Genetic Variation and Sex-Based Differences: Current Considerations for Anesthetic Management
Abstract
:1. Introduction
2. Anesthetic Drugs
2.1. Volatile Anesthetics
2.1.1. The Relationship Between Genetics and Volatile Anesthetics
2.1.2. The Relationship Between Sex and Volatile Anesthetics
2.2. Induction Agents
2.2.1. The Relationship Between Genetics and Induction Agents
2.2.2. The Relationship Between Sex and Induction Agents
2.3. Neuromuscular Blocking Drugs
2.3.1. The Relationship Between Genetics and Neuromuscular Blocking Drugs
2.3.2. The Relationship Between Sex and Neuromuscular Blocking Drugs
2.4. Opioids
2.4.1. The Relationship Between Genetics and Opioids
2.4.2. The Relationship Between Sex and Opioids
2.5. Benzodiazepines
2.5.1. The Relationship Between Genetics and Benzodiazepines
2.5.2. The Relationship Between Sex and Benzodiazepines
2.6. Local Anesthetics
2.6.1. The Relationship Between Genetics and Local Anesthetics
2.6.2. The Relationship Between Sex and Local Anesthetics
3. Anesthetic Management Considerations
3.1. Postoperative Nausea and Vomiting
3.1.1. The Relationship Between Genetics and Postoperative Nausea and Vomiting
3.1.2. The Relationship Between Sex and Postoperative Nausea and Vomiting
3.2. Allergic Reactions Related to Anesthesia Medications
3.2.1. The Relationship Between Genetics and Allergic Reactions to Anesthesia Medications
3.2.2. The Relationship Between Sex and Allergic Reactions to Anesthesia Medications
3.3. Pain and Analgesia
3.3.1. The Relationship Between Genetics, Pain and Analgesia
3.3.2. The Relationship Between Sex, Pain and Analgesia
3.4. Depth of Anesthesia
3.4.1. The Relationship Between Genetics and Depth of Anesthesia
3.4.2. The Relationship Between Sex and Depth of Anesthesia
3.5. Intraoperative Awareness
3.5.1. The Relationship Between Genetic Variations and Intraoperative Awareness
3.5.2. Impact of Patient Sex on Intraoperative Awareness
3.6. Postoperative Delirium
3.6.1. Impact of Genetic Variation on Postoperative Delirium
3.6.2. Impact of Patient Sex on Postoperative Delirium
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
5-HT3 | 5-hydroxytryptamine type 3 |
AUC | Area under the curve |
BChE | Butyrylcholinesterase |
BIS | Bispectral index |
CNS | Central nervous system |
CPIC | Clinical pharmacogenetics implementation consortium |
DNMBD | Depolarizing neuromuscular blocking drugs |
DOP | Delta opioid receptor |
GABA | Gamma-aminobutyric acid |
GFR | Glomerular filtration rate |
GWAS | Genome-wide association study |
HELLP | Hemolysis, elevated liver enzymes, low platelets |
IV | Intravenous |
KOP | Kappa opioid receptor |
MAC | Minimum alveolar concentration |
MLAC | Minimum local analgesic concentration |
MOP | μ-opioid receptor—same as MOR |
MOR | μ-opioid receptor—same as MOP |
NDNMBD | Nondepolarizing neuromuscular blocking drugs |
NMDA | N-methyl-D-aspartic acid |
PAF | Platelet-activating factor |
PCA | Patient controlled analgesia |
POD | Postoperative delirium |
PONV | postoperative nausea and vomiting |
RCC4-EV | Renal cell carcinoma cell line |
SNARE | Soluble N-ethylmaleimide-Sensitive Factor Attachment Protein Receptor |
SNP | Single nucleotide polymorphism |
TCI | Target controlled infusion |
TOFR | Train-of-four ratio |
References
- Booij, L.H. Sex, age, and genetics in anesthesia. Curr. Opin. Anesthesiol. 2008, 21, 462–466. [Google Scholar] [CrossRef]
- Saba, R.; Kaye, A.D.; Urman, R.D. Pharmacogenomics in anesthesia. Anesthesiol. Clin. 2017, 35, 285–294. [Google Scholar] [CrossRef] [PubMed]
- Crews, K.R.; Hicks, J.K.; Pui, C.H.; Relling, M.V.; Evans, W.E. Pharmacogenomics and individualized medicine: Translating science into practice. Clin. Pharmacol. Ther. 2012, 92, 467–475. [Google Scholar] [CrossRef] [PubMed]
- Vidaver, R.M.; Lafleur, B.; Tong, C.; Bradshaw, R.; Marts, S.A. Women subjects in NIH-funded clinical research literature: Lack of progress in both representation and analysis by sex. J. Women’s Health Gend. Based Med. 2000, 9, 495–504. [Google Scholar] [CrossRef]
- Harris, D.J.; Douglas, P.S. Enrollment of women in cardiovascular clinical trials funded by the National Heart, Lung, and Blood Institute. N. Engl. J. Med. 2000, 343, 475–480. [Google Scholar] [CrossRef] [PubMed]
- Kim, E.S.; Carrigan, T.P.; Menon, V. Enrollment of women in National Heart, Lung, and Blood Institute-funded cardiovascular randomized controlled trials fails to meet current federal mandates for inclusion. J. Am. Coll. Cardiol. 2008, 52, 672–673. [Google Scholar] [CrossRef]
- Jenei, K.; Meyers, D.E.; Prasad, V. The inclusion of women in global oncology drug trials over the past 20 years. JAMA Oncol. 2021, 7, 1569–1570. [Google Scholar] [CrossRef]
- U.S. Food & Drug Administration. Drug Trials Snapshots. Available online: https://www.fda.gov/drugs/drug-approvals-and-databases/drug-trials-snapshots (accessed on 20 February 2025).
- National Institute of Health. NIH-Wide Strategic Plan for Research on the Health of Women. Available online: https://orwh.od.nih.gov/about/strategic-plan (accessed on 20 February 2025).
- Buchanan, F.F.; Myles, P.S.; Leslie, K.; Forbes, A.; Cicuttini, F. Gender and recovery after general anesthesia combined with neuromuscular blocking drugs. Anesth. Analg. 2006, 102, 291–297. [Google Scholar] [CrossRef]
- Choong, E.; Loryan, I.; Lindqvist, M.; Nordling, Å.; El Bouazzaoui, S.; van Schaik, R.H.; Johansson, I.; Jakobsson, J.; Ingelman-Sundberg, M. Sex difference in formation of propofol metabolites: A replication study. Basic Clin. Pharmacol. Toxicol. 2013, 113, 126–131. [Google Scholar] [CrossRef]
- Hoymork, S.; Raeder, J. Why do women wake up faster than men from propofol anaesthesia? Br. J. Anaesth. 2005, 95, 627–633. [Google Scholar] [CrossRef]
- Rajan, N.; Joshi, G.P. Management of postoperative nausea and vomiting in adults: Current controversies. Curr. Opin. Anesthesiol. 2021, 34, 695–702. [Google Scholar] [CrossRef] [PubMed]
- Joy Lin, Y.-M.; Hsu, C.-D.; Hsieh, H.-Y.; Tseng, C.-C.A.; Sun, H.S. Sequence variants of the HTR3A gene contribute to the genetic prediction of postoperative nausea in Taiwan. J. Hum. Genet. 2014, 59, 655–660. [Google Scholar] [CrossRef]
- Kim, M.-S.; Lee, J.-R.; Choi, E.-M.; Kim, E.H.; Choi, S.H. Association of 5-HT3B receptor gene polymorphisms with the efficacy of ondansetron for postoperative nausea and vomiting. Yonsei Med. J. 2015, 56, 1415–1420. [Google Scholar] [CrossRef] [PubMed]
- Nishizawa, D.; Morino, R.; Inoue, R.; Ohka, S.; Kasai, S.; Hasegawa, J.; Ebata, Y.; Nakayama, K.; Sumikura, H.; Hayashida, M. Genome-Wide Association Study Identifies Novel Candidate Variants Associated with Postoperative Nausea and Vomiting. Cancers 2023, 15, 4729. [Google Scholar] [CrossRef]
- Aroke, E.N.; Dungan, J.R. Pharmacogenetics of anesthesia: An integrative review. Nurs. Res. 2016, 65, 318–330. [Google Scholar] [CrossRef]
- Zucker, I.; Prendergast, B.J. Sex differences in pharmacokinetics predict adverse drug reactions in women. Biol. Sex Differ. 2020, 11, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Roberts, R.; Wells, G.A.; Stewart, A.F.; Dandona, S.; Chen, L. The genome-wide association study—A new era for common polygenic disorders. J. Cardiovasc. Transl. Res. 2010, 3, 173–182. [Google Scholar] [CrossRef]
- Xie, S.; Ma, W.; Guo, Q.; Liu, J.; Li, W.; McLeod, H.L.; He, Y. The pharmacogenetics of medications used in general anesthesia. Pharmacogenomics 2018, 19, 285–298. [Google Scholar] [CrossRef]
- Zhao, S.; Huang, S.; Zhong, Q.; Han, L.; Wang, Y.; Xu, F.; Ma, L.; Ding, Y.; Xia, L.; Chen, X. Study of the Association of Single Nucleotide Polymorphisms in Candidate Genes With Sevoflurane. J. Clin. Pharmacol. 2023, 63, 91–104. [Google Scholar] [CrossRef]
- Zhang, L.; Xue, Z.; Liu, Q.; Liu, Y.; Xi, S.; Cheng, Y.; Li, J.; Yan, J.; Shen, Y.; Xiao, C. Disrupted folate metabolism with anesthesia leads to myelination deficits mediated by epigenetic regulation of ERMN. EBioMedicine 2019, 43, 473–486. [Google Scholar] [CrossRef]
- Jenkins, A.; Greenblatt, E.P.; Faulkner, H.J.; Bertaccini, E.; Light, A.; Lin, A.; Andreasen, A.; Viner, A.; Trudell, J.R.; Harrison, N.L. Evidence for a common binding cavity for three general anesthetics within the GABAA receptor. J. Neurosci. 2001, 21, RC136. [Google Scholar] [CrossRef] [PubMed]
- Wei, Y.; Zhang, D.; Zuo, Y. Whole-exome sequencing reveals genetic variations in humans with differential sensitivity to sevoflurane: A prospective observational study. Biomed. Pharmacother. 2022, 148, 112724. [Google Scholar] [CrossRef]
- Kondo, H.; Osborne, M.L.; Kolhouse, J.F.; Binder, M.J.; Podell, E.R.; Utley, C.S.; Abrams, R.S.; Allen, R.H. Nitrous oxide has multiple deleterious effects on cobalamin metabolism and causes decreases in activities of both mammalian cobalamin-dependent enzymes in rats. J. Clin. Invest. 1981, 67, 1270–1283. [Google Scholar] [CrossRef] [PubMed]
- Nagele, P.; Zeugswetter, B.; Wiener, C.; Burger, H.; Hüpfl, M.; Mittlböck, M.; Födinger, M. Influence of methylenetetrahydrofolate reductase gene polymorphisms on homocysteine concentrations after nitrous oxide anesthesia. Anesthesiology 2008, 109, 36–43. [Google Scholar] [CrossRef]
- Fiedorczuk, K.; Sazanov, L.A. Mammalian Mitochondrial Complex I Structure and Disease-Causing Mutations. Trends Cell Biol. 2018, 28, 835–867. [Google Scholar] [CrossRef]
- Hsieh, V.C.; Niezgoda, J.; Sedensky, M.M.; Hoppel, C.L.; Morgan, P.G. Anesthetic Hypersensitivity in a Case-Controlled Series of Patients With Mitochondrial Disease. Anesth. Analg. 2021, 133, 924–932. [Google Scholar] [CrossRef] [PubMed]
- Huang, L.; Li, H.; Zhong, J.; Yang, L.; Chen, G.; Wang, D.; Zheng, G.; Han, H.; Han, X.; Long, Y.; et al. Efficacy and Safety of the Ketogenic Diet for Mitochondrial Disease With Epilepsy: A Prospective, Open-labeled, Controlled Study. Front. Neurol. 2022, 13, 880944. [Google Scholar] [CrossRef]
- Spencer, K.A.; Howe, M.N.; Mulholland, M.T.; Truong, V.; Liao, R.W.; Chen, Y.; Setha, M.; Snell, J.C.; Hanaford, A.; James, K.; et al. Impact of dietary ketosis on volatile anesthesia toxicity in a model of Leigh syndrome. Paediatr. Anaesth. 2024, 34, 467–476. [Google Scholar] [CrossRef]
- Gonsalves, S.G.; Dirksen, R.T.; Sangkuhl, K.; Pulk, R.; Alvarellos, M.; Vo, T.; Hikino, K.; Roden, D.; Klein, T.E.; Poler, S.M.; et al. Clinical Pharmacogenetics Implementation Consortium (CPIC) Guideline for the Use of Potent Volatile Anesthetic Agents and Succinylcholine in the Context of RYR1 or CACNA1S Genotypes. Clin. Pharmacol. Ther. 2019, 105, 1338–1344. [Google Scholar] [CrossRef]
- Braithwaite, H.E.; Payne, T.; Duce, N.; Lim, J.; McCulloch, T.; Loadsman, J.; Leslie, K.; Webster, A.C.; Gaskell, A.; Sanders, R.D. Impact of female sex on anaesthetic awareness, depth, and emergence: A systematic review and meta-analysis. Br. J. Anaesth. 2023, 131, 510–522. [Google Scholar] [CrossRef]
- Wasilczuk, A.Z.; Rinehart, C.; Aggarwal, A.; Stone, M.E.; Mashour, G.A.; Avidan, M.S.; Kelz, M.B.; Proekt, A. Hormonal basis of sex differences in anesthetic sensitivity. Proc. Natl. Acad. Sci. USA 2024, 121, e2312913120. [Google Scholar] [CrossRef] [PubMed]
- Mashour, G.A.; Palanca, B.J.; Basner, M.; Li, D.; Wang, W.; Blain-Moraes, S.; Lin, N.; Maier, K.; Muench, M.; Tarnal, V.; et al. Recovery of consciousness and cognition after general anesthesia in humans. Elife 2021, 10, e59525. [Google Scholar] [CrossRef]
- Szymusiak, R.; Gvilia, I.; McGinty, D. Hypothalamic control of sleep. Sleep Med. 2007, 8, 291–301. [Google Scholar] [CrossRef]
- Ahlström, S.; Reiterä, P.; Jokela, R.; Olkkola, K.T.; Kaunisto, M.A.; Kalso, E. Influence of Clinical and Genetic Factors on Propofol Dose Requirements: A Genome-wide Association Study. Anesthesiology 2024, 141, 300–312. [Google Scholar] [CrossRef] [PubMed]
- Bademosi, A.T.; Steeves, J.; Karunanithi, S.; Zalucki, O.H.; Gormal, R.S.; Liu, S.; Lauwers, E.; Verstreken, P.; Anggono, V.; Meunier, F.A.; et al. Trapping of Syntaxin1a in Presynaptic Nanoclusters by a Clinically Relevant General Anesthetic. Cell Rep. 2018, 22, 427–440. [Google Scholar] [CrossRef]
- Humphrey, J.A.; Hamming, K.S.; Thacker, C.M.; Scott, R.L.; Sedensky, M.M.; Snutch, T.P.; Morgan, P.G.; Nash, H.A. A putative cation channel and its novel regulator: Cross-species conservation of effects on general anesthesia. Curr. Biol. 2007, 17, 624–629. [Google Scholar] [CrossRef] [PubMed]
- Zhong, Q.; Chen, X.; Zhao, Y.; Liu, R.; Yao, S. Association of Polymorphisms in Pharmacogenetic Candidate Genes with Propofol Susceptibility. Sci. Rep. 2017, 7, 3343. [Google Scholar] [CrossRef]
- Devin, A.; Nogueira, V.; Avéret, N.; Leverve, X.; Rigoulet, M. Profound effects of the general anesthetic etomidate on oxidative phosphorylation without effects on their yield. J. Bioenerg. Biomembr. 2006, 38, 137–142. [Google Scholar] [CrossRef]
- Niezgoda, J.; Morgan, P.G. Anesthetic considerations in patients with mitochondrial defects. Paediatr. Anaesth. 2013, 23, 785–793. [Google Scholar] [CrossRef]
- Vanlander, A.V.; Jorens, P.G.; Smet, J.; De Paepe, B.; Verbrugghe, W.; Van den Eynden, G.G.; Meire, F.; Pauwels, P.; Van der Aa, N.; Seneca, S.; et al. Inborn oxidative phosphorylation defect as risk factor for propofol infusion syndrome. Acta Anaesthesiol. Scand. 2012, 56, 520–525. [Google Scholar] [CrossRef]
- Yağar, S.; Yavaş, S.; Karahalil, B. The role of the ADRA2A C1291G genetic polymorphism in response to dexmedetomidine on patients undergoing coronary artery surgery. Mol. Biol. Rep. 2011, 38, 3383–3389. [Google Scholar] [CrossRef]
- Zanger, U.M.; Schwab, M. Cytochrome P450 enzymes in drug metabolism: Regulation of gene expression, enzyme activities, and impact of genetic variation. Pharmacol. Ther. 2013, 138, 103–141. [Google Scholar] [CrossRef]
- Li, Y.; Jackson, K.A.; Slon, B.; Hardy, J.R.; Franco, M.; William, L.; Poon, P.; Coller, J.K.; Hutchinson, M.R.; Currow, D.C.; et al. CYP2B6*6 allele and age substantially reduce steady-state ketamine clearance in chronic pain patients: Impact on adverse effects. Br. J. Clin. Pharmacol. 2015, 80, 276–284. [Google Scholar] [CrossRef] [PubMed]
- Haensch, K.; Schultz, A.; Krauss, T.; Grouven, U.; Schultz, B. Women need more propofol than men during EEG-monitored total intravenous anaesthesia/Frauen benötigen mehr Propofol als Männer während EEG-überwachter total-intravenöser Anästhesie. Biomed. Tech. 2009, 54, 76–82. [Google Scholar] [CrossRef]
- Loryan, I.; Lindqvist, M.; Johansson, I.; Hiratsuka, M.; van der Heiden, I.; van Schaik, R.H.; Jakobsson, J.; Ingelman-Sundberg, M. Influence of sex on propofol metabolism, a pilot study: Implications for propofol anesthesia. Eur. J. Clin. Pharmacol. 2012, 68, 397–406. [Google Scholar] [CrossRef]
- Mir, F.R.; Wilson, C.; Cabrera Zapata, L.E.; Aguayo, L.G.; Cambiasso, M.J. Gonadal hormone-independent sex differences in GABA(A) receptor activation in rat embryonic hypothalamic neurons. Br. J. Pharmacol. 2020, 177, 3075–3090. [Google Scholar] [CrossRef]
- Vincent, K.F.; Mallari, O.G.; Dillon, E.J.; Stewart, V.G.; Cho, A.J.; Dong, Y.; Edlow, A.G.; Ichinose, F.; Xie, Z.; Solt, K. Oestrous cycle affects emergence from anaesthesia with dexmedetomidine, but not propofol, isoflurane, or sevoflurane, in female rats. Br. J. Anaesth. 2023, 131, 67–78. [Google Scholar] [CrossRef]
- Kalow, W.; Staron, N. On distribution and inheritance of atypical forms of human serum cholinesterase, as indicated by dibucaine numbers. Can. J. Biochem. Physiol. 1957, 35, 1305–1320. [Google Scholar] [CrossRef]
- Soliday, F.K.; Conley, Y.P.; Henker, R. Pseudocholinesterase deficiency: A comprehensive review of genetic, acquired, and drug influences. AANA J. 2010, 78, 313–320. [Google Scholar] [PubMed]
- Robles, A.; Michael, M.; McCallum, R. Pseudocholinesterase Deficiency: What the Proceduralist Needs to Know. Am. J. Med. Sci. 2019, 357, 263–267. [Google Scholar] [CrossRef] [PubMed]
- Harris, E.M.; Funk, E.M.; Plezia, D.; Elliott, J.; Elliott, R.; Pitman, J.S.; Grant, S.A. Quantitative Neuromuscular Monitoring Permits Early Diagnosis of Abnormal Butyrylcholinestrase: Two Case Studies Demonstrating Prevention of Awareness from Premature Awakening. AANA J. 2024, 92, 139–143. [Google Scholar]
- Zhu, H.; Wang, Y.; Wang, Q.; Zhao, S.; Xu, F.; Hu, Z.; Zhou, R.; Huang, S.; Han, L.; Chen, X. Polymorphisms contribute to differences in the effect of rocuronium in Chinese patients. Basic. Clin. Pharmacol. Toxicol. 2022, 130, 141–150. [Google Scholar] [CrossRef]
- Ahlström, S.; Bergman, P.; Jokela, R.; Ottensmann, L.; Ahola-Olli, A.; Pirinen, M.; Olkkola, K.T.; Kaunisto, M.A.; Kalso, E. First genome-wide association study on rocuronium dose requirements shows association with SLCO1A2. Br. J. Anaesth. 2021, 126, 949–957. [Google Scholar] [CrossRef]
- Wen, J.; Zhao, M.; Xiao, Y.; Li, S.; Hu, W. OATP1A2 mediates Aβ(1-42) transport and may be a novel target for the treatment of Alzheimer’s disease. Front. Pharmacol. 2024, 15, 1443789. [Google Scholar] [CrossRef]
- Guay, J.; Grenier, Y.; Varin, F. Clinical pharmacokinetics of neuromuscular relaxants in pregnancy. Clin. Pharmacokinet. 1998, 34, 483. [Google Scholar] [CrossRef]
- Mohammad, F.K.; Mohammed, A.A.; Garmavy, H.M.; Rashid, H.M. Association of Reduced Maternal Plasma Cholinesterase Activity With Preeclampsia: A Meta-Analysis. Cureus 2023, 15, e47220. [Google Scholar] [CrossRef]
- Cherala, S.R.; Eddie, D.N.; Sechzer, P.H. Placental transfer of succinylcholine causing transient respiratory depression in the newborn. Anaesth. Intensive Care 1989, 17, 202–204. [Google Scholar] [CrossRef]
- Heier, T.; Feiner, J.R.; Wright, P.M.; Ward, T.; Caldwell, J.E. Sex-related differences in the relationship between acceleromyographic adductor pollicis train-of-four ratio and clinical manifestations of residual neuromuscular block: A study in healthy volunteers during near steady-state infusion of mivacurium. Br. J. Anaesth. 2012, 108, 444–451. [Google Scholar] [CrossRef]
- Ferry, N.; Hancock, L.E.; Dhanjal, S. Opioid Anesthesia. In StatPearls; StatPearls Publishing LLC.: Treasure Island, FL, USA, 2025. [Google Scholar]
- Pathan, H.; Williams, J. Basic opioid pharmacology: An update. Br. J. Pain 2012, 6, 11–16. [Google Scholar] [CrossRef]
- Trescot, A.M.; Datta, S.; Lee, M.; Hansen, H. Opioid pharmacology. Pain. Physician 2008, 11, S133–S153. [Google Scholar] [CrossRef]
- Kong, Y.; Yan, T.; Gong, S.; Deng, H.; Zhang, G.; Wang, J. Opioid receptor mu 1 (OPRM1) A118G polymorphism (rs1799971) and postoperative nausea and vomiting. Am. J. Transl. Res. 2018, 10, 2764–2780. [Google Scholar] [PubMed]
- Vieira, C.M.P.; Fragoso, R.M.; Pereira, D.; Medeiros, R. Pain polymorphisms and opioids: An evidence based review. Mol. Med. Rep. 2019, 19, 1423–1434. [Google Scholar] [CrossRef]
- Bastami, S.; Gupta, A.; Zackrisson, A.L.; Ahlner, J.; Osman, A.; Uppugunduri, S. Influence of UGT2B7, OPRM1 and ABCB1 gene polymorphisms on postoperative morphine consumption. Basic. Clin. Pharmacol. Toxicol. 2014, 115, 423–431. [Google Scholar] [CrossRef]
- Muraoka, W.; Nishizawa, D.; Fukuda, K.; Kasai, S.; Hasegawa, J.; Wajima, K.; Nakagawa, T.; Ikeda, K. Association between UGT2B7 gene polymorphisms and fentanyl sensitivity in patients undergoing painful orthognathic surgery. Mol. Pain 2016, 12, 1744806916683182. [Google Scholar] [CrossRef]
- Yang, Z.; Yin, Q.; Li, X. Influences of UGT2B7 rs7439366 and rs12233719 Polymorphisms on Fentanyl Sensitivity in Chinese Gynecologic Patients. Med. Sci. Monit. 2020, 26, e924153-1–e924153-5. [Google Scholar] [CrossRef]
- Saiz-Rodríguez, M.; Ochoa, D.; Herrador, C.; Belmonte, C.; Román, M.; Alday, E.; Koller, D.; Zubiaur, P.; Mejía, G.; Hernández-Martínez, M.; et al. Polymorphisms associated with fentanyl pharmacokinetics, pharmacodynamics and adverse effects. Basic Clin. Pharmacol. Toxicol. 2019, 124, 321–329. [Google Scholar] [CrossRef]
- Mogil, J.S.; Wilson, S.G.; Chesler, E.J.; Rankin, A.L.; Nemmani, K.V.; Lariviere, W.R.; Groce, M.K.; Wallace, M.R.; Kaplan, L.; Staud, R.; et al. The melanocortin-1 receptor gene mediates female-specific mechanisms of analgesia in mice and humans. Proc. Natl. Acad. Sci. USA 2003, 100, 4867–4872. [Google Scholar] [CrossRef]
- Crews, K.R.; Monte, A.A.; Huddart, R.; Caudle, K.E.; Kharasch, E.D.; Gaedigk, A.; Dunnenberger, H.M.; Leeder, J.S.; Callaghan, J.T.; Samer, C.F. Clinical pharmacogenetics implementation consortium guideline for CYP2D6, OPRM1, and COMT genotypes and select opioid therapy. Clin. Pharmacol. Ther. 2021, 110, 888–896. [Google Scholar] [CrossRef]
- Pleym, H.; Spigset, O.; Kharasch, E.D.; Dale, O. Gender differences in drug effects: Implications for anesthesiologists. Acta Anaesthesiol. Scand. 2003, 47, 241–259. [Google Scholar] [CrossRef]
- Packiasabapathy, S.; Sadhasivam, S. Gender, genetics, and analgesia: Understanding the differences in response to pain relief. J. Pain Res. 2018, 2729–2739. [Google Scholar] [CrossRef]
- Lader, M. Clinical Pharmacology Of Benzodiazepines. Annu. Rev. Med. 1987, 38, 19–28. [Google Scholar] [CrossRef]
- Elens, L.; Nieuweboer, A.; Clarke, S.J.; Charles, K.A.; de Graan, A.J.; Haufroid, V.; Mathijssen, R.H.; van Schaik, R.H. CYP3A4 intron 6 C>T SNP (CYP3A4*22) encodes lower CYP3A4 activity in cancer patients, as measured with probes midazolam and erythromycin. Pharmacogenomics 2013, 14, 137–149. [Google Scholar] [CrossRef] [PubMed]
- Kosaki, Y.; Nishizawa, D.; Hasegawa, J.; Yoshida, K.; Ikeda, K.; Ichinohe, T. γ-Aminobutyric acid type A receptor β1 subunit gene polymorphisms are associated with the sedative and amnesic effects of midazolam. Mol. Brain 2024, 17, 70. [Google Scholar] [CrossRef]
- Hu, K.; Xiang, Q.; Wang, Z.; Sheng, X.; Li, L.E.; Liang, Y.; Zhao, X.; Ye, X.; Cui, Y. Effects of Vitamin D Receptor, Cytochrome P450 3A, and Cytochrome P450 Oxidoreductase Genetic Polymorphisms on the Pharmacokinetics of Remimazolam in Healthy Chinese Volunteers. Clin. Pharmacol. Drug Dev. 2021, 10, 22–29. [Google Scholar] [CrossRef]
- Chen, M.; Ma, L.; Drusano, G.L.; Bertino, J.S., Jr.; Nafziger, A.N. Sex differences in CYP3A activity using intravenous and oral midazolam. Clin. Pharmacol. Ther. 2006, 80, 531–538. [Google Scholar] [CrossRef]
- Lohmer, L.L.; Schippers, F.; Petersen, K.U.; Stoehr, T.; Schmith, V.D. Time-to-Event Modeling for Remimazolam for the Indication of Induction and Maintenance of General Anesthesia. J. Clin. Pharmacol. 2020, 60, 505–514. [Google Scholar] [CrossRef] [PubMed]
- Shimamoto, Y.; Sanuki, M.; Kurita, S.; Ueki, M.; Kuwahara, Y.; Matsumoto, A. Factors affecting prolonged time to extubation in patients given remimazolam. PLoS ONE 2022, 17, e0268568. [Google Scholar] [CrossRef] [PubMed]
- Taylor, A.; McLeod, G. Basic pharmacology of local anaesthetics. BJA Educ. 2020, 20, 34–41. [Google Scholar] [CrossRef]
- Liem, E.B.; Joiner, T.V.; Tsueda, K.; Sessler, D.I. Increased sensitivity to thermal pain and reduced subcutaneous lidocaine efficacy in redheads. Anesthesiology 2005, 102, 509–514. [Google Scholar] [CrossRef]
- Meretsky, C.R.; Plitt, V.E.; Friday, B.L.; Schiuma, A.T.; Ajebli, M. A Comparative Analysis of the Efficacy of Local Anesthetics and Systemic Anesthetics in the Red-Headed Versus Non-Red-Headed Patient Population: A Comprehensive Review. Cureus 2024, 16, e61797. [Google Scholar] [CrossRef]
- Okamoto, A.; Sumi, C.; Tanaka, H.; Kusunoki, M.; Iwai, T.; Nishi, K.; Matsuo, Y.; Harada, H.; Takenaga, K.; Bono, H.; et al. HIF-1-mediated suppression of mitochondria electron transport chain function confers resistance to lidocaine-induced cell death. Sci. Rep. 2017, 7, 3816. [Google Scholar] [CrossRef] [PubMed]
- Myles, P.S.; Buchanan, F.F.; Bain, C. The effect of hair colour on anaesthetic requirements and recovery time after surgery. Anaesth. Intensive Care 2012, 40, 683–689. [Google Scholar] [CrossRef]
- Liu, J.; Jiang, Y.; Pang, D.; Xi, H.; Liu, Y.; Li, W. Associations Between Single-Nucleotide Polymorphisms and Epidural Ropivacaine Consumption in Patients Undergoing Breast Cancer Surgery. Genet. Test. Mol. Biomark. 2013, 17, 489–493. [Google Scholar] [CrossRef]
- Liu, J.; Xi, H.; Jiang, Y.; Feng, Z.; Hou, L.; Li, W. Association of CYP450 single nucleotide polymorphisms with the efficacy of epidural ropivacaine during mastectomy. Acta Anaesthesiol. Scand. 2015, 59, 640–647. [Google Scholar] [CrossRef]
- Vernooy, K.; Sicouri, S.; Dumaine, R.; Hong, K.; Oliva, A.; Burashnikov, E.; Timmermans, C.; Delhaas, T.; Crijns, H.J.G.M.; Antzelevitch, C.; et al. Genetic and biophysical basis for bupivacaine-induced ST segment elevation and VT/VF. Anesthesia unmasked Brugada syndrome. Heart Rhythm. 2006, 3, 1074–1078. [Google Scholar] [CrossRef] [PubMed]
- Clendenen, N.; Cannon, A.D.; Porter, S.; Robards, C.B.; Parker, A.S.; Clendenen, S.R. Whole-exome sequencing of a family with local anesthetic resistance. Minerva Anestesiol. 2016, 82, 1089–1097. [Google Scholar]
- Robinson, M.E.; Riley, J.L., 3rd; Brown, F.F.; Gremillion, H. Sex differences in response to cutaneous anesthesia: A double blind randomized study. Pain 1998, 77, 143–149. [Google Scholar] [CrossRef]
- Pei, Q.; Yang, Y.; Liu, Q.; Peng, Z.; Feng, Z. Lack of Sex Difference in Minimum Local Analgesic Concentration of Ropivacaine for Ultrasound-Guided Supraclavicular Brachial Plexus Block. Med. Sci. Monit. 2015, 21, 3459–3466. [Google Scholar] [CrossRef]
- Li, Y.; Zhou, Y.; Chen, H.; Feng, Z. The Effect of Sex on the Minimum Local Analgesic Concentration of Ropivacaine for Caudal Anesthesia in Anorectal Surgery. Anesth. Analg. 2010, 110, 1490–1493. [Google Scholar] [CrossRef] [PubMed]
- Eberhart, L.H.; Geldner, G.; Kranke, P.; Morin, A.M.; Schäuffelen, A.; Treiber, H.; Wulf, H. The development and validation of a risk score to predict the probability of postoperative vomiting in pediatric patients. Anesth. Analg. 2004, 99, 1630–1637. [Google Scholar] [CrossRef] [PubMed]
- Gloor, Y.; Czarnetzki, C.; Curtin, F.; Gil-Wey, B.; Tramèr, M.R.; Desmeules, J.A. Genetic susceptibility toward nausea and vomiting in surgical patients. Front. Genet. 2022, 12, 816908. [Google Scholar] [CrossRef]
- Rueffert, H.; Thieme, V.; Wallenborn, J.; Lemnitz, N.; Bergmann, A.; Rudlof, K.; Wehner, M.; Olthoff, D.; Kaisers, U.X. Do variations in the 5-HT3A and 5-HT3B serotonin receptor genes (HTR3A and HTR3B) influence the occurrence of postoperative vomiting? Anesth. Analg. 2009, 109, 1442–1447. [Google Scholar] [CrossRef]
- Wesmiller, S.W.; Sereika, S.M.; Bender, C.M.; Bovbjerg, D.; Ahrendt, G.; Bonaventura, M.; Conley, Y.P. Exploring the multifactorial nature of postoperative nausea and vomiting in women following surgery for breast cancer. Auton. Neurosci. 2017, 202, 102–107. [Google Scholar] [CrossRef]
- Janicki, P.K.; Vealey, R.; Liu, J.; Escajeda, J.; Postula, M.; Welker, K. Genome-wide association study using pooled DNA to identify candidate markers mediating susceptibility to postoperative nausea and vomiting. J. Am. Soc. Anesthesiol. 2011, 115, 54–64. [Google Scholar] [CrossRef]
- Klenke, S.; de Vries, G.J.; Schiefer, L.; Seyffert, N.; Bachmann, H.S.; Peters, J.; Frey, U.H. CHRM3 rs2165870 polymorphism is independently associated with postoperative nausea and vomiting, but combined prophylaxis is effective. Br. J. Anaesth. 2018, 121, 58–65. [Google Scholar] [CrossRef]
- Frey, U.H.; Schnee, C.; Achilles, M.; Silvanus, M.-T.; Esser, J.; Peters, J. Postoperative nausea and vomiting: The role of the dopamine D2 receptor TaqIA polymorphism. Eur. J. Anaesthesiol.|EJA 2016, 33, 84–89. [Google Scholar] [CrossRef]
- Stegen, M.; Bachmann, H.S.; Belani, G.; Mohamed, A.; Breuing, B.; Brenner, T.; Klenke, S. Association of the dopamine D2 receptor gene SNP rs1800497 with postoperative nausea and vomiting: A prospective cohort study. Eur. J. Anaesthesiol. Intensive Care 2024, 3, e0056. [Google Scholar] [CrossRef]
- Klenke, S.; de Vries, G.J.; Schiefer, L.; Seyffert, N.; Bachmann, H.S.; Peters, J.; Frey, U.H. Genetic contribution to PONV risk. Anaesth. Crit. Care Pain Med. 2020, 39, 45–51. [Google Scholar] [CrossRef]
- Nakagawa, M.; Kuri, M.; Kambara, N.; Tanigami, H.; Tanaka, H.; Kishi, Y.; Hamajima, N. Dopamine D2 receptor Taq IA polymorphism is associated with postoperative nausea and vomiting. J. Anesth. 2008, 22, 397–403. [Google Scholar] [CrossRef]
- Hayase, T.; Sugino, S.; Moriya, H.; Yamakage, M. TACR1 gene polymorphism and sex differences in postoperative nausea and vomiting. Anaesthesia 2015, 70, 1148–1159. [Google Scholar] [CrossRef]
- Lee, S.-H.; Kim, J.-D.; Park, S.-A.; Oh, C.-S.; Kim, S.-H. Effects of µ-Opioid receptor gene polymorphism on postoperative nausea and vomiting in patients undergoing general anesthesia with remifentanil: Double blinded randomized trial. J. Korean Med. Sci. 2015, 30, 651–657. [Google Scholar] [CrossRef] [PubMed]
- Ren, Z.-Y. The impact of genetic variation on sensitivity to opioid analgesics in patients with postoperative pain: A systematic review and meta-analysis. Pain Phys. 2015, 18, 131–152. [Google Scholar]
- Stamer, U.M.; Lee, E.-H.; Rauers, N.I.; Zhang, L.; Kleine-Brueggeney, M.; Fimmers, R.; Stuber, F.; Musshoff, F. CYP2D6-and CYP3A-dependent enantioselective plasma concentrations of ondansetron in postanesthesia care. Anesth. Analg. 2011, 113, 48–54. [Google Scholar] [CrossRef] [PubMed]
- Bell, G.C.; Caudle, K.E.; Whirl-Carrillo, M.; Gordon, R.J.; Hikino, K.; Prows, C.A.; Gaedigk, A.; Agundez, J.A.G.; Sadhasivam, S.; Klein, T.E. Clinical Pharmacogenetics Implementation Consortium (CPIC) guideline for CYP2D6 genotype and use of ondansetron and tropisetron. Clin. Pharmacol. Ther. 2017, 102, 213. [Google Scholar] [CrossRef] [PubMed]
- Candiotti, K.A.; Birnbach, D.J.; Lubarsky, D.A.; Nhuch, F.; Kamat, A.; Koch, W.H.; Nikoloff, M.; Wu, L.; Andrews, D. The impact of pharmacogenomics on postoperative nausea and vomiting: Do CYP2D6 allele copy number and polymorphisms affect the success or failure of ondansetron prophylaxis? J. Am. Soc. Anesthesiol. 2005, 102, 543–549. [Google Scholar] [CrossRef]
- Wesmiller, S.W.; Henker, R.A.; Sereika, S.M.; Donovan, H.S.; Meng, L.; Gruen, G.S.; Tarkin, I.S.; Conley, Y.P. The association of CYP2D6 genotype and postoperative nausea and vomiting in orthopedic trauma patients. Biol. Res. Nurs. 2013, 15, 382–389. [Google Scholar] [CrossRef]
- Douville, N.J.; Bastarache, L.; He, J.; Wu, K.-H.H.; Vanderwerff, B.; Bertucci-Richter, E.; Hornsby, W.E.; Lewis, A.; Jewell, E.S.; Kheterpal, S. Polygenic Score for the Prediction of Postoperative Nausea and Vomiting: A Retrospective Derivation and Validation Cohort Study. Anesthesiology 2025, 142, 52–71. [Google Scholar] [CrossRef]
- Gan, T.J. Risk factors for postoperative nausea and vomiting. Anesth. Analg. 2006, 102, 1884–1898. [Google Scholar] [CrossRef]
- Berroa, F.; Lafuente, A.; Javaloyes, G.; Cabrera-Freitag, P.; de la Borbolla, J.M.; Moncada, R.; Goikoetxea, M.J.; Sanz, M.L.; Ferrer, M.; Gastaminza, G. The incidence of perioperative hypersensitivity reactions: A single-center, prospective, cohort study. Anesth. Analg. 2015, 121, 117–123. [Google Scholar] [CrossRef]
- Fisher, M.M.; Baldo, B.A. The incidence and clinical features of anaphylactic reactions during anaesthesia in Australia. Ann. Fr. D’anesthesie Reanim. 1993, 12, 97–104. [Google Scholar] [CrossRef]
- Mertes, P.M.; Alla, F.; Tréchot, P.; Auroy, Y.; Jougla, E.; des Réactions Anaphylactoïdes, G.d.E. Anaphylaxis during anesthesia in France: An 8-year national survey. J. Allergy Clin. Immunol. 2011, 128, 366–373. [Google Scholar] [CrossRef]
- Baldo, B.A. Allergic and other adverse reactions to drugs used in anesthesia and surgery. Anesthesiol. Perioper. Sci. 2023, 1, 16. [Google Scholar] [CrossRef]
- Qi, Z.; Cheng, Y.; Su, Y.; Qiao, Y.; Zhang, J.; Yang, J.-j.; Xing, Q. Clinical variables and genetic variants associated with perioperative anaphylaxis in Chinese Han population: A pilot study. World Allergy Organ. J. 2024, 17, 100854. [Google Scholar] [CrossRef]
- Zhou, Y.; Krebs, K.; Milani, L.; Lauschke, V.M. Global frequencies of clinically important HLA alleles and their implications for the cost-effectiveness of preemptive pharmacogenetic testing. Clin. Pharmacol. Ther. 2021, 109, 160–174. [Google Scholar] [CrossRef]
- Navinés-Ferrer, A.; Serrano-Candelas, E.; Lafuente, A.; Muñoz-Cano, R.; Martín, M.; Gastaminza, G. MRGPRX2-mediated mast cell response to drugs used in perioperative procedures and anaesthesia. Sci. Rep. 2018, 8, 11628. [Google Scholar] [CrossRef] [PubMed]
- Vadas, P.; Gold, M.; Perelman, B.; Liss, G.M.; Lack, G.; Blyth, T.; Simons, F.E.R.; Simons, K.J.; Cass, D.; Yeung, J. Platelet-activating factor, PAF acetylhydrolase, and severe anaphylaxis. N. Engl. J. Med. 2008, 358, 28–35. [Google Scholar] [CrossRef]
- Turner, P.J.; Jerschow, E.; Umasunthar, T.; Lin, R.; Campbell, D.E.; Boyle, R.J. Fatal anaphylaxis: Mortality rate and risk factors. J. Allergy Clin. Immunol. Pract. 2017, 5, 1169–1178. [Google Scholar] [CrossRef] [PubMed]
- Gastaminza, G.; Martinez-Albelda, I.; González-Mahave, I.; Muñoz, D. Study of hypersensitivity reactions and anaphylaxis during anesthesia in Spain. J. Investig. Allergol. Clin. Immunol. 2008, 18, 350–356. [Google Scholar]
- Muralidharan, A.; Smith, M.T. Pain, analgesia and genetics. J. Pharm. Pharmacol. 2011, 63, 1387–1400. [Google Scholar] [CrossRef]
- Frangakis, S.G.; Maceachern, M.; Akbar, T.A.; Bolton, C.; Lin, V.; Smith, A.V.; Brummett, C.M.; Bicket, M.C. Association of genetic variants with postsurgical pain: A systematic review and meta-analyses. Anesthesiology 2023, 139, 827. [Google Scholar] [CrossRef]
- Hicks, J.K.; Sangkuhl, K.; Swen, J.J.; Ellingrod, V.L.; Müller, D.J.; Shimoda, K.; Bishop, J.R.; Kharasch, E.D.; Skaar, T.C.; Gaedigk, A. Clinical Pharmacogenetics Implementation Consortium Guideline (CPIC®) for CYP2D6 and CYP2C19 genotypes and dosing of tricyclic antidepressants: 2016 update. Clin. Pharmacol. Ther. 2017, 102, 37. [Google Scholar] [CrossRef] [PubMed]
- Theken, K.N.; Lee, C.R.; Gong, L.; Caudle, K.E.; Formea, C.M.; Gaedigk, A.; Klein, T.E.; Agúndez, J.A.G.; Grosser, T. Clinical pharmacogenetics implementation consortium guideline (CPIC) for CYP2C9 and nonsteroidal anti-inflammatory drugs. Clin. Pharmacol. Ther. 2020, 108, 191–200. [Google Scholar] [CrossRef]
- Fillingim, R.B.; King, C.D.; Ribeiro-Dasilva, M.C.; Rahim-Williams, B.; Riley Iii, J.L. Sex, gender, and pain: A review of recent clinical and experimental findings. J. Pain 2009, 10, 447–485. [Google Scholar] [CrossRef]
- Riley Iii, J.L.; Robinson, M.E.; Wise, E.A.; Myers, C.D.; Fillingim, R.B. Sex differences in the perception of noxious experimental stimuli: A meta-analysis. Pain 1998, 74, 181–187. [Google Scholar] [CrossRef] [PubMed]
- Miaskowski, C.; Gear, R.W.; Levine, J.D. Sex-Related Differences in Analgesic Responses; IASP Press: Seattle, WA, USA, 2000. [Google Scholar]
- Schnabel, A.; Poepping, D.M.; Gerss, J.; Zahn, P.K.; Pogatzki-Zahn, E.M. Sex-related differences of patient-controlled epidural analgesia for postoperative pain. Pain 2012, 153, 238–244. [Google Scholar] [CrossRef] [PubMed]
- Quraishi, S.A.; Seth, S.; Gonzalez-Ciccarelli, L.F.; Dahlawi, M.; Ferrufino, R.; Shah, S.N.; Schumann, R. The association of sex with pain scores and perioperative opioid administration following laparoscopic sleeve gastrectomy. Pain Manag. 2022, 12, 425–433. [Google Scholar] [CrossRef]
- Soffin, E.M.; Wilson, L.A.; Liu, J.; Poeran, J.; Memtsoudis, S.G. Association between sex and perioperative opioid prescribing for total joint arthroplasty: A retrospective population-based study. Br. J. Anaesth. 2021, 126, 1217–1225. [Google Scholar] [CrossRef]
- Niesters, M.; Dahan, A.; Kest, B.; Zacny, J.; Stijnen, T.; Aarts, L.; Sarton, E. Do sex differences exist in opioid analgesia? A systematic review and meta-analysis of human experimental and clinical studies. Pain 2010, 151, 61–68. [Google Scholar] [CrossRef]
- Averbuch, M.; Katzper, M. A search for sex differences in response to analgesia. Arch. Intern. Med. 2000, 160, 3424–3428. [Google Scholar] [CrossRef]
- Greenspan, J.D.; Craft, R.M.; LeResche, L.; Arendt-Nielsen, L.; Berkley, K.J.; Fillingim, R.B.; Gold, M.S.; Holdcroft, A.; Lautenbacher, S.; Mayer, E.A. Studying sex and gender differences in pain and analgesia: A consensus report. Pain 2007, 132, S26–S45. [Google Scholar] [CrossRef]
- Aranake, A.; Gradwohl, S.; Ben-Abdallah, A.; Lin, N.; Shanks, A.; Helsten, D.L.; Glick, D.B.; Jacobsohn, E.; Villafranca, A.J.; Evers, A.S. Increased risk of intraoperative awareness in patients with a history of awareness. Anesthesiology 2013, 119, 1275–1283. [Google Scholar] [CrossRef] [PubMed]
- Kim, M.C.; Fricchione, G.L.; Akeju, O. Accidental awareness under general anaesthesia: Incidence, risk factors, and psychological management. BJA Educ. 2021, 21, 154–161. [Google Scholar] [CrossRef]
- Ma, L.; Huang, Y.; Huang, S.; Xu, F.; Wang, Y.; Zhao, S.; Deng, D.; Ding, Y.; Zhang, T.; Zhao, W. Polymorphisms of pharmacogenetic candidate genes affect etomidate anesthesia susceptibility. Front. Genet. 2022, 13, 999132. [Google Scholar] [CrossRef] [PubMed]
- Pavel, M.A.; Petersen, E.N.; Wang, H.; Lerner, R.A.; Hansen, S.B. Studies on the mechanism of general anesthesia. Proc. Natl. Acad. Sci. USA 2020, 117, 13757–13766. [Google Scholar] [CrossRef]
- Sleigh, J.W.; Leslie, K.; Davidson, A.J.; Amor, D.J.; Diakumis, P.; Lukic, V.; Lockhart, P.J.; Bahlo, M. Genetic analysis of patients who experienced awareness with recall while under general anesthesia. Anesthesiology 2019, 131, 974–982. [Google Scholar] [CrossRef]
- Eger, E.I.; Laster, M.J.; Gregory, G.A.; Katoh, T.; Sonner, J.M. Women appear to have the same minimum alveolar concentration as men: A retrospective study. J. Am. Soc. Anesthesiol. 2003, 99, 1059–1061. [Google Scholar] [CrossRef] [PubMed]
- Avidan, M.S.; Jacobsohn, E.; Glick, D.; Burnside, B.A.; Zhang, L.; Villafranca, A.; Karl, L.; Kamal, S.; Torres, B.; O’Connor, M. Prevention of intraoperative awareness in a high-risk surgical population. N. Engl. J. Med. 2011, 365, 591–600. [Google Scholar] [CrossRef]
- Domino, K.B.; Posner, K.L.; Caplan, R.A.; Cheney, F.W. Awareness during anesthesia: A closed claims analysis. Anesthesiology 1999, 90, 1053–1061. [Google Scholar] [CrossRef]
- Lennertz, R.; Pryor, K.O.; Raz, A.; Parker, M.; Bonhomme, V.; Schuller, P.; Schneider, G.; Moore, M.; Coburn, M.; Root, J.C. Connected consciousness after tracheal intubation in young adults: An international multicentre cohort study. Br. J. Anaesth. 2023, 130, e217–e224. [Google Scholar] [CrossRef]
- Erden, V.; Yangn, Z.; Erkalp, K.; Delatioglu, H.; Bahçeci, F.; Seyhan, A. Increased progesterone production during the luteal phase of menstruation may decrease anesthetic requirement. Anesth. Analg. 2005, 101, 1007–1011. [Google Scholar] [CrossRef]
- Chua, M.V.; Tsueda, K.; Doufas, A.G. Midazolam causes less sedation in volunteers with red hair. Can. J. Anaesth. 2004, 51, 25–30. [Google Scholar] [CrossRef] [PubMed]
- Liem, E.B.; Lin, C.M.; Suleman, M.I.; Doufas, A.G.; Gregg, R.G.; Veauthier, J.M.; Loyd, G.; Sessler, D.I. Anesthetic requirement is increased in redheads. Anesthesiology 2004, 101, 279–283. [Google Scholar] [CrossRef] [PubMed]
- Schiöth, H.B.; Phillips, S.R.; Rudzish, R.; Birch-Machin, M.A.; Wikberg, J.E.; Rees, J.L. Loss of function mutations of the human melanocortin 1 receptor are common and are associated with red hair. Biochem. Biophys. Res. Commun. 1999, 260, 488–491. [Google Scholar] [CrossRef]
- Gradwohl, S.C.; Aranake, A.; Abdallah, A.B.; McNair, P.; Lin, N.; Fritz, B.A.; Villafranca, A.; Glick, D.; Jacobsohn, E.; Mashour, G.A.; et al. Intraoperative awareness risk, anesthetic sensitivity, and anesthetic management for patients with natural red hair: A matched cohort study. Can. J. Anaesth. 2015, 62, 345–355. [Google Scholar] [CrossRef] [PubMed]
- Buchanan, F.F.; Myles, P.S.; Cicuttini, F. Effect of patient sex on general anaesthesia and recovery. Br. J. Anaesth. 2011, 106, 832–839. [Google Scholar] [CrossRef]
- Ghoneim, M.M.; Block, R.I.; Haffarnan, M.; Mathews, M.J. Awareness during anesthesia: Risk factors, causes and sequelae: A review of reported cases in the literature. Anesth. Analg. 2009, 108, 527–535. [Google Scholar] [CrossRef]
- Heinrich, M.; Sieg, M.; Kruppa, J.; Nürnberg, P.; Schreier, P.H.; Heilmann-Heimbach, S.; Hoffmann, P.; Nöthen, M.M.; Janke, J.; Pischon, T.; et al. Association between genetic variants of the cholinergic system and postoperative delirium and cognitive dysfunction in elderly patients. BMC Med. Genom. 2021, 14, 248. [Google Scholar] [CrossRef]
- Mahanna-Gabrielli, E.; Miano, T.A.; Augoustides, J.G.; Kim, C.; Bavaria, J.E.; Kofke, W.A. Does the melatonin receptor 1B gene polymorphism have a role in postoperative delirium? PLoS ONE 2018, 13, e0207941. [Google Scholar] [CrossRef]
- Kazmierski, J.; Sieruta, M.; Banys, A.; Jaszewski, R.; Sobow, T.; Liberski, P.; Kloszewska, I. The assessment of the T102C polymorphism of the 5HT2a receptor gene, 3723G/A polymorphism of the NMDA receptor 3A subunit gene (GRIN3A) and 421C/A polymorphism of the NMDA receptor 2B subunit gene (GRIN2B) among cardiac surgery patients with and without delirium. Gen. Hosp. Psychiatry 2014, 36, 753–756. [Google Scholar] [CrossRef]
- McCoy Jr, T.H.; Hart, K.; Pellegrini, A.; Perlis, R.H. Genome-wide association identifies a novel locus for delirium risk. Neurobiol. Aging 2018, 68, 160.e9–160.e14. [Google Scholar] [CrossRef]
- Westphal, S.; Stoppe, C.; Gruenewald, M.; Bein, B.; Renner, J.; Cremer, J.; Coburn, M.; Schaelte, G.; Boening, A.; Niemann, B. Genome-wide association study of myocardial infarction, atrial fibrillation, acute stroke, acute kidney injury and delirium after cardiac surgery–a sub-analysis of the RIPHeart-Study. BMC Cardiovasc. Disord. 2019, 19, 26. [Google Scholar] [CrossRef]
- Terrelonge, M.; LaHue, S.C.; Tang, C.; Movsesyan, I.; Pullinger, C.R.; Dubal, D.B.; Leung, J.; Douglas, V.C. KIBRA, MTNR1B, and FKBP5 genotypes are associated with decreased odds of incident delirium in elderly post-surgical patients. Sci. Rep. 2022, 12, 556. [Google Scholar] [CrossRef] [PubMed]
- Haynes, M.S.; Alder, K.D.; Toombs, C.; Amakiri, I.C.; Rubin, L.E.; Grauer, J.N. Predictors and Sequelae of Postoperative Delirium in a Geriatric Patient Population With Hip Fracture. J. Am. Acad. Orthop. Surg. Glob. Res. Rev. 2021, 5, e20.00221. [Google Scholar] [CrossRef]
- Mevorach, L.; Forookhi, A.; Farcomeni, A.; Romagnoli, S.; Bilotta, F. Perioperative risk factors associated with increased incidence of postoperative delirium: Systematic review, meta-analysis, and Grading of Recommendations Assessment, Development, and Evaluation system report of clinical literature. Br. J. Anaesth. 2023, 130, e254–e262. [Google Scholar] [CrossRef]
- Oh, E.S.; Li, M.; Fafowora, T.M.; Inouye, S.K.; Chen, C.H.; Rosman, L.M.; Lyketsos, C.G.; Sieber, F.E.; Puhan, M.A. Preoperative risk factors for postoperative delirium following hip fracture repair: A systematic review. Int. J. Geriatr. Psychiatry 2015, 30, 900–910. [Google Scholar] [CrossRef] [PubMed]
- Oldroyd, C.; Scholz, A.F.M.; Hinchliffe, R.J.; McCarthy, K.; Hewitt, J.; Quinn, T.J. A systematic review and meta-analysis of factors for delirium in vascular surgical patients. J. Vasc. Surg. 2017, 66, 1269–1279.e9. [Google Scholar] [CrossRef]
- Stoddard, M.D.; Cho, A.; Chen, S.A.; Dunphy, C.; Wright, D.N.; Chughtai, B. A Systematic Review of Postoperative Delirium in the Urologic Patient. Curr. Urol. Rep. 2020, 21, 60. [Google Scholar] [CrossRef] [PubMed]
- Billard, V.; Cazalaa, J.; Servin, F.; Viviand, X. Target-controlled intravenous anesthesia. Ann. Fr. D’anesthesie Reanim. 1997, 16, 250–273. [Google Scholar] [CrossRef]
- Eleveld, D.; Colin, P.; Absalom, A.; Struys, M. Pharmacokinetic–pharmacodynamic model for propofol for broad application in anaesthesia and sedation. Br. J. Anaesth. 2018, 120, 942–959. [Google Scholar] [CrossRef]
- Bychkovsky, B.; Rana, H.Q.; Ademuyiwa, F.; Plichta, J.; Anderson, K.; Nogueira-Rodrigues, A.; Santa-Maria, C.A.; Coffman, L.G.; Marquez, C.; Das, A. Call for action: Expanding global access to hereditary cancer genetic testing. Lancet Oncol. 2022, 23, 1124–1126. [Google Scholar] [CrossRef]
- Capasso, J.E. The cost of genetic testing for ocular disease: Who pays? Curr. Opin. Ophthalmol. 2014, 25, 394–399. [Google Scholar] [CrossRef] [PubMed]
- Paiella, S.; Azzolina, D.; Gregori, D.; Malleo, G.; Golan, T.; Simeone, D.; Davis, M.; Vacca, P.; Crovetto, A.; Bassi, C. A systematic review and meta-analysis of germline BRCA mutations in pancreatic cancer patients identifies global and racial disparities in access to genetic testing. ESMO Open 2023, 8, 100881. [Google Scholar] [CrossRef]
- Rebbeck, T.R.; Bridges, J.F.; Mack, J.W.; Gray, S.W.; Trent, J.M.; George, S.; Crossnohere, N.L.; Paskett, E.D.; Painter, C.A.; Wagle, N. A framework for promoting diversity, equity, and inclusion in genetics and genomics research. JAMA Health Forum 2022, 3, e220603. [Google Scholar] [CrossRef] [PubMed]
- Sirugo, G.; Williams, S.M.; Tishkoff, S.A. The missing diversity in human genetic studies. Cell 2019, 177, 26–31. [Google Scholar] [CrossRef] [PubMed]
- Suther, S.; Kiros, G.-E. Barriers to the use of genetic testing: A study of racial and ethnic disparities. Genet. Med. 2009, 11, 655–662. [Google Scholar] [CrossRef]
Study | Objective | Patient Population | Findings |
---|---|---|---|
Gloor et al. [94] | Identify genetic risk factors of PONV and use these to identify at-risk patients. | Total of 601 adult patients below ASA IV classification | Two SNPs in the type 3B serotonin receptor gene were associated with PONV. |
Reuffert et al. [95] | Identify an association between genetic variants of the serotonin receptor subunits 3A and 3B and PONV. | Adult German patient population, 95 of whom have PONV after general anesthesia and 94 control patients. | HTR3A c1377A>G was associated with PONV whereas the HTR3B variants c5+201_+202delCA (OR: 0.421, p = 0.001) and c6-137C>T were associated with a decreased risk for PONV. |
Kim et al. [15] | Investigate whether two deletion polymorphisms in the serotonin 3B receptor gene affect efficacy of ondansetron in preventing PONV. | Total of 245 adult patients undergoing laparoscopic cholecystectomy | Homozygous mutants for the 5HT3B AAG deletion genotype (-100_-102AAG deletion variant) had increased incidence of PONV within 2 h of surgery (p = 0.02), although not at 2–24 h after surgery. |
Joy Lin et al. [14] | Identify an association between SNPs in the serotonin 3A receptor gene and postoperative nausea. | Total of 369 adult Taiwanese patients | Two SNPs were associated with increased postoperative nausea. One haplotype showed an increased risk while one haplotype showed a protective effect. |
Wesmiller et al. [96] | Identify genetic risk factors associated with PONV after surgery in breast cancer patients. | Total of 90 adult women | Alleles in genes for catchol-O-methyltransferase, dopamine receptors, and tryptophan were associated with decreased PONV. |
Janicki et al. [97] | Conduct a genome-wide association study to identify novel loci for genes predisposing to PONV. | Total of 122 patients with severe PONV matched to 129 controls | One SNP in the M3 muscarinic receptor was associated with PONV. |
Klenke et al. [98,101] | The primary objective was to investigate the relationship between genetic factors and the Apfel score with PONV risk. The second objective was to determine whether PONV prophylaxis with dexamethasone and acustiumlation or both decrease PONV risk for patients with genetic risk factors for PONV. | Total of 454 adult patients undergoing elective surgery | A polymorphism in the M3 muscarinic receptor is an independent risk factor for PONV and combined prophylaxis with dexamethasone and acustimulation reduced PONV rate. |
Frey et al. [99] | Investigate the association of a polymorphism in the dopamine receptor with PONV in a high-risk cohort | Total of 306 German patients undergoing elective strabismus repair with etomidate/alfentanil/mivacurium induction and sevoflurane maintenance | The TaqIA A2 allele in the dopamine receptor gene is significantly associated with a history of PONV. |
Stegen et al. [100] | Two objectives: (1) Create PONV prediction score which includes SNPs in the M3 muscarinic receptor gene (CHRM3, same SNP as Klenke et al. [98,101], and the potassium voltage-gated channel subfamily B member 2 (KCNB2) gene; (2) investigate association with five additional SNPs with PONV. | Total of 838 adult German patients | The CHRM3 and KCNB2 SNPs were unable to be used to create a PONV prediction score. SNPs in the dopamine receptor were found to be associated with PONV. |
Hayase et al. [103] | Identify if SNPs in the neurokinin-1 receptor (TACR1 gene) are associated with sex differences in PONV. | Total of 200 adult surgical patients | One SNP in the NK1 gene was associated with sex differences in PONV. |
Lee et al. [104] | Identify if an SNP in the mu-opioid receptor is associated with PONV risk | Total of 416 Korean women undergoing breast surgery | PONV rates differ based on opioid receptor polymorphism with no difference in pain scores. |
Ren et al. [105] | Systematic review and meta-analysis on studies investigating an association between genetic polymorphism and clinical outcomes of opioid analgesics. | Total of 23 studies (5902 patients) | Patients with a gene variant in the opioid receptor experienced less PONV during the first 24 h but not at the 48 h period. |
Candiotti et al. [108] | Determine if patients who were ultrarapid metabolizers and given ondansetron had a greater rate of PONV. | Total of 250 adult female patients | Ultrarapid metabolizers had increased incidence of postoperative vomiting but not nausea. |
Wesmiller et al. [109] | Investigate association of CYP2DC genotypes with PONV. | Total of 112 adult trauma patients | Poor metabolizers experienced less PONV but higher pain scores after receiving 4mg IV ondansetron. |
Douville et al. [110] | There were multiple objectives to this study as it consisted of multiple stages (1): perform a genome-wide association study to identify genetic risk factors for PONV; (2): derive a polygenic risk for PONV in a derivation cohort; (3): use this polygenic risk score combined with traditional risk factors for PONV in a validation cohort; (4): compare genetic contributions to PONV with the literature. | Total of 61,503 adult surgical patients | The use of a polygenic risk score did not clinically improve PONV prediction when compared to traditional risk factors. |
Topic | Summary of Gene Mutations | Summary of Sex Differences |
---|---|---|
Volatile anesthetics |
|
|
Induction agents |
|
|
Neuromuscular blocking drugs |
|
|
Opioids |
|
|
Local anesthetics |
|
|
Allergic reactions |
|
|
Pain and analgesia |
|
|
Depth of anesthesia |
|
|
Intraoperative awareness |
|
|
Post-op delirium |
|
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
DiMaria, S.; Mangano, N.; Bruzzese, A.; Bartula, B.; Parikh, S.; Costa, A. Genetic Variation and Sex-Based Differences: Current Considerations for Anesthetic Management. Curr. Issues Mol. Biol. 2025, 47, 202. https://doi.org/10.3390/cimb47030202
DiMaria S, Mangano N, Bruzzese A, Bartula B, Parikh S, Costa A. Genetic Variation and Sex-Based Differences: Current Considerations for Anesthetic Management. Current Issues in Molecular Biology. 2025; 47(3):202. https://doi.org/10.3390/cimb47030202
Chicago/Turabian StyleDiMaria, Stephen, Nicholas Mangano, Adam Bruzzese, Benjamin Bartula, Shruti Parikh, and Ana Costa. 2025. "Genetic Variation and Sex-Based Differences: Current Considerations for Anesthetic Management" Current Issues in Molecular Biology 47, no. 3: 202. https://doi.org/10.3390/cimb47030202
APA StyleDiMaria, S., Mangano, N., Bruzzese, A., Bartula, B., Parikh, S., & Costa, A. (2025). Genetic Variation and Sex-Based Differences: Current Considerations for Anesthetic Management. Current Issues in Molecular Biology, 47(3), 202. https://doi.org/10.3390/cimb47030202