/mL) | ND | 18 ± 0.9 | ND |
TNFα (pg/mL) | ND | 12 ± 0.2 | ND |
Ingredient | Control Diet | BCAA Diet | BCAA + C8 Diet |
---|---|---|---|
Moisture (%) | 8.83 | 8.57 | 8.66 |
Crude protein (%) | 25.13 | 24.38 | 24.65 |
Crude fat (%) | 4.92 | 4.77 | 4.65 |
Crude fiber (%) | 4.42 | 4.28 | 4.21 |
Crude ash (%) | 6.86 | 6.65 | 6.54 |
NFE (%) | 49.84 | 48.34 | 47.35 |
Valine (%) | - | 1 | 1 |
Laucine (%) | - | 1 | 1 |
Isoleucine (%) | - | 1 | 1 |
Energy (kcal) | 334.2 | 345.874 | 371.85 |
Gene | Accession No. | Upper Primer | Lower Primer |
---|---|---|---|
PGC1A | BC156323.1 | aaggatgcgctctcgttcaa | ttcgtttgacctgcgcaaag |
BDK | CR542093.1 | ctcggtacctgcagcaagaa | tggcatagggatgaagggga |
ACTB | NM_007393.5 | acaatgagctgcgtgtggcc | agggacagcacagcctggat |
Target | Cat. No. | Company | Adderess |
Antibodies | |||
BCKD | ab126173 | Abcam | Cambridge, MA, USA |
phospho-BCKD, pS293 | ab200577 | Abcam | Cambridge, MA, USA |
BDK | ab128935 | Abcam | Cambridge, MA, USA |
β-Actin | sc-47778 | Santa-Cruz | Dallas, TX, USA |
ELISA kit | |||
MYL1 | CSB-EL015305MO | Cusabio Biotech | Houston, TX, USA |
HMGB1 | 326078738 | Shino Test | Sagamihara, Japan |
Mouse TNF-α | MTA00B | R&D Systems | Minneapolis, MN, USA |
GSH/GSSG | CB-P050-K | Creative Biolabs | Shirley, NY, USA |
4HNE | STA-838 | Cell Biolabs | San Diego, CA, USA |
BCAA | MET-5056 | Cell Biolabs | San Diego, CA, USA |
AcCoA | RE10014 | Reed Biotech | Wuhan, China |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kawahara, I.; Fujiwara-Tani, R.; Mori, T.; Nukaga, S.; Nishida, R.; Miyagawa, Y.; Goto, K.; Ohmori, H.; Fujii, K.; Luo, Y.; et al. Caprylic Acid Restores Branched-Chain Amino Acid Metabolism in a Mouse Cachexia Model. Curr. Issues Mol. Biol. 2025, 47, 325. https://doi.org/10.3390/cimb47050325
Kawahara I, Fujiwara-Tani R, Mori T, Nukaga S, Nishida R, Miyagawa Y, Goto K, Ohmori H, Fujii K, Luo Y, et al. Caprylic Acid Restores Branched-Chain Amino Acid Metabolism in a Mouse Cachexia Model. Current Issues in Molecular Biology. 2025; 47(5):325. https://doi.org/10.3390/cimb47050325
Chicago/Turabian StyleKawahara, Isao, Rina Fujiwara-Tani, Takuya Mori, Shota Nukaga, Ryoichi Nishida, Yoshihiro Miyagawa, Kei Goto, Hitoshi Ohmori, Kiyomu Fujii, Yi Luo, and et al. 2025. "Caprylic Acid Restores Branched-Chain Amino Acid Metabolism in a Mouse Cachexia Model" Current Issues in Molecular Biology 47, no. 5: 325. https://doi.org/10.3390/cimb47050325
APA StyleKawahara, I., Fujiwara-Tani, R., Mori, T., Nukaga, S., Nishida, R., Miyagawa, Y., Goto, K., Ohmori, H., Fujii, K., Luo, Y., Sasaki, T., Nakashima, C., Ogata, R., & Kuniyasu, H. (2025). Caprylic Acid Restores Branched-Chain Amino Acid Metabolism in a Mouse Cachexia Model. Current Issues in Molecular Biology, 47(5), 325. https://doi.org/10.3390/cimb47050325